Diophantine approximation and Cantor sets

Yann BUGEAUD

Abstract. We provide an explicit construction of elements of the
middle third Cantor set with any prescribed irrationality exponent. This
answers a question posed by Kurt Mahler.

1. Introduction

In Section 2 of his paper Some suggestions for further research, Mahler [12] posed the
following question:

How close can irrational elements of Cantor’s set be approximated by rational numbers
(i) in Cantor’s set, and
(i) by rational numbers not in Cantor’s set ¢

Here, and throughout the present note, Cantor’s set is the middle third Cantor set, that
is, the set of all real numbers ¢;37! + 2372 +--- 4+ ;37" + - - - with a; = 0 or 2 for every
1 > 1. We denote it by K.

In other words, Mahler asked (see also Problem 35 in [5]) whether there are elements
of Cantor’s set with any prescribed irrationality exponent, where the irrationality exponent
p(€) of an irrational number ¢ is the supremum of the real numbers p such that

has infinitely many solutions in rational numbers p/q.

The irrationality exponent of every irrational number is greater than or equal to 2
and it is precisely equal to 2 for almost all real numbers (with respect to the Lebesgue
measure) ; see Section 1 of [15]. As a first step towards Mahler’s question, Weiss [17]
established that the irrationality exponent of almost all elements of K (with respect to
the standard measure supported on K) is equal to 2, as well. Furthermore, metric number
theory was used in [7, 8, 10] to show that K contains badly approximable numbers, that
is, numbers ¢ for which |¢ — p/q| > ¢/q? holds for every rational p/q and some positive
constant c.

Recently, Levesley, Salp and Velani [11] used metric number theory to bring some
new light on Mahler’s problem. They established the existence of elements in K that
can be approximated at any prescribed order by rational numbers whose denominators
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are powers of 3. This gives a very satisfactory answer to the 3-adic analogue of Mahler’s
question. Furthermore, they complemented this result by constructing explicit elements of
K having any prescribed irrationality exponent greater than or equal to (3 + v/5)/2.

This leaves open the problem whether there are elements in K with any prescribed
irrationality exponent between 2 and (3 + v/5)/2. The purpose of the present note is to
give a positive answer to this question and to establish a much stronger assertion, namely
that there are elements in K with, roughly speaking, any prescribed approximation order.
In particular, we construct uncountably many explicit elements of K with any prescribed
irrationality exponent at least equal to 2.

2. Results

Let ¥ : R>; — R0 be a non-increasing function and set

K(D) := {5 eR: ‘5 — ]—)‘ < U(q) for infinitely many rational numbers E}.
q q

In 1931, Jarnik [6] used the theory of continued fractions to construct explicit examples
of real numbers in (V) which do not belong to any set K(c¥) with 0 < ¢ < 1, provided
that the function U satisfies ¥(x) = o(x~2). This means that the set

Exact(¥) := K(¥)\ | ] £((1-1/m)¥)

m>2

of real numbers approximable to order ¥ and to no better order is non-empty. A strong
form of Mahler’s question can be formulated as:

Is the intersection Exact(¥) N K always non-empty ?

Under a slight additional assumption on the approximation function ¥, we give a
positive answer to a slightly weaker question. To state our main result, we consider general
‘missing digits’ sets as in Section 7 of [11]. Let b > 3 be an integer and let .J(b) be a proper
subset of {0,1,...,b— 1} with at least two elements. We denote by K ;¢ the set of real
numbers in the unit interval [0, 1] whose b-ary expansion consists exclusively of digits in
J(b).

Theorem 1. Let ¥ : R>; — Rxq be a function such that x — 2*V¥(z) is non-increasing
and tends to 0. For any positive real number c less than 1/b, the set

(K@) \ K(c®)) N K )

is uncountable.

Choosing b= 3, J(b) = {0,2} and taking for ¥ the function x — z~" (log 2z) 2, with
T > 2, we derive at once from Theorem 1 a satisfactory answer to Mahler’s question. In
all what follows, |x| denotes the greatest integer less than or equal to the real number x.
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Theorem 2. Let 7 be a real number with 7 > 2. Cantor’s set contains uncountably
many elements whose irrationality exponent is equal to 7. Let A > 0 and set ng(1,\) =
1 + max{0, | (log(2/A))/logT]|}. Then, the real number

Ea=2 Y 37T (2.1)
n>no(T,\)
is an element of K with u(¢; ) = 7. Furthermore, & » is a badly approximable real

number.

