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Abstract. We show how the theory of linear forms in two logarithms
allows one to get very good effective irrationality measures for n-th roots
of rational numbers a

b , when a is very close to b. We give a p-adic
analogue of this result under the assumption that a is p-adically very
close to b, that is, that a large power of p divides a−b. As an application,
we solve completely certain families of Thue–Mahler equations. Our
results illustrate, admittedly in a very special situation, the strength of
the known estimates for linear forms in logarithms.

1. Introduction

Let ξ be an irrational real number. The real number µ is an irrationality measure for
ξ if, for every positive ε, there is a positive number C(ξ, ε) such that every rational number
p
q with q ≥ 1 satisfies ∣∣∣ξ − p

q

∣∣∣ > C(ξ, ε)

qµ+ε
.

If, moreover, the constant C(ξ, ε) is effectively computable for every positive ε, then µ is
an effective irrationality measure for ξ. We denote by µ(ξ) (resp. µeff(ξ)) the infimum of
the irrationality measures (resp. effective irrationality measures) for ξ. Clearly, µeff(ξ) is
larger than or equal to µ(ξ).

Every real algebraic number ξ of degree n ≥ 2 satisfies µeff(ξ) ≤ n, by Liouville’s
theorem, and µ(ξ) = 2, by Roth’s theorem. This shows that µeff(ξ) = 2 if ξ is quadratic,
but the value of µeff(ξ) remains unknown for every ξ of degree n ≥ 3. In this case, by
using the theory of linear forms in logarithms, Feldman [14] proved that there exists a
(small) positive real number τ(ξ) such that µeff(ξ) ≤ n − τ(ξ); see [9, 6] for more recent
results. An alternative proof of Feldman’s result, which does not depend on Baker’s theory,
was subsequently given by Bombieri [7]. This upper bound for µeff(ξ), valid for every
real algebraic number ξ, can be considerably improved for some particular real algebraic
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numbers ξ, including n-th roots of rational numbers sufficiently close to 1. This is the
content of the following theorem of Bombieri and Mueller [8].

Theorem BM. Let a, b, n be positive integers with b ≥ 2 and n ≥ 3. Set

η := 1− log |a− b|
log b

.

If n
√
a/b is of degree n and n > 2/η, then

µeff

(
n

√
a

b

)
≤ 2

η
+ 6
(n5 log n

log b

)1/3

. (1.1)

It follows from (1.1) that, for any positive real number ε and any n ≥ 3, we have
µeff( n

√
a/b) < 2 + ε if b is sufficiently large in terms of n and if a

b is sufficiently close to 1.
In the same paper, Bombieri and Mueller observed that the theory of linear forms

in logarithms implies that, for every positive real algebraic number ξ, there exists an
effectively computable constant C(ξ), depending only on ξ, such that

µeff( n
√
ξ) < C(ξ)(log n), (1.2)

for every n ≥ 3. When n is large, (1.2) considerably improves Liouville’s theorem. Fur-
thermore, if ξ is the rational number a

b , where a > b ≥ 1, then there exists an absolute,
effectively computable constant C such that

µeff

(
n

√
a

b

)
≤ C(log a)(log n). (1.3)

The aim of the present note is to show how a known refinement in the theory of linear
forms in logarithms in the special case where the rational numbers involved are very close
to 1, which goes back to Shorey’s paper [20], allows one to remove the dependence on
log a in (1.3) when a is very close to b. Several spectacular applications to Diophantine
problems and to Diophantine equations of this idea of Shorey have already been found; see
for example [22, 23] and the survey [11]. Quite surprisingly, it seems that it has not yet
been noticed that it can be used to give uniform, effective irrationality measures for roots
of rational numbers and for quotients of logarithms of rational numbers (see [12]), under
some suitable assumptions.

Shorey’s idea has been incorporated in the recent lower bounds for linear forms in
Archimedean logarithms through a term usually denoted by logE. Roughly speaking, the
development of the theory of linear forms in non-Archimedean logarithms followed the one
of its Archimedean analogue. For instance, the paper [13] can be regarded as the p-adic
analogue of [17], although [17] includes a parameter logE while [13] does not. A parameter
also called logE appeared for the first time in the p-adic setting in [10] and allows one to
get better estimates when the rational numbers involved in the linear form are p-adically
close to 1. Some applications of these refined estimates have been given in [10], a more
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spectacular one can be found in [2, 3]. Here, we apply it to get explicit uniform, effective
irrationality measures for p-adic n-th roots of certain rational numbers.

