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Nonarchimedean quadratic Lagrange spectra and
continued fractions in power series fields

by

Yann Bugeaud (Strasbourg)

Abstract. Let Fq be a finite field of order a positive power q of a prime number. We
study the nonarchimedean quadratic Lagrange spectrum defined by Parkkonen and Paulin
by considering the approximation by elements of the orbit of a given quadratic power series
in Fq((Y −1)), for the action by homographies and anti-homographies of PGL2(Fq[Y ]) on
Fq((Y −1)) ∪ {∞}. While Parkkonen and Paulin’s approach used geometric methods of
group actions on Bruhat–Tits trees, ours is based on the theory of continued fractions in
power series fields.

1. Introduction. For an irrational real number ξ, define λ(ξ) in (0,+∞]
by

λ(ξ)−1 = lim inf
p,q∈Z, q→+∞

|q(qξ − p)|.

The Lagrange spectrum L is the set of values taken by the function λ at
irrational real numbers. It is included in [

√
5,+∞] and has a rather com-

plicated structure, which is not completely understood, despite some recent
progress [9, 19]. The first values of L are

√
5 (sometimes called Hurwitz’

constant) and 2
√

2, and its first accumulation point is 3. In 1947 Hall [11]
established that every real number in the interval [

√
2− 1, 4

√
2− 4] can be

represented as a sum of two continued fractions with partial quotients at
most 4. As an easy consequence, Vinogradov, Delone, and Fuks [27] proved
that the whole interval [5 +

√
2,+∞] is contained in L (in his review of

[27] for the Mathematical Reviews, Cassels observed that ‘he was told by
Marshall Hall of this application of his result some years ago, and, indeed,
this application provided the motivation for Hall’s paper’). Subsequently,
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in 1975, Freiman [8] proved that the biggest half-line contained in L is[
2221564096 + 283748

√
462

491993569
,+∞

]
.

This half-line is called Hall’s ray. The reader is directed to [6] for additional
references (note also that, sometimes, the authors choose to study the set
of values taken by the function 1/λ).

Analogous spectra have been defined and studied in various contexts, in-
cluding inhomogeneous Diophantine approximation (see e.g. Cusick, Moran,
and Pollington [7] and Pinner and Wolczuk [25]), Diophantine approxima-
tion in imaginary quadratic fields (Maucourant [18]), and in the setting
of interval exchange transformations and the Teichmüller flow on moduli
spaces of translation surfaces (Hubert, Marchese, and Ulcigrai [14]).

In 2011 Parkkonen and Paulin [20] defined and studied quadratic La-
grange spectra by considering approximation by elements of the orbit of a
given real quadratic irrational number for the action by homographies and
anti-homographies of PSL2(Z) on R ∪ {∞}. These spectra were further in-
vestigated by Bugeaud [4], Pejković [23], and Lin [16]. Among other results,
the existence of Hall’s ray for every quadratic Lagrange spectrum has been
established in [16]. Subsequently, Parkkonen and Paulin [21] defined and
studied quadratic Lagrange spectra in completions of function fields over fi-
nite fields with respect to the absolute values defined by discrete valuations.
This setting includes the special case of the field of rational fractions and its
valuation at infinity, which was given special attention in [21] and is studied
in the present paper.

Let q be a positive power of a prime number and k = Fq denote the

finite field of order q. Let R = Fq[Y ], K = Fq(Y ), and K̂ = Fq((Y −1)) be,
respectively, the ring of polynomials in one variable Y over Fq, the field of
rational functions in Y over Fq, and the field of formal power series in Y −1

over Fq. Then K̂ is a nonarchimedean local field, the completion of K with
respect to the absolute value defined by |P/Q| = qdegP−degQ for all P,Q in
R \ {0}. Also, sometimes it is convenient to use the associated valuation v

defined for a nonzero element f in K̂ by

v(f) = − log |f |
log q

.

We stress that K̂ is not algebraically closed (for instance, the polynomial

X2 − Y has no roots in K̂). Let

K(2) = {f ∈ K̂ : [K(f) : K] = 2}

be the set of power series in K̂ which are quadratic over K. Given f
in K̂ \K, it is well known that f is in K(2) if and only if its continued frac-
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tion expansion is eventually periodic. The projective action of PGL2(R) on

K̂ ∪{∞} preserves K(2), keeping the periodic part of the continued fraction
expansions unchanged, up to cyclic permutation and invertible elements; see
Lemma 2.5 below. We refer for instance to [15, 26, 22] for background on
the above notions.

In odd characteristic, the quadratic polynomials which are irreducible
over R are separable. This is not the case in characteristic 2, where there ex-
ist quadratic polynomials in R[X] which are irreducible over R and not sepa-
rable. These polynomials are precisely the polynomials of the form AX2+C,
with A,C in R and A nonzero, whose (double) roots are in Fq((Y −1/2))\ K̂.

Consequently, every quadratic power series in K̂ is a root of an irreducible
polynomial of the form AX2 + BX + C, where A,B,C are in R and B is
nonzero. This short discussion explains that, in characteristic 2, the Galois
conjugate ασ of a quadratic power series α in K̂ is well defined and that
α− ασ = α+ ασ is nonzero.

