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Abstract. Let p be a prime number. We show that a result of Teulié

is nearly best possible by constructing a p-adic number ξ such that ξ
and ξ2 are uniformly simultaneously very well approximable by rational

numbers with the same denominator. The same conclusion was previ-

ously reached by Zelo in his PhD thesis, but our approach using p-adic

continued fractions is more direct and simpler.

1. Introduction

Throughout this paper we set λ = (
√

5 − 1)/2. In 1969, Davenport and Schmidt [2]
established the following statement.

Theorem DS. Let ξ be a real number that is neither rational nor quadratic. Then, there

exists a positive real number c such that the system of inequalities

|x0ξ − x1| ≤ cX−λ,

|x0ξ
2 − x2| ≤ cX−λ,

|x0| ≤ X

has no non-zero integer solution (x0, x1, x2) for arbitrarily large real numbers X .

It was rather unexpected when, in 2003, Roy [5, 7] proved that Theorem DS cannot
be improved.

Theorem R. There exist a real number ξ which is neither rational nor quadratic and a

positive real number c such that the system of inequalities

|x0ξ − x1| ≤ cX−λ,

|x0ξ
2 − x2| ≤ cX−λ,

|x0| ≤ X

(1.1)

has a non-zero integer solution (x0, x1, x2) for every real number X > 1.
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Theorem R is quite surprising, since the volume of the convex bodies defined by (1.1)
tends rapidly to zero as X grows to infinity. Any real number ξ satisfying a Diophantine
condition as in Theorem R was termed by Roy an extremal number. He proved [7] that the
set of extremal (real) numbers is countable and gave some explicit examples of extremal
(real) numbers [5].

Throughout the present paper, p always denotes a prime number. The absolute value
| · |p is normalised in such a way that |p|p = p−1. In 2002, Teulié [8] established the p-adic
analogue of Theorem DS.

Theorem T. Let ξ be a p-adic number that is neither rational nor quadratic. Then, there

exists a positive real number c such that the system of inequalities

|x0ξ − x1|p ≤ cX−1−λ,

|x0ξ
2 − x2|p ≤ cX−1−λ,

max{|x0|, |x1|, |x2|} ≤ X

(1.2)

has no non-zero integer solution (x0, x1, x2) for arbitrarily large real numbers X .

In analogy with the real case, we define an extremal p-adic number to be a p-adic
number ξ with the property that there is a positive constant c such that, for every real
number X > 1, the system (1.2) has a non-zero integer solution (x0, x1, x2).

Very recently, in his PhD thesis, Zelo [9] adapted the method initiated by Roy [7] to
show that Teulié’s result is nearly best possible. Next result follows from his Corollary
2.5.9.

Theorem Z. Let ε be a positive real number. There exist a p-adic number ξ which

is neither rational nor quadratic and a positive real number c such that the system of

inequalities

|x0ξ − x1|p ≤ cX−1−λ+ε,

|x0ξ
2 − x2|p ≤ cX−1−λ+ε,

max{|x0|, |x1|, |x2|} ≤ X

has a non-zero integer solution (x0, x1, x2) for every real number X > 1.

The purpose of the present note is to give an alternative, simpler proof of Zelo’s result.
Our approach is inspired by Roy’s construction [5] of an extremal number using continued
fractions and properties of the infinite Fibonacci word.

2. Result

Let a and b be two symbols. Set f1 = b, f2 = a and let fn = fn−1fn−2 be the
concatenation of the words fn−1 and fn−2, for n ≥ 3. Then,

f∞ = lim
n→+∞

fn = abaababaabaab . . .
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is the Fibonacci word on the alphabet {a, b}. Roy [5] proved that the real number

ξ = [0; 1, 2, 1, 1, 2, 1, 2, 1, . . .],

whose sequence of partial quotients is given by the Fibonacci word on {1, 2}, is an extremal
real number.

In this note we show that a similar construction works in the p-adic setting. Before
stating our main result, it is convenient to define an exponent of approximation.

