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Abstract. In this paper we study the set Λ(α) of limit points of the sequence ||αn||1/n,
n = 1, 2, 3, . . . , where α > 1 is a fixed real number and || · || denotes the distance to the
nearest integer. In 1967, Mahler and Szekeres proved that Λ(α) consists of just one point
1 for almost all α > 1. We characterize the set Λ(α) for every algebraic number α > 1: it
contains at most two points. It is also shown that there are uncountably many α > 1 for
which Λ(α) is the whole interval [0, 1], and that the set of real numbers α > 1 such that
Λ(α) includes 0 has Hausdorff dimension 0. We further investigate from a metrical point
of view sets of α for which Λ(α) is strictly contained in [0, 1].

1. Introduction

Let α be a real number greater than 1. We shall consider the set of limit points Λ(α) of
the sequence ||αn||1/n, n = 1, 2, 3, . . . . (Throughout, ||y|| stands for the distance between
y ∈ R and the nearest integer to y.) Clearly, Λ(α) is a closed set contained in [0, 1].

In [7], Mahler and Szekeres studied the quantity

P (α) = lim inf
n→∞

||αn||1/n

which is the smallest element of the set Λ(α). Their paper, which motivates the present
work, does not seem to be very well known, although a number of results concerning the
distribution of the sequence ||αn||, n = 1, 2, 3, . . . , can be given in terms of Λ(α).

For example, Mahler’s result [6] asserting that, given any rational non-integer number
p/q > 1 and any positive number ε, the inequality ||(p/q)n|| > (1 − ε)n holds for all but
finitely many positive integers n can be written as limn→∞ ||(p/q)n||1/n = 1, i.e., Λ(p/q) =
{1}. This result was recently extended by Corvaja and Zannier [3]. They established that
Λ(α) = {1} holds for every algebraic number α > 1 such that αm is not a Pisot number for
every positive integer m. Recall that α > 1 is a Pisot number if it is an algebraic integer
whose conjugates over Q (if any) all lie in the open unit disc |z| < 1.

Our first theorem gives a complete characterization of the set Λ(α) for every algebraic
number α > 1.

Theorem 1. For every algebraic number α > 1 such that αm is not a Pisot number for
each positive integer m, we have Λ(α) = {1}. Alternatively, let m be the least positive
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integer for which β = αm is a Pisot number, say, of degree d. Suppose that the conjugates
of β over Q are labelled so that β = β1 > |β2| > . . . > |βd|. Put |α2| = |β2|1/m. Then

(a) Λ(α) = {0} if m = 1 and d = 1,
(b) Λ(α) = {0, 1} if m > 2 and d = 1,
(c) Λ(α) = {|α2|} if m = 1 and d > 2,
(d) Λ(α) = {|α2|, 1} if m > 2 and d > 2.

In fact, Mahler and Szekeres [7] proved that the situation when the sequence ||αn||1/n,
n = 1, 2, 3, . . . , has a unique limit point 1, i.e., Λ(α) = {1}, is ‘generic’, namely, Λ(α) = {1}
for almost every α > 1 in the sense of the Lebesgue measure. They also showed that there
are some transcendental numbers α > 1 such that Λ(α) contains both 0 and 1. This raises
a natural question on whether there are α > 1 for which the set Λ(α) is large, e.g., contains
a transcendental number, etc.

Our next theorem shows that there are α for which Λ(α) is the largest possible set,
namely, Λ(α) = [0, 1].

Theorem 2. Suppose that I ⊆ (1,∞) is an interval of positive length. Then there are
uncountably many α ∈ I for which Λ(α) = [0, 1]. More generally, for any function f : N 7→
R>0 satisfying lim supn→∞ f(n) =∞, there are uncountably many α ∈ I for which the set
of limit points of the sequence ||αn||1/f(n), n = 1, 2, . . . , is the whole interval [0, 1].

However, the set of α for which Λ(α) = [0, 1] is very small from a metric point of view.

Theorem 3. The set of real numbers α > 1 for which Λ(α) contains 0 has Hausdorff
dimension 0.

Results from metrical number theory allows us to prove the existence of transcendental
real numbers α with 0 < P (α) < 1. Throughout the present paper, dim stands for the
Hausdorff dimension — see Section 5.

Theorem 4. Let a, b be real numbers with 1 6 a < b. For any real number τ > 1, we have

dim{α ∈ (a, b) : P (α) 6 1/τ} =
log b

log(bτ)
.