Let α be in K(2) and ασ in K(2) denote its Galois conjugate over K. The
complexity h(α) = 1/|α− ασ| of α was introduced in [13] and studied in
[1, Section 17.2]. It measures the size of α, in the same way as max{|p|, |q|}
measures the size of the rational number p/q, where p, q are nonzero coprime
integers. The complexity h(α) can be expressed in terms of the continued
fraction expansion of α (see Lemma 2.2). Let

Θα = PGL2(R) · {α, ασ}
be the union of the orbits of α and ασ under the projective action of
PGL2(R). Given f in K̂ \ (K ∪Θα), Parkkonen and Paulin [21] introduced
the quadratic approximation constant of f , defined by

cα(f) = lim inf
β∈Θα, |β−βσ |→0

|f − β|
|β − βσ|

,

and they studied the quadratic Lagrange spectrum of α, defined by

Sp(α) = {cα(f) : f ∈ K̂ \ (K ∪Θα)}.
Note that the quadratic Lagrange spectrum of α is contained in qZ∪{0,+∞},
thus, it is countable. It follows from [13, Theorem 1.6] that if m

K̂
is a Haar

measure on the locally compact additive group of K̂, then for m
K̂

-almost

every f in K̂, we have cα(f) = 0. Hence in particular 0 is in Sp(α), and there-
fore the quadratic Lagrange spectrum is closed. Parkkonen and Paulin [21]
proved that it is bounded, and defined the (quadratic) Hurwitz constant of α,
denoted by Hw(α), by

Hw(α) = max Sp(α) ∈ qZ.
They obtained several results on Hw(α) and Sp(α), including the existence
of a Hall ray, for every α. Parkkonen and Paulin [21] established nonar-
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chimedean analogues of the results obtained in [4, 23, 16] by using geomet-
ric methods of group actions on Bruhat–Tits trees. In the present paper, we
re-prove many of their results by applying the theory of continued fractions
in power series fields, and in addition we establish several new results. In par-
ticular, we give alternative proofs of the following two theorems highlighted
in [21].

Theorem 1.1 (Parkkonen and Paulin [21]). Let α be a quadratic power

series in K̂.

(1) (Upper bound) Hw(α) ≤ q−2.
(2) (Hall’s ray) There exists an integer mα such that, for every integer

n > mα, the real number q−n belongs to Sp(α).

A suitable value for mα in Theorem 1.1(2) can be given explicitly (see
Theorem 4.3).

Theorem 1.2 (Parkkonen and Paulin [21]). The Hurwitz constant of

any quadratic power series in K̂, whose continued fraction expansion is
eventually periodic with period of length at most q − 1, is equal to q−2.

Examples of quadratic power series for which the quadratic Lagrange
spectrum coincides with its Hall ray are given in [21] and in Theorem 5.1.
In particular, we have

(1.1) Sp([0;Y, Y, . . .]) = {0} ∪ {q−n−2 : n ∈ Z≥0}.
Our approach shows that, in order to determine the quadratic spectrum

of a quadratic power series α, it is sufficient to compute the quadratic ap-
proximation constants of the quadratic power series not in Θα.

Theorem 1.3. Let α be a quadratic power series in K̂ and q−m a
nonzero element of its spectrum. Then there exists a quadratic power se-
ries f not in K ∪Θα such that cα(f) = q−m.

Theorem 1.3 can be regarded as an analogue of a result of Cusick [5]
(see also [6, Theorem 2, p. 36]) asserting that the Lagrange spectrum is the
closure of the set of the Lagrange constants of quadratic irrationalities.

The proof of Theorem 1.3 shows that if d denotes the maximal degree of
a partial quotient in the periodic part of the continued fraction expansion
of α, then one can in addition impose that all the partial quotients of f
have degree at most d + 1. Moreover, one can also impose that the length
of the period of the continued fraction expansion of α is at most 2 + m/2.
Consequently, an integer m being given, it is sufficient to compute cα(f)
for f being in an explicitly given finite set in order to determine whether
q−m is or not in the spectrum of α. Since a suitable value for the integer
mα in Theorem 1.1(2) can be given explicitly, all this shows that a finite
amount of computation is sufficient to determine the set Sp(α) exactly.
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Proposition 4.9 of [21] asserts that the function Hw takes arbitrarily
small positive values. We establish that it can take every admissible value.

Theorem 1.4. For every m ≥ 2, there exists α in K(2) such that
Hw(α) = q−m.

We feel, however, that there is no simple formula for the Hurwitz constant
of a quadratic power series.

Parkkonen and Paulin [21] gave explicit examples of classes of quadratic
power series whose quadratic Lagrange spectrum does not coincide with its
Hall ray, in other words, which have at least one gap in their spectrum. We
go slightly further and establish that the number of gaps can be prescribed.

Theorem 1.5. For any positive integer `, there exist quadratic power
series in K̂ whose Lagrange spectrum has exactly ` gaps.

An interesting question is then to prescribe the number and the lengths
of the gaps. This seems to be rather difficult.

Throughout, for a0 in R and a1, . . . , ar+s nonconstant polynomials in R,
we use the notation

[a0; a1, a2, . . . , ar, ar+1, . . . , ar+s] = a0 +
1

a1 +
1

a2 +
1

. . .
to indicate that the block of partial quotients ar+1, . . . , ar+s is repeated
infinitely many times.

We recall that an irrational power series α is quadratic if and only if its
continued fraction expansion is ultimately periodic, that is, of the form

(1.2) α = [a0; a1, . . . , ar, b1, . . . , bs].