Definition. Let n ≥ 1 be an integer and let ξ be a p-adic number. We denote by λ̂n(ξ)

the supremum of the real numbers λ̂ such that, for every sufficiently large real number X ,

the system of inequalities

max
1≤m≤n

|x0ξ
m − xm|p ≤ X−1−λ̂,

0 < max{|x0|, |x1|, . . . , |xn|} ≤ X

has a solution in integers x0, . . . , xn.

It follows from the Dirichlet Schubfachprinzip that λ̂n(ξ) ≥ 1/n for every positive

integer n and every irrational number ξ. Teulié [8] derived upper bounds for λ̂n(ξ) when

ξ is not algebraic of degree at most n. His Theorem T implies that λ̂2(ξ) ≤ λ for every
p-adic number ξ which is neither rational nor quadratic, while Theorem Z asserts that

sup{λ̂2(ξ) : ξ ∈ Qp, ξ is neither rational nor quadratic} = λ. (2.1)

As in the real case, it remains unknown whether there are transcendental p-adic numbers
ξ and integers n ≥ 3 such that λ̂n(ξ) > 1/n.

Our Theorem gives a constructive proof of (2.1).

Theorem. Let v be a positive integer and let (vn)n≥1 be the Fibonacci word on {v, v+1}
starting with v. Let ξv denote the p-adic number

ξv := 1 + lim
n→+∞

pv1

1 +
pv2

1 +
pv3

. . . + pvn

.

Then we have λ̂2(ξv) ≥ (1 − 7/v)λ and

sup{λ̂2(ξv) : v ≥ 1} = λ.

Remark 1. It does not seem that Zelo’s approach allows him to replace Xε in Theorem
Z by a function of X which increases less rapidly, like e.g. X1/ log log X . The same applies
for the constructive method described in the present note. In particular, it remains an
interesting open problem to decide whether there exist extremal p-adic numbers and even
whether there exist p-adic numbers ξ with λ̂2(ξ) = λ.
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Remark 2. It follows from the p-adic version of the Schmidt Subspace Theorem that any
p-adic number ξ satisfying λ̂2(ξ) > 1/2 is either rational, or quadratic, or transcendental.

Remark 3. Zelo’s approach is more complicated than ours, but it gives more information.
Indeed, it yields a characterization of extremal p-adic numbers (if such numbers exist) as

well as a characterization of p-adic numbers ξ with λ̂2(ξ) sufficiently close to λ. One may
hope that, combined with ideas from [6], it could be used to prove the existence of p-adic
numbers that are very badly approximable by cubic integers.

3. Proof

Before proceeding with the construction of p-adic numbers enjoying special approxi-
mation properties, we make several general remarks which were inspired by [3].

• Definition of p-adic continued fractions.

Set
p−1 = 1, q−1 = 0, p0 = 1, q0 = 1.

Let v = (vn)n≥1 be a sequence of positive integers and set

pn = pvnpn−2 + pn−1, qn = pvnqn−2 + qn−1, (n ≥ 1).

Observe that
∣

∣

∣

∣

p1

q1
− p0

q0

∣

∣

∣

∣

p

= p−v1

and that, for n ≥ 2, we have

∣

∣

∣

∣

pn

qn
− pn−1

qn−1

∣

∣

∣

∣

p

=

∣

∣

∣

∣

(pvnpn−2 + pn−1)qn−1 − (pvnqn−2 + qn−1)pn−1

qnqn−1

∣

∣
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∣

p

= p−vn

∣

∣
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∣

pn−1

qn−1
− pn−2

qn−2

∣

∣

∣

∣

p

,

since p does not divide qnqn−1qn−2.
Consequently, for n ≥ 0 and k ≥ 1, we have

∣

∣

∣

∣

pn+k

qn+k
− pn

qn

∣

∣

∣

∣

p

=

∣

∣

∣

∣

pn+1

qn+1
− pn

qn

∣

∣

∣

∣

p

= p−vn+1−vn−...−v1 . (3.1)

This shows that the sequence (pn/qn)n≥1 converges p-adically. Let ξv denote its limit. It
follows from (3.1) that

∣

∣

∣

∣

ξv − pn

qn

∣

∣

∣

∣

p

= p−vn+1−vn−...−v1 , n ≥ 1, (3.2)
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and we can write

ξv := 1 + lim
n→+∞

pv1

1 +
pv2

1 +
pv3

. . . + pvn

.