Note that Theorem 4 implies Theorem 3. Most probably, we also have

dim{α ∈ (a, b) : P (α) = 1/τ} =
log b

log(bτ)
,

but, unfortunately, it does not seem to us that current techniques are powerful enough to
prove this. In particular, it is likely that the function P assumes every possible value in
the interval [0, 1]. In this direction, Theorem 4 implies that the set of values taken by P is
dense in [0, 1].

As in Theorem 2, instead of the sequence ‖αn‖1/n, n > 1, we may as well study sequences
‖αn‖1/f(n), n > 1, for non-decreasing sequences f : N 7→ R>0 satisfying limn→∞ f(n) =∞.
This problem is discussed in the next section. Then, in Sections 3 and 4, we shall prove
Theorems 1 and 2. The remaining proofs will be given in Section 5, whereas Section 6
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contains some open questions. Finally, we remark that the tools used in the proofs come
from quite different sources, including [1], [3], [5], [9], etc.

2. Further metrical results

Let a and b be real numbers with 1 6 a < b. Let ϕ : N 7→ R>0 be a non-increasing
function that tends to zero as n→∞. We shall study the set

Ka,b(ϕ) = {α ∈ (a, b) : ‖αn‖ 6 ϕ(n) for i.m. positive integers n},

where, as everywhere below, ‘i.m.’ stands for ‘infinitely many’.
We begin by quoting an old result of Koksma [5] that provides us with a Khintchine-type

theorem.

Theorem 5. ([5]) Let εn, n = 1, 2, . . . , be a sequence of real numbers with 0 6 εn 6 1/2
for every n. If the sum

∑∞
n=1 εn is convergent, then, for almost every real number α > 1,

there exists an integer n0(α) such that

‖αn‖ > εn for each n > n0(α).

If the sequence εn, n = 1, 2, . . . , is non-increasing and if the sum
∑∞

n=1 εn is divergent,
then, for almost all real numbers α > 1, there exist arbitrarily large integers n such that

‖αn‖ 6 εn.

We study the sets Ka,b(ϕ) from a metric point of view, focusing our attention on the
special cases, where

ϕ(n) = n−τ for some real number τ > 1,

and

ϕ(n) = τ−n for some real number τ > 1.

In all these cases, the corresponding sets Ka,b(ϕ) have Lebesgue measure zero, by Theorem
5. We are interested in their Hausdorff dimension. To simplify the notation, for any τ > 1,
we write Ka,b(τ) instead of Ka,b(n 7→ n−τ ).

Theorem 6. For any real number τ > 1, the set

Ka,b(τ) = {α ∈ (a, b) : ‖αn‖ 6 n−τ for i.m. positive integers n}

has Lebesgue measure zero and its Hausdorff dimension is equal to 1.

The first assertion of Theorem 6 is contained in Theorem 5. The second assertion is new
and it is in a striking contrast with the following classical theorem, proved independently
by Jarńık [4] and Besicovitch [2].

Theorem 7. ([2], [4]) For any real number τ > 1, the Hausdorff dimension of the set

{α ∈ R : ‖nα‖ 6 n−τ for i.m. positive integers n}

is equal to 2/(τ + 1).
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Theorems 5 and 6 suggest to us to introduce the function λ defined on the set of real
numbers > 1 by

λ(α) = max{τ : α ∈ K1,∞(τ)},
where K1,∞ stands for the union of the sets K1,b over the integers b > 1. They imply that
λ(α) = 1 for almost all real numbers. Furthermore, Theorem 6 asserts that

dim{α ∈ (1,+∞) : λ(α) > τ} = 1,

and its proof can easily be modified to yield that

dim{α ∈ (1,+∞) : λ(α) = τ} = 1. (1)

Consequently, the function λ takes every value > 1.
Note that, for some α > 1, we may have λ(α) = 0. For instance, Pisot [8] proved that

there are α > 1 for which ||αn|| > c > 0 for all n ∈ N. For such α, we clearly have λ(α) = 0.

3. Auxiliary results

We shall need the following simple lemma about Pisot numbers:

Lemma 8. Let α > 1, n,m ∈ N and g =gcd(n,m). If αn and αm are Pisot numbers then
αg is a Pisot number.

