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1. Introduction

It was observed long ago (see e.g., [29] or [18], page 62) that Roth’s theorem [24] and
its p-adic extension established by Ridout [25] can be used to prove the transcendence of
real numbers whose expansion in some integer base contains repetitive patterns. This was
properly written only in 1997, by Ferenczi and Mauduit [19], who adopted a point of view
from combinatorics on words before applying the above mentioned theorems from Diophantine
approximation to establish e.g., the transcendence of numbers with a low complexity expansion.
Their combinatorial transcendence criterion was subsequently considerably improved in [9],
where the authors used the multidimensional extension of Roth’s theorem established by W.
M. Schmidt, commonly referred to as the Schmidt Subspace Theorem [26]. As shown in [4],
this powerful criterion has many applications and yields among other things the transcendence
of irrational real numbers whose expansion in some integer base can be generated by a finite
automaton. The latter result was generalized in [7], where we give transcendence measures for
a large class of real numbers whose transcendence was proved in [4]. The key ingredient for
the proof is then the Quantitative Subspace Theorem [28], and we describe in [7] a general
method that allows us in principle to get transcendence measures for many real numbers that
are proved to be transcendental by an application of Roth’s or Schmidt’s theorem.

Besides expansions in integer bases, a classical way to represent a real number is by its
continued fraction expansion. Again by means of the Schmidt Subspace Theorem, new classes
of transcendental continued fractions were constructed in [1, 5, 6, 8, 16]. It is the purpose of the
present work to show how the Quantitative Subspace Theorem yields transcendence measures
for (most of) these transcendental continued fractions &, following the approach from [7]. These
measures allow us to locate £ in the classification of real numbers defined in 1932 by Mahler
[20] and recalled below.

For every integer d > 1 and every real number &, we denote by wq(§) the supremum of
the exponents w for which

0 < |P(E)| < H(P)™

has infinitely many solutions in integer polynomials P(X) of degree at most d. Here, H(P)
stands for the naive height of the polynomial P(X), that is, the maximum of the absolute values
of its coefficients. Further, we set w(¢) = limsup,_, . (wq(§)/d) and, according to Mahler [20],
we say that £ is an

S-number, if w(§) < oo;
T-number, if w(&) = oo and wq(€) < oo for any integer d > 1;

U-number, if w(§) = co and wq(§) = oo for some integer d > 1.
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In the sense of the Lebesgue measure, almost all numbers are S-numbers. Liouville numbers
are examples of U-numbers, but the existence of T-numbers remained an open problem during
nearly forty years, until it was confirmed by Schmidt, see Chapter 3 of [15] for references and
further results. The set of U-numbers can be further divided in countably many subclasses
according to the value of the smallest integer d for which wy(§) is infinite.

Definition 1.1. Let ¢ > 1 be an integer. A real number & is a Ug-number if and only if wy(§)
is infinite and wq(§) is finited =1,...,¢ — 1.

To give a flavour of the results proved in the present paper, we quote below a theorem
established in 1962 by A. Baker [13].

Theorem (A. Baker.) Consider a quasi-periodic continued fraction

€ =1[a0,a1, . Qnyg—1,0ngs- -y ngtho—1sAnys«--yCnythky—1s---)

N~ N~

Ao times A, times

where the notation implies that n; = n;_1+ X\;_1k;_1 and the \’s indicate the number of times
a block of partial quotients is repeated. Suppose that the sequences (a,)n>0 and (ky)n>o are
bounded by M. Set
L:limsup)\i/)\i,l, Ezhmlnf)\l/)\l,l
i——+oo 1— 400

If L is infinite and £ > 1, then & is a Us-number. Furthermore, there exists a (large) real number
C, depending only on M, such that if L is finite and ¢ > C, then £ is either an S-number or a
T-number.