Mignotte [19] was the first to observe that the introduction of the parameter logE in
the estimates of linear forms in logarithms has a striking application to parametric families
of Thue equations axn − byn = c, when a and b are positive integers very close to each
other. A precise statement is given in Section 4. We extend Mignotte’s result and solve
completely multi-parametric families of Thue–Mahler equations.

As will be clear in the proofs, the main results of the present note are nearly immediate
consequences of known lower bounds for linear forms in logarithms. However, we believe
that the results are striking enough to deserve to be pointed out. They show, admittedly
in a very special situation, the strength of these estimates.

2. Effective irrationality measures for real roots of rational numbers

Our first result gives effective irrationality measures for n-th roots of rational numbers
sufficiently close to 1.

Theorem 2.1. Let a, b, n be integers with n ≥ 3 and 16 < b < a < 6b
5 . Define η in (0, 1]

by a− b = a1−η. Then, we have

µeff

(
n

√
a

b

)
≤ 35.1

η
max

{ log 2n

η log a
, 10
}2

. (2.1)

In view of Liouville’s theorem, Theorem 2.1 gives nothing new for small values of n
and is only interesting for n ≥ 3511.

The reader may wonder whether the dependence on n in (2.1) involves (log n)2 and
not only log n, as in (1.3). The reason for this is that our proof uses estimates from
[17]. We could have applied Gouillon’s lower bounds [15] and would have then obtained a
dependence in log n, but with much larger numerical constants; see (5.3) at the end of the
proof of Theorem 2.1.

We cannot deduce from Theorem 2.1 that, for any positive real number ε and any
integer n ≥ 3, there exist positive integers a, b such that n

√
a
b is of degree n and has an

effective irrationality measure less than 2 + ε. In this respect, our result is much less
interesting than Theorem BM. However, we stress that Theorem BM gives a non-trivial
bound only when b is very large compared to n; namely, one requires that b satisfies

b > n216n2

. (2.2)

Theorem 2.1 is much stronger for smaller values of b.

We point out an immediate consequence of Theorem 2.1 in the particular case η = 1
2 .

Corollary 2.2. Let a, b, n be integers with n ≥ 3 and 30 < b < a < b+
√
a. If

a ≥ (2n)1/5 (2.3)
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then we have

µeff

(
n

√
a

b

)
≤ 7020.

The assumption (2.3) is fulfilled if b > (2n)1/5, which is a considerably weaker condi-
tion than (2.2).

3. Effective irrationality measures for p-adic roots of rational numbers

Let p be a prime number and | · |p denote the absolute value on Qp normalized such
that |p|p = p−1. Let ξ be an irrational element of Qp. The real number µ is an irrationality
measure for ξ if, for every positive ε, there is a positive number C(ξ, ε) such that every
rational number p/q with q ≥ 1 satisfies∣∣∣ξ − p

q

∣∣∣
p
>
C(ξ, ε)

qµ+ε
.

If, moreover, the constant C(ξ, ε) is effectively computable for every positive ε, then µ is
an effective irrationality measure for ξ. We denote by µ(ξ) (resp. µeff(ξ)) the infimum of
the irrationality measures (resp. effective irrationality measures) for ξ.

As in the real case, every p-adic algebraic number ξ of degree n ≥ 2 satisfies µeff(ξ) ≤
n, by Liouville’s theorem, and µ(ξ) = 2, by Ridout’s theorem. This shows that µeff(ξ) = 2
if ξ is quadratic, but the value of µeff(ξ) remains unknown for every ξ of degree n ≥ 3.

Let a, b, n be integers with a > b ≥ 1 and n ≥ 3. Let p be a prime number. The
theory of linear forms in p-adic logarithms implies that there exists an absolute, effectively
computable C such that every n-th root ζ of a

b in Qp satisfies

µeff(ζ) ≤ Cp(log a)(log n). (3.1)

The factor p in (3.1) can be removed if p divides a− b and |ζ − 1|p < 1. If p divides a− b
but does not divide abn, then it follows from Hensel’s lemma that the polynomial bXn−a
has a root ζ in Qp such that |ζ − 1|p < 1. In the sequel, we denote this root by n

√
a
b .