Proof: On replacing n by n/g and m by m/g, we can assume that g = 1 and so αg = α.
Suppose α is not a Pisot number. Since αn and αm are Pisot numbers, this can only happen
if one of the conjugates of α over Q is of the form α exp(2πik/n), where k ∈ {1, . . . , n−1},
and another one is of the form α exp(2πi`/m), where ` ∈ {1, . . . ,m− 1}. But αn is a Pisot
number, so all three nth powers must be equal. In particular, αn exp(2πi`n/m) = αn. It
follows that m|n`, i.e., m|`, a contradiction. �

A key lemma for the proof of Theorem 2 can be stated as follows:

Lemma 9. Let f : N 7→ R>0 be a function satisfying lim supn→∞ f(n) = ∞. Suppose
that 1 < u < v. Then there is a sequence of positive integers 1 6 n1 < n2 < n3 < . . .
depending on u, v and f only such that, for any sequence of real numbers r1, r2, r3, · · · ∈
(0, 1) satisfying 1/(3k) < rk < exp(−1/k) for every k > 1, there is an α ∈ [u, v] for which
we have limk→∞(||αnk ||1/f(nk) − rk) = 0.

Proof: We shall consider the sequence of integers 1 6 n1 < n2 < n3 < . . . satisfying

n1 log u > max(4, log(2n1)), (2)

∞∏
k=1

(1− 1/nk)
1/nk > u/v, (3)

and, for each k > 1,

nk+1 > 20nk, (4)
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f(nk) > k log 2, (5)

(nk+1 − nk) log u > f(nk) log(3k), (6)

unk+1−1(u− 1) > vnk . (7)

It is clear that such a sequence exists and that it depends on u, v and f only.
In order to construct α with required properties, we consider the sequence x0 = v,

xk = ([xnkk−1]− 1 + r
f(nk)
k )1/nk

for k = 1, 2, . . . . Then

xk 6 (xnkk−1 − 1 + r
f(nk)
k )1/nk < (xnkk−1)

1/nk = xk−1,

so v = x0 > x1 > x2 > . . . .
Next, we will show that xk > u for each k > 0. For this, we shall prove that xk >

x0

∏k
j=1(1− 1/nj)

1/nj and then apply (3). Consider the quotient

xk
xk−1

>
(xnkk−1 − 2 + r

f(nk)
k )1/nk

xk−1

>
(xnkk−1 − 2)1/nk

xk−1

=

(
1− 2

xnkk−1

)1/nk

. (8)

Inserting k = 1 into (8), yields x1/x0 > (1 − 2/xn1
0 )1/n1 . By (2), we have 2/xn1

0 < 1/n1,

so x1 > x0(1 − 1/n1)
1/n1 . Suppose that xk−1 > x0

∏k−1
j=1(1 − 1/nj)

1/nj . Combining this

inequality with (8) and using 2/xnkk−1 < 1/nk (which is true by (2), because xk−1 > u), by

induction on k, we deduce that the inequality xk > x0

∏k
j=1(1 − 1/nj)

1/nj holds for every

k > 1. Since x0 = v, combined with (3) this yields that xk > v for each k > 0. Hence the
limit α = limk→∞ xk exists and belongs to the interval [u, v].

Next, we need a lower bound for α in terms of xk. Consider the product
∏∞

j=k xj+1/xj =

α/xk. Using (8), we obtain

α

xk
>
∞∏
j=k

(
1− 2

x
nj+1

j

)1/nj+1

.

Note that 2/x
nj+1

j < 1/2, by (2). On applying the inequality 1 − y > exp(−2y), where

0 < y < 1/2, we thus obtain α/xk > exp(−
∑∞

j=k 4/(nj+1x
nj+1

j )). We claim that the sum

in the exponent is less than 5/(nk+1x
nk+1

k ). Indeed, using xj > u, we derive that

∞∑
j=k+1

4

nj+1x
nj+1

j

<
4

nk+2

∞∑
j=k+1

1

unj+1
<

4

nk+2

∞∑
j=nk+2

1

uj
=

4

nk+2unk+2−1(u− 1)
.

This is less than 1/(nk+1v
nk+1) 6 1/(nk+1x

nk+1

k ), because of (4) and (7). It follows that∑∞
j=k 4/(nj+1x

nj+1

j ) < 5/(nk+1x
nk+1

k ). Hence α > xk exp(−5/(nk+1x
nk+1

k )).
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Now, we will show that the nearest integer to αnk is ak = [xnkk−1]− 1. Indeed, firstly, we
have

αnk < xnkk = [xnkk−1]− 1 + r
f(nk)
k = ak + r

f(nk)
k . (9)

Secondly,

ak + r
f(nk)
k = xnkk < αnk exp(5nk/(nk+1x

nk+1

k )).