A. Baker’s theorem shows that the above quasi-periodic continued fractions for which ¢
is sufficiently large cannot include Uz-numbers with d > 3, that is, there is a gap in the type
of transcendental numbers given by them. (J’ai recopié Baker!)

In Corollary 3.2 below, we obtain the same conclusion as Baker, but with the assumption
¢ > C replaced by the much weaker one ¢ > 1.

Besides the quasi-periodic continued fractions studied by Baker, our method also applies
to continued fractions involving repetitive patterns and symmetric patterns. An emblematic
example is given by the Thue—Morse continued fraction

gt = [1527271327171727"']7

whose sequence of partial quotients is the Thue—Morse infinite word on the alphabet {1,2}.
The fact that & is transcendental was established by M. Queffélec [23] quite recently. We
strengthen this result by proving that & is either an S-number or a T-number.

2. Transcendence measures for purely stammering continued fractions

Throughout the present text, we adopt the point of view from combinatorics on words.
Let A be a given set, not necessarily finite. The length of a word W on the alphabet A, that
is, the number of letters composing W, is denoted by |W|. For any positive integer ¢, we write
W* for the word W ... W ({ times repeated concatenation of the word W). We denote by W
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the infinite word obtained by concatenation of infinitely many copies of W. For any positive
rational number z, we denote by W? the word W /W’ where W’ is the prefix of W of length
[(x — |x])|W|]. Here, and in all what follows, |y| and [y| denote, respectively, the integer
part and the upper integer part of the real number y.

Let a = (ap)n>0 be an infinite word. For every positive integer n, let w, be the largest
rational number such that (ag...a,)"" is a prefix of a. Then, the initial critical exponent of
a, denoted by ice(a), is by definition equal to the supremum of the sequence (wy,)n>1. Clearly,
ice(a) is always at least equal to 1 and is infinite if a is a purely periodic sequence.

2.1. Main results

Let w > 1 be a real number. We say that a sequence a = (an)n>0 satisfies Condition (x)~
if a is not eventually periodic and if there exists an infinite sequence of finite words (V},)n>1
such that:

(i) for every integer n > 1, the word V,* is a prefix of the word a;
(ii) the sequence (|V,|)n>1 is (strictly) increasing;
(iii) the sequence (|Vp4+1|/|Va|)n>1 is bounded.
We establish the following result.

Theorem 2.1. Let a = (a¢)¢>0 be a sequence of positive integers satisfying Condition (x)
for some w > 1. Let (p;/qe)e>1 be the sequence of convergents to the real number

-~
w

g = [a07alaa25 .- ']7

and assume that the sequence (q;/Z)QI is bounded. If ice(a) is finite, then & is either an S-
number or a T-number; otherwise, £ is a Us-number. Moreover, if ice(a) is finite, then there
exists a constant c¢ independent of d such that

wq(€) < exp(c(log3d)? (loglog3d)?), (d >1). (2.1)

The fact that the real number £ is transcendental when the sequence a only satifies
assumptions (i) and (ii) in the definition of Condition ()~ is the main result of [1].

In the case where w > 2 in Theorem 2.1, we are actually able to derive a better transcen-
dence measure, namely to replace (2.1) by

wq(€) < exp(c(log3d)? (loglog3d)), (d>1). (2.2)

2.2. Palindromic continued fractions

Denote the mirror image of a ﬁnite_word W:=ai...ap by W :=a, ...a;. In particular,
W is a palindrome if and only if W = W.
We say that a sequence a = (ay),>0 satisfies Condition (*)% if a is not eventually

periodic and if there exist two sequences of finite words (Uy,),>1 and (V;,)p>1 such that:
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(i) For any n > 1, the word U, V,,U,, is a prefix of the word a;
(ii) The sequence (|V,,|/|Un|)n>1 is bounded;
(iii) The sequence (|Up+1|/|Un|)n>1 is bounded:;
)

(iv) The sequence (|Uy|)n>1 is increasing.