When we express α as in (1.2) we tacitly assume that s is minimal and
ar 6= bs. We call b1, . . . , bs the shortest periodic part in the continued fraction
expansion of α.

The present paper is organized as follows. In Section 2, we gather several
results on continued fractions in power series fields and apply them in Section
3 to prove Theorem 1.3. Sections 4 and 5 are devoted to the proofs of our
further results.

2. Auxiliary lemmas on continued fractions in power series
fields. We assume that the reader is familiar with the classical theory of
continued fractions of real numbers. Good references include [24, 12] and
[15, 26] for the case of power series.

Our first lemma is an analogue for quadratic power series of a theorem
of Galois.
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Lemma 2.1. Let s ≥ 1 be an integer and b1, . . . , bs nonconstant polyno-
mials in R. The Galois conjugate of the quadratic power series

τ = [b1; b2, . . . , bs, b1]

is the power series

τσ = −[0; bs, . . . , b2, b1].

Although the proof of Lemma 2.1 is contained in that of [1, Proposition
17.7], we give it below for the sake of completeness.

Proof of Lemma 2.1. Define

ps
qs

= [0; b1, . . . , bs],
ps−1
qs−1

= [0; b1, . . . , bs−1]

and
p′s
q′s

= [0; bs, bs−1, . . . , b1],
p′s−1
q′s−1

= [0; bs, bs−1, . . . , b2].

Then τ satisfies
1

τ
=
psτ + ps−1
qsτ + qs−1

,

hence,

(2.1) psτ
2 + (ps−1 − qs)τ − qs−1 = 0.

Likewise, τ ′ = [0; bs, . . . , b1] satisfies

τ ′ =
(p′s/τ

′) + p′s−1
(q′s/τ

′) + q′s−1
=
p′s−1τ

′ + p′s
q′s−1τ

′ + q′s
,

hence,

(2.2) q′s−1(τ
′)2 + (q′s − p′s−1)τ ′ − p′s = 0.

The mirror formula (see e.g. [24, p. 32]) gives

p′s = qs−1, q′s = qs, p′s−1 = ps−1, q′s−1 = ps.

Combining this with (2.2), we obtain

(2.3) ps(τ
′)2 + (qs − ps−1)τ ′ − qs−1 = 0.

Equalities (2.1) and (2.3) show that τ and −τ ′ are roots of the same
quadratic polynomial. Since they are distinct, they are Galois conjugate.

Our second lemma establishes that the quantity h(α) = |α − ασ|−1 can
be expressed in a simple way in terms of the continued fraction expansion
of the quadratic power series α.
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Lemma 2.2. Let α be a quadratic power series with ultimately periodic
continued fraction expansion given by

α = [a0; a1, . . . , ar, b1, . . . , bs],

where s ≥ 1 and ar 6= bs. Denote by ασ its Galois conjugate. Then

h(α) = |α− ασ|−1 = q2(
∑r
i=1 deg ai)−deg ar−deg bs+deg(ar−bs).

Observe that, since ar is not equal to bs in Lemma 2.2, the degree of
the polynomial ar − bs is nonnegative. Lemma 2.2 is the analogue of [4,
Lemma 2.1] (see also [3, Lemma 6.1]).

Proof of Lemma 2.2. By Lemma 2.1, the Galois conjugate of

τ = [b1; b2, . . . , bs, b1]

is the quadratic number

τσ = −[0; bs, . . . , b2, b1].

Let (p`/q`)`≥1 denote the sequence of convergents to α. Since

α =
prτ + pr−1
qrτ + qr−1

and ασ =
prτ

σ + pr−1
qrτσ + qr−1

,

we get

(2.4) |α− ασ| = |τ − τσ|
|qrτ + qr−1| · |qrτσ + qr−1|

= q−2 deg qr |τ − τσ|
∣∣∣∣τ +

qr−1
qr

∣∣∣∣−1∣∣∣∣τσ +
qr−1
qr

∣∣∣∣−1.
Observe that

(2.5) |τ − τσ| =
∣∣∣∣τ +

qr−1
qr

∣∣∣∣ = qdeg b1

and

(2.6)

∣∣∣∣τσ +
qr−1
qr

∣∣∣∣ =
∣∣[0; ar, ar−1, . . .]− [0; bs, . . . , b2, b1]

∣∣
=

∣∣∣∣ [ar; ar−1, . . .]− [bs; bs−1, . . . , b1, bs]

[ar; ar−1, . . .] · [bs; bs−1, . . . , b1, bs]

∣∣∣∣
= qdeg(ar−bs)−deg ar−deg bs .

Since deg qr =
∑r

i=1 deg ai, the lemma follows from (2.4)–(2.6).

Our third auxiliary lemma is the analogue of [4, Lemma 2.2].