Using (4) and exp(y) < 1 + 2y, where 0 < y < 1, we can bound the right hand side as

αnk exp(5nk/(nk+1x
nk+1

k )) < αnk + 10αnknk/(nk+1x
nk+1

k ) < αnk + αnk/(2x
nk+1

k )

< αnk + α−nk+1+nk/2 6 αnk + u−nk+1+nk/2.

From 1/rk < 3k and (6), we have unk+1−nk > (1/rk)
f(nk). Hence u−nk+1+nk < r

f(nk)
k . It

follows that ak + r
f(nk)
k < αnk + r

f(nk)
k /2. Combining with (9), we deduce that

r
f(nk)
k /2 < αnk − ak < r

f(nk)
k .

Since rk < exp(−1/k), using (5), we get r
f(nk)
k < 1/2, so ak is indeed the nearest integer to

αnk .
Moreover, the above inequalities imply that

rk2
−1/f(nk) < ||αnk ||1/f(nk) = (αnk − ak)1/f(nk) < rk.

By (5), we have 1− 2−1/f(nk) < 1/k, hence

0 > ||αnk ||1/f(nk) − rk > rk(2
−1/f(nk) − 1) > −1/k.

Therefore, limk→∞(||αnk ||1/f(nk) − rk) = 0, as claimed. �

4. Proofs of Theorems 1 and 2

Proof of Theorem 1: The first claim follows immediately from Theorem 1 in [3], and is
given here only for the sake of completeness.

Part (a) is trivial. In part (b), we have α = D1/m with some D ∈ N. By taking a
subsequence n = m, 2m, 3m, . . . , we see that ||αn|| = 0 infinitely often, so 0 ∈ Λ(α). We
claim that ||αn||1/n → 1 as n → ∞ for n being of the form n = ` + mk, k = 0, 1, 2, . . . ,
where ` is in the set {1, . . . ,m − 1}. Indeed, then α`+mk = Dk+`/m. The number D`/m

is algebraic irrational. By the theorem of Ridout [9], for any ε > 0, there is a positive
constant c (which does not depend on k) such that ||D`/mDk|| > cD−εk. Hence

||D`/mDk||1/(`+mk) > c1/(`+mk)D−ε/(2m).

Here, limk→∞ c
1/(`+mk) = 1, so the right hand side can be arbitrarily close to 1 if we choose

ε small enough. It follows that ||α`+mk||1/(`+mk) → 1 as k → ∞. This competes the proof
of part (b).

Consider now part (c). Then α is a Pisot number of degree d > 2 whose conjugates over
Q are labelled so that α = α1 > |α2| > . . . > |αd|. We shall prove that there is a constant
λ > 0 such that

n−λ|α2|n 6 ||αn|| 6 (d− 1)|α2|n (10)



ON A PROBLEM OF MAHLER AND SZEKERES ON APPROXIMATION BY ROOTS OF INTEGERS 7

for each sufficiently large n. Evidently, this implies that limn→∞ ||αn||1/n = |α2|, i.e., Λ(α) =
{|α2|}.

Since Sn = αn + αn2 + · · · + αnd is an integer and |αn2 + · · · + αnd | 6 (d − 1)|α2|n, we
immediately obtain the upper bound in (10), namely, ||αn|| 6 |αn − Sn| 6 (d− 1)|α2|n.

Evidently, Sn is the nearest integer to αn for each sufficiently large n. By a result of
Smyth [11], there are at most two conjugates of α of equal moduli. So either α2 is a real
number and so |α2| > |α3| or α2 is complex, say, α2 = |α2| exp(iφ) in which case α3 is a
complex conjugate of α2, α3 = |α2| exp(−iφ), and |α2| > |α4|. In the first case,

|αn2 + · · ·+ αnd | > |α2|n − (d− 2)|α3|n > |α2|n/n

for each sufficiently large n. (So the lower bound in (10) holds, e.g, with λ = 1.) In the
second case, αn2 + αn3 = 2 cos(nφ)|α2|n, hence

|αn2 + · · ·+ αnd | > 2| cos(nφ)||α2|n − (d− 3)|α4|n.