We establish the following analog of Theorem 2.1 where occurrences of repetitive patterns
arising from Condition (*)1? are replaced by those of symmetric patterns arising from Condition
(*)@r\n (C’est plutdt un cas particulier du Th. 2.1 obtenu a ’aide de la dém. du

Th. 4.6 de [3].)

Theorem 2.2.1. Let a = (a¢)¢>1 be a sequence of positive integers satisfying Condition
(*)@n\1 Let (pe/qe)e>1 be the sequence of convergents to the real number

5 = [ao,al,ag, . .],

and assume that the sequence (q;/g)gzl is bounded. If ice(a) is finite, then ¢ is either an
S-number or a T-number; otherwise, £ is a Us-number.

Theorem 2.2.2. Let a = (a¢)¢>0 be a non-periodic sequence of positive integers. Assume
that a has a positive palindromic density. Then, the real number & satisfies the transcendence
measure given in (2.2) and is thus either an S-number or a T-number.

2.3. Applications to Sturmian and morphic continued fractions

In this subsection, we point out some consequences of Theorem 2.1 to various classes of
continued fractions.

Let a be an irrational real number in (0,1). A sequence (ay),>0 on the alphabet {a,b} is
a Sturmian sequence of slope « is there exist a real number p such that

anp =aif |[(n+1)a+p|—|na+p| =0and a, =bif [(n+1)a+p|—|[na+p] =1, (n>0),
or

ap =aif [(n+1)a+p|—[na+p] =0and a, =bif [(n+1)a+p|—[na+p] =1, (n>0).

Theorem 2.3.1. Let a and b be two distinct positive integers. Let a = (ay)¢>0 be a Sturmian
sequence of slope « on the alphabet {a,b}. Then, the real number

5 = [a07a17a27 i ]

is a Us-number if and only if o has unbounded partial quotients. In the case where o has
bounded partial quotient, £ satisfies the transcendence measure given in (2.1) and is thus
either an S-number or a T-number.

Pour ne pas trop rallonger la sauce, on peut se contenter de renvoyer a Acta.
Math. pour les définitions des notions utilisées ci-dessous.

We refer the reader to [1] for the definitions of the notions occurring in the remaining
of this section. Since the initial critical exponent of a non-periodic fixed point of a recurrent
(resp. binary, linearly recurrent) morphism is finite, next statements follow straightforwardly
from Theorem 2.1.



Theorem 2.3.2. Let o0 be a morphism defined over a finite subset of positive integers. Let
a = (a¢)¢>0 be a non-periodic recurrent fixed point for o and

€ :=lap,a1,az2,...,a4...].

Then, ¢ satisfies the transcendence measure given in (2.1) and is thus either an S-number or
a T-number.

Corollary 2.3.3. Let a and b be two distinct positive integers. Let o be a binary morphism
defined over {a,b}. Let a = (as)¢>0 be a non-periodic fixed point for o and

g = [a03a17a2, RN ¢ Y/ ]
Then, ¢ satisfies the transcendence measure given in (2.1) and is thus either an S-number or
a T-number.

As a particular case of Corollary 2.3.3, a Thue—Morse continued fraction is either an
S-number or a T-number.

Theorem 2.3.4. Let a = (a¢)¢>o be a linearly recurrent sequence of positive integers. Then,
the real number

€ :=lag,a1,az,...,ag...]

satisfies the transcendence measure given in (2.1) and is thus either an S-number or a T-
number.