Lemma 2.3. Let α = [0; a1, a2, . . .] and β = [0; b1, b2, . . .] be power series

in K̂. Assume that there exists a nonnegative integer n such that ai = bi for
any i = 1, . . . , n and an+1 6= bn+1. Then

|α− β| = q−2(
∑n
i=1 deg ai)−deg an+1−deg bn+1+deg(an+1−bn+1).
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Proof. Set α′ = [an+1; an+2, . . .] and β′ = [bn+1; bn+2, . . .]. Let (p`/q`)`≥1
denote the sequence of convergents to β. Since an+1 6= bn+1 and the first n
partial quotients of α and β are assumed to be the same, we get

α =
pnα

′ + pn−1
qnα′ + qn−1

and β =
pnβ

′ + pn−1
qnβ′ + qn−1

,

thus,

|α− β| =
∣∣∣∣pnα′ + pn−1
qnα′ + qn−1

− pnβ
′ + pn−1

qnβ′ + qn−1

∣∣∣∣ =

∣∣∣∣ α′ − β′

(qnα′ + qn−1)(qnβ′ + qn−1)

∣∣∣∣·
Since deg qn = deg a1 + · · ·+ deg an and

|qnα′ + qn−1| = qdeg qn+deg an+1 , |qnβ′ + qn−1| = qdeg qn+deg bn+1 ,

and

|α′ − β′| = qdeg(an+1−bn+1),

this proves the theorem.

We display an easy consequence of Lemma 2.3. Below and in the next
sections, it is convenient to take the point of view of combinatorics on words.
For an integer k ≥ 1, let A≤k (resp., A=k) denote the set of all nonconstant
polynomials in R of degree at most equal to k (resp., equal to k). Set

A =
⋃
k≥1
A≤k =

⋃
k≥1
A=k.

If a1 . . . ar is a finite word over A, then (a1 . . . ar)
∞ denotes the infinite word

obtained by concatenating on the right infinitely many copies of a1 . . . ar.

Corollary 2.4. Let

τ = [b1; b2, . . . , bs, b1]

be a quadratic power series. Let

f = [a0; a1, a2, . . .]

be an irrational power series not in Θτ . For a positive integer r such that
ar 6= bs, set

αr = [a0; a1, . . . , ar, b1, . . . , bs−1, bs].

If ar+1 6= b1, then put t = 0 and s′ = 1. If ar+1 = b1, then let t be the largest
integer such that the word ar+1 . . . ar+t coincides with the prefix of length t
of the infinite word (b1 . . . bs)

∞. Let s0 be the integer in {1, . . . , s} such that
t ≡ s0 mod s and put s′ = s0 + 1 if s0 < s and s′ = 1 otherwise. Then

v

(
|f − αr|
|αr − ασr |

)
= 2
( t∑
j=1

deg ar+j

)
+ deg ar + deg bs − deg(ar − bs)(2.7)

+ deg ar+t+1 + deg bs′ − deg(ar+t+1 − bs′).
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In particular,

(2.8)
|f − αr|
|αr − ασr |

≤ q−2.

Furthermore, if deg ar 6= deg bs and deg ar+t+1 6= deg bs′, then

v

(
|f − αr|
|αr − ασr |

)
= 2
( t∑
j=1

deg ar+j

)
+ min{deg ar, deg bs}(2.9)

+ min{deg ar+t+1,deg bs′}.
Proof. This follows directly from Lemmas 2.2 and 2.3.

It remains to describe the orbit of a quadratic power series under the
action of PGL2(R). For the real analogue, that is, when characterising the
orbit of an irrational number under the action of SL2(Z), we used in [4] a
classical theorem of Serret (see [24, p. 65]), which asserts that the tails of the
continued fraction expansions of two irrational real numbers α, β coincide if
and only if there exist integers a, b, c, d with ad− bc = ±1 such that

α =
aβ + b

cβ + d
.

In the present context, we make use of the version of Serret’s theorem
established by Schmidt [26, Theorem 1]. Before stating it, let us observe

that, for any irrational power series α = [a0; a1, a2, . . .] in K̂ and any a
in k×, we have

aα = [aa0; a
−1a1, aa2, a

−1a3, . . .].

Furthermore, two power series α, β in K̂ are called equivalent if there exist
a, b, c, d in R with ad− bc in k× and such that

α =
aβ + b

cβ + d
.

Lemma 2.5. Two irrational power series α = [a0; a1, a2, . . .] and β =

[b0; b1, b2, . . .] in K̂ are equivalent if and only if there exist nonnegative in-
tegers m,n and an element a in k× such that

α = [a0; a1, . . . , an−1, an, an+1, an+2, . . .],

β = [b0; b1, . . . , bm−1, aan, a
−1an+1, aan+2, . . .].

Proof. This is [26, Theorem 1]. It is also proved in [17, Section IV.3].

3. An equivalent formulation for Sp(α). Throughout this section,
we fix a quadratic power series α. Let b1, . . . , bs be the (shortest) periodic
part in its continued fraction expansion and set

τ = [b1; b2, . . . , bs, b1].
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For j = 1, . . . , s and a in k×, set

τj,a = [abj ; a
−1bj+1, . . . , a

(−1)s−1
bj−1, a

(−1)sbj ,

a(−1)
s+1
bj+1, . . . , a

(−1)2s−1
bj−1, abj ]

and

τ ′j,a = [a−1bj−1; abj−2, a
−1bj−3, . . . , a

(−1)sbj , a
(−1)s+1

bj−1,

a(−1)
s+2
bj−2, . . . , a

(−1)2sbj , a
−1bj−1].