• Palindromes.

Let n be a positive integer. We have

pn

qn
= 1 +

pv1

1 +
pv2

1 +
pv3

. . . + pvn

.

Furthermore, the classical mirror formula (see [4], page 12) asserts that

pn

pn−1
= 1 +

pvn

1 +
pvn−1

1 +
pvn−2

. . . + pv1

.

Consequently, if the word v1 . . . vn is a palindrome, that is, if vj = vn+1−j for j = 1, . . . , n,
then

pn

qn
=

pn

pn−1
,

hence,

qn = pn−1.

This implies that

∣

∣

∣

∣

ξ2
v
− pn−1

qn−1
· pn

qn

∣

∣

∣

∣

p

=

∣

∣

∣

∣

(

ξv − pn−1

qn−1

)

·
(

ξv +
pn

qn

)

+ ξv

(

pn−1

qn−1
− pn

qn

)
∣

∣

∣

∣

p

≤ p−vn−vn−1−...−v1 ,

by (3.1) and (3.2). We then derive from (3.2) that

max{|qn−1ξv − pn−1|p, |qn−1ξ
2
v
− pn|p} ≤ p−vn−vn−1−...−v1 , (3.3)

showing that ξv and its square are simultaneously well approximable by rational numbers
of denominator qn−1.
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• Completion of the proof.

In the sequel, v denotes a positive integer and we assume that the sequence v =
(vn)n≥1 takes its values in the set {v, v + 1}. We assume that v ≥ 8 since the theorem
obviously holds for v ≤ 7. From the inequalities

pvqn−2 ≤ qn ≤ qn−1 + pv+1qn−2, n ≥ 1,

we deduce that there exist positive constants c1 and c2 such that

c1p
nv/2 ≤ qn ≤ c2p

n(v+2)/2, n ≥ 1. (3.4)

Furthermore, we observe that

nv ≤ v1 + . . . + vn ≤ n(v + 1), n ≥ 1. (3.5)

Take for (vn)n≥1 the Fibonacci word on {v, v + 1} starting with v. For simplicity, let
us write ξv instead of ξv. Let (Fk)k≥0 be the Fibonacci sequence defined by F0 = 0, F1 = 1
and Fk+2 = Fk+1 + Fk for k ≥ 0. For k ≥ 4, set nk = Fk − 3. It is well known (see e.g.
[1]) that, for k ≥ 4, the prefix of length nk + 1 of the word

v1v2v3 . . . = v(v + 1)vv(v + 1)v(v + 1)v . . .

is a palindrome.
In view of the preceding discussion, for k ≥ 4, we have

max{|qnk
ξv − pnk

|p, |qnk
ξ2
v − pnk+1|p} ≤ p−vn

k
+1−vn

k
−...−v1

≤ c3q
−2+4/v
nk

,
(3.6)

by (3.3), (3.4) and (3.5). Here and below, c3, . . . , c7 denote positive real numbers indepen-
dent of k.

Let Q be a large positive integer. Let k ≥ 4 be the integer defined by the inequalities

qnk
≤ Q < qnk+1

.

Since nk/nk+1 tends to λ as k tends to infinity, we may assume that Q is sufficiently large
in order to guarantee that

λnk+1 ≤ v + 3

v + 2
nk.

Let u be the largest non-negative integer such that qnk
pu ≤ Q, and set

q′nk
= puqnk

, p′nk
= pupnk

, p′nk+1 = pupnk+1.

We then have

Qλ ≤ qλ
nk+1

≤ c2p
λnk+1(v+2)/2 ≤ c2p

nk(v+3)/2 ≤ c4q
1+3/v
nk

,
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and it follows from (3.6) that

max{|q′nk
ξv − p′nk

|p, |q′nk
ξ2
v − p′nk+1|p} ≤ c3p

−uq−2+4/v
nk

≤ c5Q
−1q−1+4/v

nk
≤ c6Q

−1Q−(1−7/v)λ.

Since 0 < p′nk
, p′nk+1, q

′
nk

≤ c7Q, this shows that

λ̂2(ξv) ≥ (1 − 7/v)λ,

and the proof of the theorem is complete.
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