3. Transcendence measures for Maillet—Baker continued fractions

In this section, we are interested in a class of quasi-periodic continued fractions introduced
by Maillet [21] and studied by Baker [13, 14]. We consider a real number £ := [ag, a1, az, . . .|,
where a = (ap)n>0 is a non-eventually periodic sequence of positive integers satisfying the
following assumption:

There exists an increasing sequence of positive integers (ny)r>0, a sequence of positive
integers (A;)r>0, a finite sequence of positive integers by, bz .. ., by, such that for every positive
integer k, the sequence a begins with

aopay .- .An,—1 BBB, (31)

Ar times

where B := b1by...b,. It is understood here that

Qnp—rQng—rt1 - - - An—1 7 B. (3.2)

We establish the following generalization of Baker’s result.
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Theorem 3.1. Let§ := [agp, a1, az, .. .| be defined as above. Let (p;/qe)e>1 denote the sequence
of convergents to £ and assume that the sequence (qe}/ é) ¢>1 is bounded. Assume further that

A
liminf 2% > 0 (3.3)
k—oo Ny
and n
limsup —+ < +00. (3.4)
k—oo ng

Then, there exist a constant ¢ independent of d such that
wq(€) < exp(c(log3d)? (loglog 3d)?), (3.5)
for every positive integer d. In particular, ¢ is either an S-number or a I'-number.
The proof of this result also rely on the quantitative version of the Subspace Theorem

given in Section 5.
Let us remark that a Maillet—Baker continued fraction satisfying

. Ak
limsup — = +o0
k—oo Tk

corresponds to a Us-number for it is extremly well approximated by the quadratic numbers
ay = lag, a1, az, ..., an,,B™].

We note that such a situation cannot occur in Theorem 3.1 because of (3.4) and (3.2).

Corollary 3.2. Let us consider the quasi-periodic continued fraction

é-: [a()aal; ceesOng—1,0ngy v v oy Qngtrg—15Anyy oo oy Aoy —15 - - -y
N

~~ -~

Ao times A, times

where the notation implies that ny1 = ny + A7 and the A’s indicate the number of times a
block of partial quotients is repeated. Denote by (py/qn)n>0 the sequence of the convergents
to £. Assume that the sequences (q,l/n)
ultimately periodic, and that

n>0 and (ri)p>o are bounded, that (an)n,>0 is not

e A
lim inf 25 > 1.
k— oo k
If, moreover,
. Ak+1
lim sup < 400,
k—o0 k

then the real number £ is either an S-number or a T-number.

4. Auxiliary results
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For the reader convenience, we first recall some classical results from the theory of con-
tinued fractions, whose proofs can be found for example in the book of Perron [22].

Lemma 4.1. Let o = [ag,a1,0a2,...] and B = [bo,b1,be,...] be two real numbers. Assume
that there exists a positive integer ¢ such that a; = b; for any i« = 0,...,¢. We then have
oo — 6| < qL,_Q, where q; denotes the denominator of the (-th convergent to a.

Lemma 4.2. Let o = [ag, a1, az, .. .| be a real number with convergents (ps/qe)e>1. Then, for
any ¢ > 2, we have

qe—1

— =[0,ar,ar-1,...,a1].

qe
For positive integers ay, ..., as, denote by Ky(a1,...,ar) the denominator of the rational
number [0, aq, ..., ag]. It is commonly called a continuant.
Lemma 4.3. For any positive integers ai,...,ay; and any integer k with 1 < k < /¢ — 1, we
have
Kf(ala .- '7a€) = Ké(afa SRR al)

and

Ki(a1,...,ar) Ke—p(ags1, .- a0) < Ke(ag,...,ap)
<2Kg(ai,...,ar) Ke—g(akt1,- -, ae).

Lemma 4.4. Let (as)¢>1 be a sequence of positive integers at most equal to M. For any
positive integer £, we have

2 D/2 < Ky(ay,... a0) < (M + 1)~

We will also make use of the following three auxiliary results.