Here and below, the indices are always understood modulo s. For n =
1, . . . , s, the nth partial quotient of τj,a (resp., of τ ′j,a) is equal to a(−1)

n
bj+n

(resp., a(−1)
n+1

bj−n−1) and its (n + s)-th partial quotient is equal to

a(−1)
n+s

bj+n (resp., a(−1)
n+s+1

bj−n−1). The overline part in the defini-
tion of τj,a (resp., of τ ′j,a) has length 2s and, when s is even, it is the
concatenation of two copies of the same string of s partial quotients
a−1bj+1, abj+2, . . . , a

−1bj−1, abj (resp., abj−2, a
−1bj−3, . . . , abj , a

−1bj−1).

Recall that Θτ is equal to PGL2(R) · {α, ασ}. Observe that τ = τ1,1 and,
for a in k×, we have

Θτ = Θτ1,a = · · · = Θτs,a = Θτ ′1,a = · · · = Θτ ′s,a = Θα.

Furthermore, by Lemma 2.1, we have

τσj,a = −[0; a−1bj−1, abj−2, . . . , a−1bj+1, abj ] = −1/τ ′j,a,

for j = 1, . . . , s.

Let

f = [a0; a1, a2, . . .]

be an irrational power series not in Θτ , which we wish to approximate by
power series from Θτ . A trivial way to do this consists in keeping the first r
partial quotients of f and putting then the sequence of partial quotients of
one of the power series τj,a or τ ′j,a, with 1 ≤ j ≤ s and a in k×. For instance,

for r ≥ 1, a in k×, and j = 1, . . . , s, the quadratic power series

αr,j,a = [a0; a1, . . . , ar, abj , a−1bj+1, . . . , a−1bj−1]

= [a0; a1, . . . , ar, τj,a]

and

α′r,j,a = [a0; a1, . . . , ar, a−1bj−1, abj−2, . . . , abj ]

= [a0; a1, . . . , ar, τ
′
j,a]

are quite good approximations to f in Θτ and

`j,a(f) = lim inf
r→+∞

|f −αr,j,a| · h(αr,j,a), `′j,a(f) = lim inf
r→+∞

|f −α′r,j,a| · h(α′r,j,a)



Lagrange spectra and continued fractions 11

are greater than or equal to cτ (f), thus

(3.1) cτ (f) ≤ min
1≤j≤s

min
a∈k×

min{`j,a(f), `′j,a(f)}.

Unlike the real case, we do have equality in (3.1).

Lemma 3.1. Under the above notation, we have

cτ (f) = min
1≤j≤s

min
a∈k×

min{`j,a(f), `′j,a(f)}.

The analogue of Lemma 3.1 does not hold in the real case: see e.g. [4,
Section 3.6]. Lemma 3.1 shows that the power series case is simpler than its
real analogue.

Proof of Lemma 3.1. We have to estimate the quantities |f − β| · h(β)
for quadratic power series β of the form

ζj,a = [a0; a1, . . . , ar, c1, . . . , ct, τj,a]

and

ζ ′j,a = [a0; a1, . . . , ar, c
′
1, . . . , c

′
t, τ
′
j,a],

where 1 ≤ j ≤ s, t ≥ 1, a in k×, and c1, . . . , ct, c
′
1, . . . , c

′
t are nonconstant

polynomials in R, with c1 6= ar+1, ct 6= a−1bj−1, c
′
1 6= ar+1, and c′t 6= abj . For

simplicity, we only treat the case of τj,1, the other cases being completely
analogous.

It follows from Lemmas 2.2 and 2.3 that

(3.2) v

(
|f − ζj,1|
|ζj,1 − ζ(σ)j,1 |

)
= deg ar+1 + deg c1 − deg(ar+1 − c1)

− 2

t∑
j=1

deg cj + deg ct + deg bj−1 − deg(ct − bj−1),

where j − 1 is understood modulo s. If t ≥ 2, then the right hand side of
(3.2) is

≤ −deg(ar+1−c1)+deg ar+1−deg c1−deg ct−deg(ct−bj−1)+deg bj−1 ≤ 0.

If t = 1, then the right hand side of (3.2) is equal to

−deg(ar+1 − c1) + deg ar+1 − deg(c1 − bj−1) + deg bj−1.

Since deg(P1 + P2) ≤ max{degP1, degP2} for all polynomials P1, P2, the
last displayed quantity is

≤ −max{deg(ar+1 − bj−1), 0}+ deg ar+1 + deg bj−1.

Recalling that

αr,j−1,1 = [a0; a1, . . . , ar, τj−1,1],
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it follows from (2.6) (resp., (2.7)) that if ar+1 6= bj−1 (resp., i ar+1 = bj−1)
then

|f −αr,j−1,1|
|αr,j−1,1−α(σ)

r,j−1,1|
≤ q−deg ar+1−deg bj−1+max{deg(ar+1−bj−1),0} ≤ |f − ζj,1|

|ζj,1− ζ(σ)j,1 |
.

Consequently, it is sufficient to restrict our attention to the approximants of
the form αr,j,a and α′r,j,a in order to compute cτ (f). This proves the lemma.

Notation. Let W = w1 . . . wh with h ≥ 1 denote a finite word over
the alphabet A. Then, fW denotes the quadratic power series with purely
periodic continued fraction expansion of period W , that is,

fW = [0;w1, . . . , wh].

An important consequence of Lemma 3.1 is that the spectrum of α is
determined by the set of values taken by the function cα at quadratic power
series. This is precisely the content of Theorem 1.3.