In order to prove the lower bound in (10) it suffices to show that | cos(nφ)| > n−λ. Take
the nearest number of the form π(m+ 1/2), m ∈ Z, to nφ. Using | sin y| > 2|y|/π > |y|/2,
where |y| 6 π/2, we deduce that

| cos(nφ)| = | sin(nφ− π(m+ 1/2))| > |nφ− π(m+ 1/2)|/2 = |2nφ/π − (2m+ 1)|/4.

But φ/π is a quotient of two logarithms of algebraic numbers. It is an irrational number.
So, by Gelfond’s result on approximation of such numbers by rational fractions (see, e.g.,
[12]), we obtain that |2nφ/π − (2m+ 1)| > (2n)−c, where c is positive constant depending
on α only. Since (2n)−c/4 > n−2c for each sufficiently large n, the lower bound in (10)
holds with λ = 2c. This completes the proof of part (c).

Finally, for the proof of part (d), suppose that β = αm is a Pisot number of degree
d > 2. Here, m > 2. As in part (b), we shall consider n running through every arithmetic
progression n = `+mk, k = 0, 1, 2, . . . , where ` is a fixed number of the set {0, 1, . . . ,m−1}.
If ` = 0, then αn = αmk = βk. By part (c),

||αmk||1/(mk) = ||βk||1/(mk) → |β2|1/m = |α2|

as k →∞. Suppose that ` ∈ {1, . . . ,m−1}. We claim that then the number α`+mk has one
more conjugate of modulus α`+mk. Indeed, otherwise α`+mk is a Pisot number, because it
is an algebraic integer whose all conjugates lie in |z| 6 |α2|`+mk < 1. But if αm and α`+mk

(for some k > 0) are Pisot numbers, then, by Lemma 8, α` is a Pisot number, which is a
contradiction with the choice of m.

Since α`+mk has one more conjugate of modulus α`+mk (different from α`+mk itself),
α`+mk is not a pseudo-Pisot number in the sense of the definition given in [3]. (Pseudo-
Pisot numbers are the usual Pisot numbers and those algebraic numbers with integral trace
which have a unique conjugate in |z| > 1 and all other conjugates in |z| < 1.) Thus, by the
Main Theorem of [3], we obtain that, for any ε > 0, the inequality ||α`+mk|| < (1− ε)`+mk
holds for finitely many k ∈ N only. Hence ||α`+mk||1/(`+mk) → 1 as k →∞. This completes
the proof of part (d). �
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Proof of Theorem 2: Fix any closed subinterval [u, v] of I, where 1 < u < v. Take any
sequence r1, r2, r3, · · · ∈ (0, 1) satisfying 1/(3k) < rk < exp(−1/k) for each k > 1 which is
everywhere dense in [0, 1]. For every τ from the interval (1/3, 1/e) the sequence

r1, τ, r2, τ, r3, τ, . . .

is also everywhere dense in [0, 1]. Moreover, the kth element of this sequence is also greater
than 1/(3k) and smaller than exp(−1/k). Hence, by Lemma 9, there is an α = α(τ) ∈ [u, v]
for which the sequence ||αn||1/f(n), n = 1, 2, 3, . . . , is everywhere dense in [0, 1]. Moreover,
all these α(τ) are distinct, because the limits limk→∞ ||α(τ)n2k ||1/f(n2k) = τ are distinct.
The are uncountably many such α(τ), because there uncountably many τ ∈ (1/3, 1/e).
This proves the second claim of the theorem. The first part is a particular case of the
second part with the function f(n) = n for each n ∈ N. �

5. Proofs of the metrical results

We begin with an easy consequence of the Cantelli Lemma. A dimension function
f : R>0 7→ R>0 is a continuous, increasing function such that f(r) → 0 when r → 0.
(Actually, it is enough to assume that f is defined on some open interval (0, t) with t
positive.) For any positive real number δ and any real set E, define

Hf
δ (E) = inf

J

∑
j∈J

f
(
|Uj|

)
,

where the infimum is taken over all the countable coverings {Uj}j∈J of E by intervals Uj
of length |Uj| at most δ. Clearly, the function δ 7→ Hf

δ (E) is non-increasing. Consequently,

Hf (E) = lim
δ→0
Hf
δ (E) = sup

δ→0
Hf
δ (E)

is well-defined and lies in [0,+∞]; this is the Hf -measure of E.
When f is a power function x 7→ xs, with s a positive real number, we write Hs(E)

instead of Hf (E). The Hausdorff dimension of E is then the critical value of s at which
Hs(E) ‘jumps’ from +∞ to 0. In other words, we have

dimE = inf{s : Hs(E) = 0} = sup{s : Hs(E) = +∞}.