Lemma 4.5. Let a = [ag,a1,az,...] and 8 = [bg, b1,be,...] be two real numbers whose con-
vergents are respectively denoted by (pn/qn)n>1 and (ry,/Sp)n>1. Assume that both sequences
(q:/n)nzl and (s}/")nzl are bounded by a real number M. Assume that there exists a positive
integer ¢ such that a; = b; for any i = 0,...,¢ and agy1 # bey1. Then, there exists a positive

real number u, depending only on M, such that
1

la =8l = —.
a

If we assume moreover that the partial quotients of 3 are bounded by M, then there exists a

positive real number ¢, depending only on M, such that
c

o — 6] > —.
9

Proof. We follow the proof of Lemma 5 from [2]. The constants implicit in < and > below
depend only on M. Set o = [as41,a042,...] and ' = [byy1,beto,...]. Since apy1 # bog1, we
have

o/ = 3| >1—1[0,1, M +1] > M~ (4.1)
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Furthermore, our assumption on (q,l/ "Yn>1 and (s,l/ ")n>1 implies that
o <« M* and 3 < M“ (4.2)
The theory of continued fractions gives that

e +prq pe + pe1
a=———— and f=———,
qec + qe—1 QB+ qor1

since the first ¢-th partial quotients of o and 3 are assumed to be the same. We thus obtain

a’—ﬁ/

ped’ +pe—1 peB +pe-1 ‘
(qe + qo—1)(qeB' + qe—1)

Qo +qe—1 @B +q-1

N

Together with (4.1) and (4.2), this yields
la— B> M3 ¢, 2 (4.3)

We infer from Lemma 4.4 that g, > 2(¢=1)/2, Combined with (4.3), this gives the first assertion
of our lemma.
For the second assertion, we proceed as above, noticing that

1

"~ B >1-10,1,M+1] = 4.4
o =12 1= (0,1, M 1] = (4.4
and ) ) )
=5 | . (4.5)
qec! +qe—1| — 4M +2)
Since ' < M + 1, inequalities (4.4) and (4.5) yield the second assertion of the lemma. i

Lemma 4.6. Let ¢ be a real number and (p;/qe)e>1 be the sequence of convergents to £. If

the sequence (q;/e)gzl is bounded, then w1 (&) is finite, that is, £ is not a Liouville number.

Proof. Let A be a positive real number such that ¢ < A’ for every positive integer ¢. By

(-1
Lemma 4.4 we have ¢ > /2  and thus there exists a positive real number w > 1 such that

Qo1 < qzua

for every positive integer £. By the theory of continued fractions,

' Do 1 S 1
a|” 2qeqesr  2g) T

holds for every positive integer £. Since the best rational approximations to £ are in the sequence
(pe/qe)e>1, we get wy(§) < w. Consequently, £ is not a Liouville number. ]

We further state a classical Liouville inequality which can be found for instance in [15].
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Lemma 4.7. Let 3 be an algebraic number of degree d and P a non-constant integer poly-
nomial of degree r. Then, if P(3) # 0, we have

P(8)] > =

(r+1)2=1(d+ 1)"2H(P)*-H(B)"

If a and 8 are two non-zero distinct algebraic numbers of degree respectively equal to n and

m, then

2max{27"(n + 1)~(m=1/2 2=m(pp 4 1)~(n=1)/2}
(n+1)™/2(m + 1)/ H(a)™ H(B)" '

Our last lemma gives a bound for the height of a quotient of algebraic numbers.

lo — 6] >

Lemma 4.8. Let a be a real algebraic number of degree d > 2. Let x1,x2,x3, x4 be integers
with (z3,z4) # (0,0) and of absolute values at most A. Then, the height of the algebraic
number 3 = (z1a + x3) /(w30 + 24) is at most equal to 23(D) H (a)? A%,

Proof. Using classical inequalities between the naive height H, the Mahler measure M and
the logarithmic Weyl height h, we get that

H(ﬁ) < 2d M(ﬁ) < 2d edh(,@) < 2dedh(ac1a+x2) edh(x3a+ac4)
< QdM(acloz + xo) M(x30 + x4)
<2Ud + 1)H(x1a + o) H(z30 + x4)
< 23(d+1)H(a)2 A2d,
by Lemma A.4 from [15]. O

5. The quantitative Subspace Theorem

The proofs of our result rely on the following quantitative version of the Schmidt Subspace
Theorem. This statement is due to Evertse [17].