Our results concern n-th roots of rational numbers a
b which are p-adically close to 1,

that is, such that a large power of p divides a − b. We considerably improve the (p-adic)
Liouville inequality for a class of algebraic numbers.

Theorem 3.1. Let p be a prime number. Let a, b be integers with 1 ≤ b < a and assume
that p divides a − b but does not divide ab. Define η in (0, 1) by |a − b|−1

p = aη. Assume
that aη ≥ 4. For any integer n ≥ 3 which is not divisible by p, we have

µeff

(
n

√
a

b

)
<

53.8

η
max

{ log 2n

η log a
, 4
}2

(3.2)

As in Theorem 2.1, the dependence on n occurs in (3.2) through the factor (log n)2.
It is theoretically possible to reduce it to log n.

We highlight an immediate consequence of Theorem 3.1 in the case b = 1 and η = 1
2 .
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Corollary 3.2. Let p be a prime number. Let c, k, n be positive integers with 1 ≤ c < pk.
If

pk >
√

2n

and p does not divide n, then we have

µeff( n
√

1 + cpk) < 1722.

4. Parametric families of Thue–Mahler equations

Starting with a seminal paper of Emery Thomas [21], there is now an extensive liter-
ature on parametric families of Thue equations; see for example the survey of Heuberger
[16]. Much less is known for parametric families of Thue–Mahler equations. The first
results on this question were obtained in 2012 by Levesque and Waldschmidt [18], who
constructed parametric families of Thue–Mahler equations of arbitrary degree having only
finitely many solutions, and in 2013 by Bennett and Dahmen [4], who solved completely
some specific families of Thue–Mahler equations of small degree and where the correspond-
ing set of prime numbers is unbounded.

Mignotte [19] was the first to observe that the introduction of the parameter logE in
the estimates of linear forms in logarithms has a striking application to parametric families
of Thue equations. He established, among others, the following result.

Theorem M. Let b and n be positive integers. If n exceeds 600, then the only solution
in positive integers to the Thue equation

(b+ 1)xn − byn = 1

is given by x = y = 1.

Theorem M was subsequently improved and extended by Bennett and de Weger [5]
in 1998. Three years later appeared a remarkable paper of Bennett [1], who managed to
solve completely the remaining few hundreds of Thue equations left over in [5].

Theorem Be. Let a, b and n be integers with a > b ≥ 1 and n ≥ 3. Then, the equation

|axn − byn| = 1

has at most one solution in positive integers x and y.

Theorems M and Be are closely related to Theorem 2.1, since there is a connection
between effective irrationality measures for a given algebraic number ξ and effective upper
bounds for the solutions of the Thue equation F (X,Y ) = 1, where F (X, 1) denotes the
minimal defining polynomial of ξ over the rational integers.

By means of (the proof of) Theorem 3.1 we can go a step forward and solve completely
parametric families of Thue–Mahler equations.

5



Theorem 4.1. Let s be a positive integer and p1, . . . , ps be distinct prime numbers. Let
η be a real number in (0, 1

s+1 ). Let b ≥ 2 and c ≥ 1 be integers such that

log c

log b
< 1− η and

log |c|−1
pj

log(b+ c)
> η, for j = 1, . . . , s.

There exists an effectively computable constant κ such that, for any integer d with |d| ≤ b
and any integer n satisfying

n ≥ κs
η

(
log

s

η

)2

and gcd(n, p1 · · · ps(p1 − 1) · · · (ps − 1)) = 1,

all the solutions to the Thue–Mahler equation

(b+ c)xn − byn = dpz11 · · · pzss ,
in integers x, y, z1, . . . , zs with gcd(x, y) = 1, satisfy |xy| ≤ 1.

This is apparently the first example of a complete resolution of a multi-parametric
family of Thue–Mahler equations.

5. Proof of Theorem 2.1

We reproduce Corollaire 3 of [17] and Corollary 2.4 of [15], with minor simplification,
in the special case where the algebraic numbers involved are rational.

Theorem LMNG. Let a1, a2, b1, b2 be positive integers such that a1/a2 and b1/b2 are
multiplicatively independent and greater than 1. Let A and B be real numbers such that

A ≥ max{a1, e}, B ≥ max{b1, e}.
Let u and v be positive integers and set

U =
u

logA
+

v

logB
.