Remark 1. For a real number 7 > 2, Levesley, Salp and Velani [11] studied the rational
approximation of the irrational number &, ;, that from now on we simply denote by &..
Estimating the distance between &, and its rational approximants 22;1 3~ N > 1,
they deduced straightforwardly that u(&;) > 7. To bound u(&;) from above, they used
triangular inequalities and obtained the upper estimate u(&;) < max{r, (2r—1)/(7 —1)}.
This gives u(&,) = 7 for 7 > (3 ++/5)/2, but, unfortunately, not the exact value of (&)
when 2 < 7 < (3 ++/5)/2. Statements of this type are reminiscent of numerous results in
transcendence theory ; see, for example, Theorems 7.7 and 8.8 in [5]. To prove our theorems,
we develop an alternative approach ; namely, we construct explicitly the continued fraction
expansion and the expansion in base 3 of suitable real numbers £. The former gives us the
irrationality exponent of £, and the latter ensures us that £ lies in Cantor’s set.

Remark 2. A more general question than Mahler’s one consists in studying how
the elements of K are approximable by algebraic numbers of bounded degree. Even the
extension of Weiss’ result [17] is not known ; see Kristensen [9] for partial results.

Remark 3. It follows from Ridout’s Theorem [14] that all the real numbers constructed
in the proof of Theorem 1 are transcendental. Furthermore, the main result of [1] yields a
transcendence measure for these numbers, implying that they are either S- or T-numbers
in Mahler’s classification.

Remark 4. Under the additional assumptions that x — z?¥(z) is non-increasing and
that thesum ) ., x¥(x) converges, the Hausdorff dimension of the set Exact(¥) has been
determined in [4]: it is equal to the Hausdorff dimension of (). A challenging and difficult
open problem would be, first, to show that the set Exact(¥) N K () is non-empty (that
may even be not true), and, second, to compute, under these assumptions, its Hausdorff
dimension. It is reasonable to expect that the Hausdorff dimension of (W) N K () is equal
to the product of the Hausdorff dimensions of the sets (V) and K s().

Remark 5. Let A = {1,3,32%,...} be the set of powers of 3. For a non-increasing
function ¥ : R>; — Ry set

Ka(P) = {f eR: ‘5 — B‘ < U(q) for infinitely many rational numbers P with q€ A}.
q q

Theorem 1 asserts that, if z — 22¥(z) is non-increasing and tends to 0, then, for any
positive ¢ less than 1/3, the set K4(V) \ Ka(c¥) is non-empty. This result is new and
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cannot be obtained via the metric theory as used in [11], see [3] and the Remark at the
end of Section 3 of [11].

Remark 6. We refer the reader to [2] for the definitions of the notions discussed in
this remark. Let p be an odd integer and ¢ be a positive integer such that p/ 20> 2 or let
(p,£) = (2,0). Define the sequence x = (x,,)n>0 by setting z,, = 1 if n is of the form 2"p® for
some integers a > 1 and h =0, ..., ¢, and setting x,, = 0 otherwise. Then, x is an automatic
sequence and the irrationality exponent of the automatic real number > -, 37" is equal
to p/2%. A slightly modified construction shows that there exist automatic real numbers
with any prescribed rational irrationality exponent. This is justified at the end of Section 3.
Furthermore, since the subword complexity of any real number &, ) defined in (2.1) is sub-
linear, Theorem 2 implies that there exist real numbers of sub-linear subword complexity
with any prescribed irrationality exponent.

3. Proofs

The key tool for our constructive proofs is the Folding Lemma, which we deduce at
once from Section 2 of [13]; see also [16].

Folding Lemma. Let t be a positive integer and r/s be a rational number written in
lowest terms. If r/s = [0;1,1,as,...,ap—1,ay| with h > 4 and ap > 2, then

ro (=1)h _ rst+ (—1)h

;+ g2 = ts2 :[0;1,1,@3,...,ah,1,ah,t—].,].,Clh—1,ah71,...,a3,2],
for t > 2, and
—1)h —1)h
C+( 2) :Ts_l_(Q ) :[0;1717a37"':ah—17ah+17ah_17ah—17---7a3:2]'
S S S

We now explain how to use repeatedly the Folding Lemma in order to construct real
numbers satisfying the conclusion of Theorem 1. Without any loss of generality, we assume
that J(b) = {0,1}. Let v > 4 be an integer such that z?¥(z) < b=2 for x > b”. Observe
that there is a positive integer r, coprime with b, such that the rational r/b" lies in the
open real interval with endpoints [0;1,1,1, 2] and [0; 1,1, 1, 3]. Consequently, the continued
fraction of r/b¥ reads

r
b_v = [05 1) ]-7 az,...,aAnh—1, ah]v
with A > 4 and a; > 2.

Let u = (ug)r>1 be a sequence of positive integers. Applying the Folding Lemma first
with ¢t = b1, then with ¢t = b"2, and so on, we get a sequence (d)r>1 of integers such that
the real number

(-1 1 1
gu - b_v pui+2v - bu2+2(u1+2v) - buk—l—Q(uk,1+---+2k—2u1+2’“—1v) -




satisfies
1

buk+1t2ve —

1+ b7

— puk+1t+2vg’

dy,

Eu — or for k> 1, (3.1)

where we have set
v = up + 2up_1 + -+ 28" Tug + 2’“?}, for k > 1.