Theorem Ev. Let m > 2, H and d be positive integers. Let L1, ..., Ly, be linearly indepen-
dent (over Q) linear forms in m variables with algebraic coefficients. Assume that H(L;) < H
and that the number field generated by all the coefficients of these linear forms has degree at
most d. Let € be a real number with 0 < ¢ < 1. Then, the primitive integer vectors X in Z™
with H(x) > H and such that

m
[ 1Zix)| < [det(Ly, Lo, . .., Ly )| H(x) "¢
=1

lie in at most

cm.e (log4d) (loglog 4d) (5.1)

proper subspaces of Q™, where ¢, . is a constant which only depends on m and e.

6. Proof of Theorem 2.1



This section is devoted to the proof of Theorem 2.1. We first show how the initial critical
exponent allows us to control the approximation by quadratic numbers.

Lemma 6.1. Let a = (a¢)¢>1 be a non-periodic sequence of positive integers. Let
¢ :=[0,a1,as,...]

be a real number and denote by (p¢/qe)e>1 the sequence of convergents to §. Assume that the

sequence (qt}/é)ng is bounded and that ice(a) = +oo. Then £ is a Uz-number.

Proof. By assumption, the initial critical exponent of the sequence a is infinite. Consequently,
for every positive integer n, there exists a finite word V), such that a begins with the word
V. Set a,, = [0,V,>°] and denote by [,, the length of the word V;,. Since «,, is a root of the
polynomial

P(X) = q, 1 X?+ (@, — p1,—1)X — 1,5 (6.1)

its height is at most equal to g;,. The first nl,, partial quotients of £ and «,, being the same,
we infer from Lemmas 4.1 and 4.3 that

1€ — an| < q,;li < q;j” < H(o,) 72, (6.2)

Since a is a non-periodic sequence, the set {a,, m > 1} is infinite, and (6.2) implies that
wa(€) = +00. By Lemma 4.6, this shows that £ is a Uz-number. 0

Next lemma is essentially outlined at the end of [10]. (Est-ce bien vrai?)

Lemma 6.2. Let a = (as)¢>1 be a sequence of positive integers satisfying Condition <*)£ for
some w > 1. Let (p¢/qe)e>1 be the sequence of convergents to the real number

5 = [0,@1,@2, .. ]

Assume that the sequence (qé/e)gzl is bounded and that ice(a) is finite. Then, the exponent
wo (&) is finite.

Proof. Assume that the sequence of finite words (V},),>1 and the real number w arising from
Condition (x)~ are fixed. Let M be a positive integer such that ice(a) < M and g, < MY for
£ > 1. Denote by l,, the length of the word V,, for n > 1.

As in the proof of Lemma 6.1, we set «,, = [0, V,>°] and note that «,, is a quadratic number

whose height is at most ¢;,,. Since the sequence (ql}/ g) ¢>1 is bounded and the first |wl, | partial
quotients of £ and «,, are the same, we infer from Lemmas 4.1 and 4.3 that

‘f - O‘n| < quflnj < qulziéa (6'3)

for some positive real number 9.
On the other hand, since ice(a) < M, the numbers «,, and £ cannot have the same first
M1, partial quotients. The same observation applies for «,, and a,+1. Since the sequence

(ql} / e) ¢>1 is bounded by M, we infer from Lemmas 4.3 and 4.5 that there exists a positive real
number A, depending only on M, such that

€ — an| > ¢, (6.4)
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and
lom+1 — Q| > qu‘. (6.5)

Extracting if needed a subsequence of the sequence (V},),>1, we can assume that

Qlyiq > max{ (qun)l/(zw),q2 } (6.6)