Proof of Theorem 1.3. Let f = [a0; a1, a2 . . .] be in K̂ \ (K ∪ Θα) and
assume that there exists a positive integer m such that cα(f) = q−m. Then,
by Lemma 3.1, there exist j in {1, . . . , s} and a in k× such that `j,a(f) =
q−m or `′j,a(f) = q−m. Without any loss of generality, we may assume that

j = a = 1 and `1,1(f) = q−m. Let d be an upper bound for the degrees
of the partial quotients of α. Observe that if, for some r ≥ 1, the degree
of ar exceeds d and if g denotes the power series whose continued fraction
expansion is the same as that of f , except that ar is replaced by Y d+1, then
by (2.9) we have

|f − [a0; a1, . . . , ar, τ ]| · h([a0; a1, . . . , ar, τ ])

= |g − [a0; a1, . . . , ar−1, Y
d+1, τ ]| · h([a0; a1, . . . , ar−1, Y

d+1, τ ]),

where τ = τ1,1. Consequently, letting f̃ = [ã0; ã1, ã2, . . .] be the power series
obtained from f by replacing by Y d+1 every partial quotient of f of degree
at least d + 1, we get `1,1(f̃) = q−m and there exists an infinite set R of
positive integers such that, for any r in R, the quadratic number

αr,1,1 = [ã0; ã1, . . . , ãr, τ ]

satisfies

|f̃ − αr,1,1| · h(αr,1,1) = q−m.

Since the partial quotients ãn belong to a finite set and R is infinite, it
follows from Corollary 2.4 that there are polynomials P1, P2 of degree at
most d+ 1 and a word W0 (possibly empty) which is a prefix of (b1 . . . bs)

∞

such that there exist t ≥ 0 and arbitrarily large integers r in R with

ãr = P1, ãr+1 . . . ãr+t = W0, ãr+t+1 = P2,
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and
|f̃ − αr,1,1| · h(αr,1,1) = q−m.

Setting W = P1W0P2 and writing W = w1 . . . wt+2, we see that

|fW − [0;w1, . . . , wh(t+2), ãr, τ ]| · h([0;w1, . . . , wh(t+2), ãr, τ ]) = q−m

for h ≥ 0. This shows that cα(fW ) ≤ q−m. The inequality cannot be strict,
since otherwise we would have cα(f̃) < q−m. Consequently, cα(fW ) = q−m

and the theorem is proved.

4. First results on Sp(α) for an arbitrary α. We display several
immediate consequences of the preceding lemmas. Our first result is a refor-
mulation of the first assertion of Theorem 1.1.

Theorem 4.1. For every quadratic power series α in K̂,

Sp(α) ⊂ {0} ∪ {q−n−2 : n ∈ Z≥0}.
Proof. This follows from (2.8).

Following [21], for every power series f in K̂ \K, set

M(f) = lim sup
k→+∞

deg ak ≥ 1,

M2(f) = lim sup
k→+∞

(deg ak + deg ak+1) ≥ 2,

m(f) = lim inf
k→+∞

deg ak ≥ 1.

Corollary 2.4 allows us to re-prove Lemma 4.4 and Corollaries 4.6 and 4.7
of [21].

Throughout the end of this section, we keep the notation of Section 3.
We denote by b1, . . . , bs the (shortest) periodic part in the continued fraction
expansion of a power series α in K(2) and we define τ and τj,a for j = 1, . . . , s
and a in k× as in Section 3.

Proposition 4.2. Let α be in K(2) and f in K̂ \ (K ∪Θα).

(1) If m(f)>M(α), then cα(f) = q−M2(α). Consequently, Hw(α)≥ q−M2(α).
(2) If M(f) < m(α), then cα(f) = q−M2(f). Consequently, the quadratic

spectrum of α includes q−2, q−3, . . . , q−2m(α)+2.
(3) If M(α) = 1 or m(α) ≥ 2, then Hw(α) = q−2.

Proof. Replacing if necessary α by τj,1 for a suitable j in {1, . . . , s}, we
may assume that deg b1 + deg bs = M2(α). If m(f) > M(α), then, for r
large enough, the right hand side of (2.9) is equal to M2(α). Combined
with Lemma 3.1, this proves the first assertion. For the second assertion, by
considering the infinite sequence of integers r such that deg ar + deg ar+1 =
M2(f) and using the quadratic power series [a0; a1, . . . , ar, b1, . . . , bs−1, bs]
to approximate f , we conclude that cα(f) ≤ q−M2(f). Actually, equality
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holds by Lemma 3.1. Then, choosing f = [0;Y d, Y d′ ] for integers d, d′ with
1 ≤ d, d′ < m(α), we get the second part of (2). The assertion (3) is an
immediate consequence of the first two.

We now confirm the existence of Hall’s ray in the quadratic Lagrange
spectrum of an arbitrary quadratic power series. This establishes Theo-
rem 1.1(2).

Theorem 4.3. For every α in K(2), there exists mα such that q−m is in
Sp(α) for every integer m ≥ mα. If we denote by s the length of the periodic
part of the continued fraction expansion of α and by d the maximum of the
degrees of its partial quotients, an admissible value for mα is 2d(s+ 1).