Here, dj is the nearest integer to &,b%, for k£ > 1.
We consider the sequence u defined inductively by u; = 1 and

L4 b7 < B bR B (B) < b4 b, for k> 1. (32)

Since x + x?¥(x) is non-increasing and tends to 0, the sequence u is unbounded and
non-decreasing.
It follows from (3.1) and (3.2) that
Vg
Vo) | de

m ~ buk < \I’(bvk), for k& Z 1. (33)

We have now to show that the sequence (dj/b"*)r>1 comprises all the best rational
approximations to &,. Write

p.
|

:[0;a1,a2,...,aj], ]21,
4;

§u=[0;a1,az,...
for the continued fraction expansion of &, and its convergents, and recall the classical

inequalities (see e.g., Section 1.2 from [5])

1

1

<
2
34951

Pj—
gu — <

qj—1

, forj>2. (3.4)

Let m > 2 be an integer. It is easily checked that

N
Gyn(pyry = bUn ' —1 and 2Dt Om (3.5)
Gm(hey-1 OV

By construction, all the partial quotients a; with 2m~1(h + 1) < j < 2™(h + 1) are less
than or equal to b*m-* — 1. Then, (3.4) yields

1 1

Dj—1
> > )
(aj +2)q;_, — (bvm—t +1)g5 4

qdj—1

£u - (36)

for 27 1(h+1) < j < 2™(h+1). Let ¢ be a positive real number such that ¢ < 1/(b+ 2¢).
Since x +— 2?¥(x) is non-increasing and u is non-decreasing and unbounded, we infer from
(3.2) that

(b + 1) W) < (B 4 DB ()

< (b+e)(d*m +1)b “m < b+ 2,
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hence, by (3.6),
¥(g))
b+ 2¢

DPj—1
gu —
dj—1

>

for 2" 1(h + 1) < j < 2™(h + 1), provided that m is sufficiently large. Combined with
(3.3) and (3.5), this shows that

> Lj(qj) > c\IJ(qj) (3'7)

_ b5
Lu b+ 2

95

holds for every sufficiently large integer j.
It now follows at once from (3.3) and (3.7) that &, lies in () \ K(c¥). The real

number ( )h
T -1 1
TR
k>2

belongs to K(¥) \ K£(c¥) and is written only with the digits 0 and 1 in base b. Let
u’ = (up)r>1 be a sequence defined from the above sequence u by setting u) = 1,
uy, = ug and uy, ;€ {1,2} for £ > 1. Then, the same proof yields that the real number
b 4+ (=1)Pb~*1 =2 — £ lies in K(¥) \ K(c¥) and is written only with the digits 0 and
1 in base b. Thus, we have constructed uncountably many real numbers with the required
property. This completes the proof of Theorem 1.

About the second assertion of Theorem 2, we content ourselves to say that it is
sufficient to perform the above construction with b = 3, v = | Ar3T"0(" )| and the sequence
u defined by wuy, = [ArFH3tmo(mA) | _ 2| \rk+24+0(m N | if £ > 2 and k > 1. The resulting
real number is equal to £, plus some rational number, and its irrationality exponent is
equal 7, hence, u(&,.,) = 7. For 7 = 2, since [A2FF1] = 2| \2F | + ¢, with g, € {0, 1}, we
have to apply repeatedly the Folding Lemma with ¢ = 3°~, and the partial quotients in
the continued fraction expansion of the resulting number remain bounded ; thus, &3 ) is a
badly approximable number.

To conclude, we briefly justify the claim asserted in Remark 6. Let p and ¢ be coprime
integers with p > ¢ > 1 and p/q > 2. Let a > 4 and / be integers such that

a—1

p

<

b
5 < (3.8)

We start the construction with a rational number /37" in the open real interval with
endpoints [0;1,1,1,2] and [0;1,1,1,3]. Applying the Folding Lemma ¢ times with ¢t = 1,
we reach a rational with denominator 327", Then, we apply the Folding Lemma with
t = 3@ 2" and with ¢ = 3#"—20p" DP" This gives rational numbers with
denominators 377" and 3P*". We continue with ¢ further applications of the Folding
Lemma with t = 1, one with ¢ = 3" '=2")*" and one with t = 3(P"—2a" P and
so on. By (3.8), the irrationality exponent of the resulting irrational number £ is equal
to p/q. Define the sequence y = (yn)n>0 by setting y, = 1 if n is of the form 27p"® or
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gpPtYe—1 for some integers h > 1 and j = 0,. .., ¢, and setting y,, = 0 otherwise. Then,
y is an automatic sequence and the automatic real number ) -, 37Y" is equal to & plus
some rational number. Consequently, its irrationality exponent is precisely p/q.
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