Lemma 10. Let a and b be real numbers with 1 6 a < b. Let f be a dimension function.
If the sum ∑

n>1

∑
an6g6bn

f

(
3ϕ(n)

ng(n−1)/n

)
(11)

converges, then Hf (Ka,b(ϕ)) = 0.

Proof: Let B(ϕ, a, b) denote the set of real numbers α in (a, b) such that there are
infinitely many positive integers n with

‖αn‖ = |αn − g| 6 ϕ(n) (12)
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for some integer g with an 6 g 6 bn. Proceeding as in [7], we infer from (12) that, if both
n and g are given, then, for n sufficiently large, α is restricted to an interval

Jn(g) = [(g − ϕ(n))1/n, (g + ϕ(n))1/n] ∩ (a, b)

whose length does not exceed 3ϕ(n)/(ng(n−1)/n) provided that n is sufficiently large. Con-
sequently, the total Hf -measure of all the intervals Jn(g) corresponding to possible values
of g is not greater than ∑

an6g6bn

f

(
3ϕ(n)

ng(n−1)/n

)
.

Since the sum (11) is convergent, the Hf -measure of the set of points contained in infinitely
many intervals Jn(g) is zero, as asserted. �

The proofs of our metrical theorems rest on Theorem 5 and on the Mass Transference
Principle from [1]. Below, µ denotes the Lebesgue measure. For a positive real number
r and for x ∈ R, let I(x, r) denote the closed interval [x − r, x + r]. Furthermore, for a
function f , we denote by If = If (x, r) the closed interval [x− f(r), x+ f(r)].

Theorem 11. ([1]) Let J be a closed interval in [1,+∞). Let f be a dimension function.
Let (Ii)i>1 be a sequence of closed intervals in J such that the length of Ii tends to 0 as i
tends to infinity. Suppose that, for any interval I in J,

µ(I ∩ lim sup
i→∞

Ifi ) = µ(I). (13)

Then, for any interval I in J,

Hf (I ∩ lim sup
i→∞

Ii) = Hf (I). (14)

We begin with some preliminaries for the proofs of Theorems 6 and 4.

Let a and b real numbers with 1 6 a < b. Let ϕ : R>0 7→ R>0 be a non-increasing
function that tends to zero. We are concerned with the set Ka,b(ϕ) defined in Section 2.

Suppose that ψ : N 7→ R>0 is a non-increasing function such that the sum
∑∞

n=1 ψ(n)
diverges and ψ(n) tends to zero as n tends to infinity. Arguing as in the proof of Lemma
10, Theorem 5 implies that

(a, b)
⋂

lim sup
n→∞

⋃
an6g6bn

I(g1/n, n−1g−(n−1)/nψ(n)) (15)

has full Lebesgue measure in (a, b).
Assume that we have found a suitable function f such that

f(n−1g−(n−1)/nϕ(n)) >
ψ(n)

ng(n−1)/n

for all sufficiently large integers n and for all integers g with an 6 g 6 bn. Then, by (15),
the set

(a, b)
⋂

lim sup
n→∞

⋃
an6g6bn

I(g1/n, f(n−1g−(n−1)/nϕ(n)))
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has full Lebesgue measure in (a, b), that is, assumption (13) is satisfied. Theorem 11 then
yields, by (14), that the Hf -measure of

(a, b)
⋂

lim sup
n→∞

⋃
an6g6bn

I(g1/n, n−1g−(n−1)/nϕ(n)),

which is contained in Ka,b(ϕ), is equal to the Hf -measure of (a, b). Consequently, the
Hf -measure of Ka,b(ϕ) is greater than or equal to the Hf -measure of (a, b).

Proof of Theorem 6: In view of Theorem 5, we have only to prove the second assertion.
Without any restriction, we assume that a > 1. Let us consider the family of dimension
functions

fu : x 7→ x(log 1/x)u for u > 0.

Observe that

fτ−1

(
n−τ−1

g(n−1)/n

)
=
n−τ

(
log(nτ+1g(n−1)/n)

)τ−1

ng(n−1)/n
.