Proof. Replacing if necessary α by τj,1 for a suitable j in {1, . . . , s}, we
may assume that d = deg bs is the maximum of the degrees of b1, . . . , bs.
Define bm for m > s by setting bm = bj , where 1 ≤ j ≤ s and j ≡ m mod s.
Let u be an integer with u ≥ s. Let P1, P2 be nonconstant polynomials in R
such that P1 6= bs and P2 6= bu+1. It follows from Corollary 2.4 applied with
r = 3 that

− log cτ ([0;P1, b1, . . . , bu, P2, Y d+1])

log q

= 2
u∑
i=1

deg bi + deg bs + degP1 − deg(bs − P1)

+ deg bu+1 + degP2 − deg(bu+1 − P2),

where equality holds since u ≥ s and our assumption that P1 6= bs and
P2 6= bu+1 guarantees that neither P1b1 . . . bs nor b2 . . . bsP2 is a factor of the
periodic part of some τj,a. Some condition on u is indeed necessary: it may
happen that P1 is one of b1, . . . , bs−1, say P1 = b`, and the word b`b1b2 is
a factor of b1 . . . bs (the partial quotient Y d+1 has been added to guarantee
that the condition u ≥ s is sufficient).

If we select P1 = P2 = Y d+1 and recall that deg bs = d, this shows at
once that

q−2
∑u
i=1 deg bi−d−deg bu+1

is in Sp(α).

To establish the theorem, it is sufficient to show that, with suitable
choices of P1 and P2, the quantity

deg bs + degP1 − deg(bs − P1) + deg bu+1 + degP2 − deg(bu+1 − P2)

takes every integer value between d+deg bu+1 and d+2 deg bu+1 +deg bu+2.
We proceed as follows. For k = 0, . . . , d, there exists a polynomial P1,k of
degree d such that deg(P1,k − bs) = d − k. For h = 0, . . . ,deg bu+1, there
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exists a polynomial P2,h of degree deg bu+1 such that deg(P2,h − bu+1) =
deg bu+1 − h. Then

deg bs + degP1,k − deg(bs − P1,k) + deg bu+1 + degP2,h − deg(bu+1 − P2,h)

= d+ deg bu+1 + k + h,

which takes all values between d + deg bu+1 and d + 2 deg bu+1 + deg bu+2,
since d = deg bs ≥ deg bu+2. This shows that every rational number of the
form q−m, with m an integer at least equal to 2

∑s
i=1 deg bi+d+deg bs+1, is

in Sp(α). Consequently, a suitable value for mα is given by 2
∑s

i=1 deg bi +
d+ deg bu+1, which is at most equal to 2d(s+ 1).

5. Gaps in the spectra and further results. We begin with an
alternative proof of [21, Theorem 4.11] and establish (1.1).

Theorem 5.1 (Parkkonen and Paulin [21]). For every polynomial P
in R of degree 1, we have

Sp([0;P ]) = {0} ∪ {q−n : n ∈ Z≥2}.

Proof. Set α = [0;P ]. Let m be a non-negative integer and set

gm = [0;Y 2, P, . . . , P ] and hm = [0;Y 2, P + 1, P, . . . , P ],

where P is repeated m times. Then we check that cα(gm) = q−2m−2 and
cα(hm) = q−2m−3. Indeed, by Lemma 3.1, the best approximations of gm
(resp., hm) by elements of the orbit of α are obtained by truncating the
continued fraction expansion of gm (resp., hm) after Y 2 and completing by
infinitely many copies of P . We then apply Corollary 2.4. This shows that
every q−n with n ≥ 2 is in the spectrum of α. Since we already observed
in the Introduction that 0 is in the spectrum of any element of K(2), this
proves the theorem.

We continue with an alternative proof of [21, Proposition 4.8].

Proposition 5.2 (Parkkonen and Paulin [21]). If α is in K(2) and the
period of its continued fraction expansion contains no more than q−2 partial
quotients of degree 1, then Hw(α) = q−2.

Proof. The argument is the same as in [21, proof of Proposition 4.8].
There exists a polynomial P in R of degree 1 such that, for every partial
quotient b of degree 1 of the period of α, the polynomial P−b is nonconstant.
It then follows from Corollary 2.4 and Lemma 3.1 that cα(fP ) = q−2.

Proof of Theorem 1.2. Let α be a quadratic power series in K̂ and denote
by k the length of the period in its continued fraction expansion. Theorem 1.2
follows from Proposition 5.2 if k ≤ q − 2 or if k = q − 1 and at least one
partial quotient is of degree at least 2. If k = q − 1 and all the partial
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quotients are of degree 1, then M(α) = 1 and Theorem 1.2 follows from
Proposition 4.2(3).

Proof of Theorem 1.4. Let k ≥ 2 be an integer. Consider a finite word W
over the alphabet A≤k constructed by concatenating a copy of each different
block of length k − 1 over A≤k. The order is irrelevant. Let α in K(2) have
period given by W .