Set

E = 1 + min

{
logA

log(a1/a2)
,

logB

log(b1/b2)

}
,

logU1 = max{logU + logE, 600 + 150 logE},
and

logU2 = max{logU + log logE + 0.47, 10 logE}.
Assume furthermore that 15 ≤ E ≤ min{A3/2, B3/2}. Then,

log
∣∣∣v log

a1

a2
− u log

b1
b2

∣∣∣ ≥ −8550(logA)(logB)(logU1)(4 + logE)(logE)−3 (5.1)

and

log
∣∣∣v log

a1

a2
− u log

b1
b2

∣∣∣ ≥ −35.1(logA)(logB)(logU2)2(logE)−3. (5.2)

The numerical constant in (5.2) is much smaller than the one in (5.1), but the depen-
dence on U occurs through the factor (logU)2 in (5.2), while it only occurs through the
factor logU in (5.1).
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Proofs of Theorem 2.1 and Corollary 2.2.
Let x, y be coprime integers such that 1010na < y < x ≤ 2y and |(a/b)1/n − x/y| <

1/x2. Since ∣∣∣ζ(a
b

)1/n

− x

y

∣∣∣ ≤ 4,

for every n-th root of unity ζ, we get

4n
∣∣∣(a
b

)1/n

− x

y

∣∣∣ ≥ 4
∣∣∣a
b
−
(x
y

)n∣∣∣
≥
∣∣∣n log

x

y
− log

a

b

∣∣∣ =: Λ.

We apply Theorem LMNG to bound Λ from below.
Recall that η is defined by a− b = a1−η. We check that

log a

log(a/b)
≥ (log a)

b

a
aη ≥ 2.36aη,

since a ≥ 17 and b > 5a/6. Since aη = a/(a − b) ≥ 6, we get 2.36aη > 14. Noticing that
x/y < a/b, we obtain

log x

log(x/y)
≥ 2.36aη.

Set

E := 1 + 2.36aη and U =
n

log a
+

1

log x
.

Observe that 15 ≤ E ≤ a3/2. It then follows from (5.2) and the lower bound logE ≥ η log a
that

log Λ ≥ −35.1(log x)(log a)(logE)−1
(

max
{ logU + log logE + 0.47

logE
, 10
})2

.

≥ −35.1

η
(log x)

(
max

{ log 2n

η log a
, 10
})2

,

since x is assumed to be sufficiently large.
We conclude that

µeff

(
n

√
a

b

)
≤ 35.1

η
max

{ log 2n

η log a
, 10
}2

.

In particular, if
a ≥ (2n)1/(10η),

then

µeff

(
n

√
a

b

)
≤ 3510

η
.

Choosing η = 1
2 , this gives Corollary 2.2.

Using (5.1), we obtain a better dependence on n, namely we get the upper bound

µeff

(
n

√
a

b

)
≤ 21180

η
max

{
372,

log(2n/ log a)

η log a
+ 1
}
, (5.3)

which is linear in log n.
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6. Proof of Theorem 3.1

Let p be a prime number. Let x1/y1 and x2/y2 be non-zero rational numbers and
assume that there exists a real number E such that

vp
(
(x1/y1)− 1)

)
≥ E > 1/(p− 1).

Theorem Bu below, established in [10], gives an explicit upper bound for the p-adic valu-
ation of

Λ =
( x1

y1

)u
−
( x2

y2

)
,

where u is a positive integer not divisible by p. Let A1 > 1, A2 > 1 be real numbers such
that

logAi ≥ max{log |xi|, log |yi|, E log p}, (i = 1, 2).

and put

U =
u

logA2
+

1

logA1
.

Theorem Bu. With the above notation, if x1/y1 and x2/y2 are multiplicatively indepen-
dent, then we have the upper estimate

vp(Λ) ≤ 53.8

E3 (log p)4

(
max{logU + log(E log p) + 0.4, 4E log p, 5}

)2
logA1 logA2,

if p is odd or if p = 2 and v2(x2/y2 − 1) ≥ 2.

Proofs of Theorem 3.1 and Corollary 3.2.
Recall that, since p does not divide n, every n-th root of unity ζ 6= 1 in Qp satisfies

vp(ζ − 1) = 0. Let x/y be a rational number. We wish to bound from above the quantity

vp(
n
√
a/b − x/y). Since vp(

n
√
a/b − 1) is positive, we may assume that vp((x/y) − 1) is

positive. From

gcd
(
x− y, x

n − yn

x− y

)
= gcd(x− y, n)

and the fact that p does not divide n, we deduce that

vp((x/y)− 1) = vp((x/y)n − 1).