Since g > an, we get

n−τ
(
log(nτ+1g(n−1)/n)

)τ−1
> n−τ (τ log n+(n−1) log a)τ−1 > (1−1/n)τ (log a)τ−1 (n−1)−1.

Since the sum
∑∞

n=2(1 − 1/n)τ (n − 1)−1 diverges, we may argue as in the preliminaries
with ψ(n) = (1− 1/n)τ (log a)τ−1 (n− 1)−1 to infer from Theorem 11 that

Hfτ−1(Ka,b(τ)) = +∞.
This proves that the Hausdorff dimension of the set Ka,b(τ) is equal to 1, as asserted.

Furthermore, it easily follows from Lemma 10 that

Hfτ−1(Ka,b(τ + 1/k)) = 0 if k > 1.

Consequently, we get

Hfτ−1

(
Ka,b(τ) \

⋃
k>1

(Ka,b(τ + 1/k)

)
= +∞,

and (1) is established. �

Proof of Theorem 4: Put Sa,b(τ) = {α ∈ (a, b) : P (α) 6 1/τ}. Note that, for any ε > 0,
Sa,b(τ) ⊆ Ka,b(ϕ) with ϕ(n) = (τ − ε)−n. It follows straightforwardly from Lemma 10 that
the Hausdorff dimension of the set Sa,b(τ) is bounded from above by log b/ log(bτ).

For a lower bound, we shall work with the family of dimension functions gs : x 7→ xs,
where 0 < s < 1. According to the preliminaries, we have to find a non-increasing function
ψ such that

∑∞
n=1 ψ(n) diverges, ψ(n) tends to zero as n tends to infinity, and

gs

(
τ−n

ng(n−1)/n

)
>

ψ(n)

ng(n−1)/n
,

that is,

ψ(n) 6 n1−sτ−ns g(1−s)(n−1)/n,
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for every integer g in the interval [an, bn]. If s does not exceed log a/ log(aτ), then
τ−ns g(1−s)(n−1)/n > as−1 for every integer g in the interval [an, bn], and a suitable choice for
the function ψ is given by ψ(n) = 1/n.

Consequently, we get the lower bound

dimSa,b(τ) >
log a

log(aτ)
.

However, Sa,b(τ) contains Sa′,b(τ) for any a′ with a < a′ < b. Hence

dimSa,b(τ) >
log b

log(bτ)
,

giving dimSa,b(τ) = log b/ log(bτ), as claimed. �

6. Open questions

We have shown at the end of Section 2 that the function λ takes every value in {0} ∪
[1,+∞). In view of this, we address the following question.

Problem 12. Do there exist real numbers α > 1 such that

0 < λ(α) < 1 ?

The distribution of the integer powers of a fixed rational number > 1 is far from being
understood. Mahler’s result [6] motivates the following question.

Problem 13. Let α = p/q > 1 be a non-integer rational number. Is there a non-decreasing
sequence tn, n = 1, 2, . . . , of positive real numbers such that limn→∞ tn =∞ and

lim inf
n→∞

‖(p/q)n‖tn/n = 1 ?

It is most likely that in order to answer Problem 13 in the affirmative, one has to
improve first upon the key tool in the proof of Mahler’s result [6], namely, the Ridout
theorem [9], which is the non-Archimedean analogue of Roth’s Theorem. Recall that
Roth [10] established that, for any irrational algebraic number ξ and any positive real
number ε, there are only finitely many rational numbers p/q such that q > 1 and |ξ −
p/q| < q−2−ε. A standard conjecture in Diophantine approximation (often referred to as
the Lang conjecture) claims that, for any irrational algebraic number ξ and any positive
real number ε, there are only finitely many rational numbers p/q such that q > 2 and
|ξ − p/q| < q−2(log q)−1−ε. If we believe in this conjecture and in its non-Archimedean
extension (as Ridout’s Theorem extends Roth’s Theorem), the latter would imply that,
for any relatively prime integers p, q with p > q > 2 and any positive real number ε, the
inequality

‖(p/q)n‖1/n > e−(1+ε)(logn)/n

holds for every sufficiently large integer n.
In another direction, currently known results cannot even rule out the existence of a

positive constant c such that the inequality

‖(p/q)n‖ > c
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holds for every sufficiently large integer n. Consequently, we do not have a single result on
the function λ evaluated at rational non-integers p/q > 1.
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[8] Ch. Pisot, Répartition (mod 1) des puissances successives des nombres réels, Comment. Math. Helv.,
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