Let f = [0; a1, a2, . . .] be in K̂ \ (K ∪ Θα). Let h be the largest integer
in {0, 1, . . . , k − 1} for which there are arbitrarily large integers n with the
property that the h polynomials an, an+1, . . . , an+h−1 are of degree at most k.
If h = k − 1, then cα(f) ≤ q−2(k−1)−2 = q−2k. If h = k − 2 and k ≥ 3, then
there exists a polynomial b of degree k and infinitely many integers n such
that anan+1 . . . an+h−1b is a factor of W and deg an+h > k. This implies that
cα(f) ≤ q−2(k−2)−1−k = q−3k+3. If h < k − 2 or if k = 2 and h = 0, then
there exists a polynomial b of degree k and infinitely many integers n such
that banan+1 . . . an+h−1b is a factor of W , deg an−1 > k, and deg an+h > k.
This implies that cα(f) ≤ q−2h−2k ≤ q−2k. Since, by Proposition 4.2(1),

cα([0;Y k+1]) = q−2k,

all this shows that Hw(α) = q−2k for k ≥ 2.

It remains to treat the case of q−m with m odd. Consider a finite word
W ′ over the alphabet A≤k constructed by concatenating a copy of each
different block of length k over A≤k. The order is irrelevant; however, for
technical reasons, we assume that the last letter of W ′ is Y k. Let β in K(2)

have period given by the word W ′Y k+1.

Let f = [0; a1, a2, . . .] be in K̂ \ (K ∪ Θα). Let h be the largest integer
in {0, 1, . . . , k} for which there are arbitrarily large integers n such that
the h polynomials an, an+1, . . . , an+h−1 are of degree at most k. If h = k,
then cα(f) ≤ q−2k−2. If h = k − 1, then there exists a polynomial b of
degree k and infinitely many integers n such that anan+1 . . . an+h−1b is a
factor of W and deg an+h > k. This implies that cα(f) ≤ q−2(k−1)−k−1 =
q−3k+1 ≤ q−2k−1. If 0 < h ≤ k − 2, then there exists a polynomial b of
degree k and infinitely many integers n such that banan+1 . . . an+h−1b is a
factor of W , deg an−1 > k, and deg an+h > k. This implies that cα(f) ≤
q−2h−2k ≤ q−2k−2.

So, we are left with the case where all but finitely many an’s are polyno-
mials of degree at least k+1. Since there are infinitely many pairs Y k, Y k+1

in the sequence of partial quotients of β, we get cβ(f) ≤ q−1−2k, with equal-

ity, for instance, for f = [0;Y k+2]. All this implies that Hw(β) = q−2k−1.

Consequently, and taking also Proposition 4.2(3) into account, we have
shown that the function Hw takes any value q−m with m = 2 or m ≥ 4. To
conclude, let W ′′ be a finite word over A≤2 of even length such that every
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nonconstant polynomial of degree at most 2 occurs in W ′′ and only them,
and any two consecutive polynomials are of different degree. Let γ in K(2)

have period given by W ′′. Then it is easy to check that Hw(γ) = q−3 =

cγ([0;Y 3]). This completes the proof of the theorem.

Proof of Theorem 1.5. Let k ≥ 2 and ` ≥ 1 be integers. Consider a
cyclic de Bruijn word [2, 10] of order ` over A=k, that is, a word W of
length (CardA=k)

` such that every word of length ` occurs exactly once in
the prefix of length (CardA=k)

` + `− 1 of W∞. Let α in K(2) have period
given by W .

Let j be a nonnegative integer. Let d, d′ be positive integers different
from k. Consider a factor Wj = w1 . . . wj of W∞ of length j. It follows from
Corollary 2.4 and Lemma 3.1 that

cα([0;Y d, w1, . . . , wj , Y d′ ]) = q−2kj−min{d,k}−min{d′,k}.

Suitable choices of d and d′ show that the function cα can take every value
between q−2kj−2 and q−2kj−2k.

Let us now study which values of the form q−2kj−1 can be taken by the
function cα.

Let f = [0; a1, a2, . . .] be in K̂ \ K. Let h be the largest integer in
{0, 1, . . . , ` + 1} for which there are arbitrarily large integers n such that
the polynomials an, an+1, . . . , an+h−1 are of degree k. If h ≤ `, then

q−2kh−2k ≤ cα(f) ≤ q−2kh−2;
otherwise

cα(f) ≤ q−2`k−2.
This shows that the points q−2k−1, q−4k−1, . . . , q−2`k−1 are not in the spec-
trum of α. It remains to establish that if k is sufficiently large, then q−2jk−1

is in Sp(α) for every j ≥ `+ 1.
Observe that every factor of W∞ of length ` can be prolonged in only

one way to a factor of W∞ of length ` + 1. Let Z be a word of length
` + 1 over A=k which is a factor of W∞. Let P1 denote its last letter and
write Z = Z ′P1. Let P2 be a polynomial of degree k, different from P1, such
that deg(P1 − P2) ≤ k − 1 and with the property that neither Z ′P2, nor
its mirror image, nor any of their twists by an element of k× as described
in Section 3, is a factor of W∞. The number of polynomials P2 of degree k
which do not have the above property is bounded from above in terms of the
cardinality of k only. Consequently, the existence of Z,P1, P2 is guaranteed
if k is sufficiently large in terms of q.

Let d be a positive integer not equal to k. If f is a quadratic power series
whose period is composed of Y d followed by the letters of Z ′ and by P2,
then one gets

cα(f) = q−2k`−min{d,k}−2k+deg(P1−P2).



18 Y. Bugeaud

Choosing d such that min{d, k} = deg(P1 − P2) + 1 shows that there exists
a power series g such that cα(g) is equal to q−2(`+1)k−1.

A similar argument shows that cα takes every value of the form q−2hk−1

with h ≥ `+ 2. We omit the details.
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