We apply Theorem Bu to bound from above the p-adic valuation of the quantity

Λp :=
a

b
−
(x
y

)n
.

We introduce the parameter E equal to the largest power of p which divides a − b. By
assumption, we have E ≥ 1 and we get

vp((x/y)− 1) = vp((x/y)n − 1) = vp((a/b)− 1) = E.
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By definition of η, we have

η log a = E log p.

Note that E ≥ 2 if p = 2, since we have assumed that aη ≥ 4. We take x > 1010na and
apply Theorem Bu with

logA1 = max{log a, η log a} = log a, logA2 = max{log x, η log a} = log x,

and

U =
n

log a
+

1

log x
.

We then get

vp(Λp) ≤
53.8(log a)(log x)

η(log a)(log p)
max

{ logU + log(η log a) + 0.4

η log a
, 4,

5

η log a

}2

.

Since aη ≥ e5/4, by assumption, this gives

vp(Λp) ≤
53.8 log x

η log p
max

{ logU + log(η log a) + 0.4

η log a
, 4
}2

.

Thus, we obtain

vp(Λp) ≤
53.8 log x

η log p
max

{ log 2n

η log a
, 4
}2

,

since x is sufficiently large. This gives

µeff

(
n

√
a

b

)
≤ 53.8

η
max

{ log 2n

η log a
, 4
}2

.

In particular, if a satisfies

a ≥ (2n)1/(4η),

then we have ∣∣∣ n

√
a

b
−
(x
y

)∣∣∣
p
≥ x−861/η,

hence,

µeff

(
n

√
a

b

)
≤ 861

η
. (6.1)

If b = 1 and a = 1 + cpk for integers k ≥ 1 and c satisfying 1 ≤ c < pk, then |a − b|−1
p =

pk >
√
a. Corollary 3.2 then follows from (6.1) with η = 1

2 .
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7. Proof of Theorem 4.1

Let x, y be integers such that

(b+ c)xn − byn = dpz11 · · · pzss .

Assume that |y| = max{|x|, |y|} ≥ 2, the case |x| = max{|x|, |y|} ≥ 2 being analogous.
Observe that

|d| = |(b+ c)xn − byn|
s∏
j=1

|(b+ c)xn − byn|pj

≥ b|y|n
∣∣∣(b+ c

b

)(x
y

)n
− 1
∣∣∣ s∏
j=1

|(b+ c)xn − byn|pj .
(7.1)

We follow the proofs of Theorem 2.1 and 3.1 to bound from below the quantities∣∣∣(b+ c

b

)(x
y

)n
− 1
∣∣∣ and |(b+ c)xn − byn|pj , for j = 1, . . . , s.

Unlike in the proof of Theorem 3.1, where x
y was assumed to be a good rational

approximation to n
√

a
b , we have to suppose that n is coprime to p− 1 to guarantee that x

y
is congruent to 1 modulo p, an assumption which is crucial for applying Theorem Bu. This
assumption on n implies that the p-adic valuation of x/y−1 is equal to that of (x/y)n−1.

Below, the constants implied by �,� are absolute, effectively computable and posi-
tive. Proceeding as in the proof of Theorem 2.1, we get that

log
∣∣∣(b+ c

b

)(x
y

)n
− 1
∣∣∣� log y

1− η
max{log 2n, 10}2 � log y

η
max{log 2n, 10}2.

Likewise, proceeding as in the proof of Theorem 3.1, we get for j = 1, . . . , s that

vpj ((b+ c)xn − byn)� log y

η log pj
max{log 2n, 4}2.

Since |y| ≥ 2 and |d| ≤ b, it follows from (7.1) that

n� (s+ 1)(log 2n)2

η
.

This completes the proof of the theorem.
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formes linéaires en deux logarithmes, J. Th. Nombres Bordeaux 12 (2000), 13–23.

[7] E. Bombieri, Effective Diophantine approximation on Gm, Ann. Scuola Norm. Sup.
Pisa Cl. Sci. 20 (1993), 61–89.

[8] E. Bombieri and J. Mueller, On effective measures of irrationality for n
√
a/b and

related numbers, J. reine angew. Math. 342 (1983), 173–196.

[9] Y. Bugeaud, Bornes effectives pour les solutions des équations en S-unités et des
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