In

for every positive integer n. We also observe that assertion (iii) in Condition (*)~ and Lemma
4.3 ensure the existence of a positive integer C' such that

ql2n < Q41 < qlCT:a (67)

for every positive integer n. Combining (6.3) for «,,41 with (6.5) and (6.6), we get that 2|§ —
Qpt1] is at most |ay, — ayr1] and the triangle inequality then yields

1
1§ —an| > §|Oén+1 — Q. (6.8)

Furthermore, setting ¢ = 1/(4 - 3°/2), Lemma 4.7 and (6.8) give
€ — an| = cH(an) > H(ant1) 2 2 cqp 2 H(an41) >

We then infer from (6.3) and (6.7) that

5/2C

6/2
H(ani1) = 2q)% > ' /2q)

For n large enough, say n > ng, we thus obtain
¢ < H(awm) < i, (6.9)

Set j := [log(3C/¢)/log2]. Using Inequality (6.7), this leads to

5/3C

5/3C ' +1
0> < H(on) < a1, < 4,2 < H(omy)) < aqu,.,, <df. < H(an)*@ /2.

ntj

We also deduce from (6.4) and (6.9) that

1
€ — an| > W,

for every integer n > ng.

Set o = 3AC/8, § = 3C7H1/§ and a], = auo4(m-1); for n > 1. The situation can be
summarized as follows. We have shown the existence of a sequence of quadratic irrational
numbers (o, )n>1 satisfying

(i) H(ap)™7 <€ —ay| < H(ay,) 27
(i) H(ay) < H(alyy) < H(ay,)".
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At this point, we are ready to prove that ws() is finite. Let us consider a quadratic
irrational number a whose height is large enough. More precisely, we will assume that

H(a) > (cH(a})?) 12

/
n’

If o belongs to the set {a,, n > 1}, we simply use (i) to get that

|€ —a| > H(a)™°. (6.10)

/

Let us now assume that o does not belong to the set {a/,,

integer n > 1 such that

n > 1}. Then, there exists a unique
H(d,_,) < H()Y? < H(d). (6.11)
In particular, Inequalities (ii) show that
H(al) < &P H(a)?/°. (6.12)
Since by assumption « and «/, denote two distinct quadratic numbers, Lemma 4.7 implies
o — ol,| > 2cH ()2 H(cl,) ™2 (6.13)
We thus infer from (6.11) and (i) that
o —an| > 2[6 — afy],

hence,

1
6ol = || — ol — lo— | | > 3 o]
We now infer from (6.12) and (6.13) that
|£ o al > 01729/6H(a)72749/6‘

Together with (6.10), the latter inequality shows that ws(€) is finite, concluding the proof. O

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We keep the notation of Theorem 2.1. Let a = (a¢)¢>1 be a sequence
of positive integers satisfying Condition (*)~ for some w > 1. Let (p¢/q¢)e>1 denote the
sequence of convergents to the real number

é = [0,0,1,(12, .. ]

Assume that the sequence (qé/e)gzl is bounded by some constant A. By Lemma 4.6, w1 (§) is
finite. Thus, if ice(a) is infinite, then Lemma 6.1 implies that £ is a Us-number, concluding the
proof in that case.

From now on, we assume that ice(a) is finite. We first observe that wo (&) is finite, in virtue
of Lemma 6.2. Consequently, we thus only have to study the approximations to £ by algebraic
numbers of degree at least three. Let d > 3 be an integer. Let a be an algebraic number of
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degree d. At several places in the proof below, it is convenient to assume that the height of «
is sufficiently large. Let x be a positive real number such that

|€ —a| < H(a)™X.
Our aim is to find an upper bound for y in terms of d. More precisely, we have to prove that
x < exp(c (log 3d)* (loglog 3d)?) (6.14)

for some constant ¢ which does not depend on d.

Extracting if necessary a subsequence of (V},),>1, we can assume that there exists a
constant C such that

(iii")  2|Vy| < |[Vpt1| < C|V4|, for every positive integer n.

Set s, = |V,,| for every positive integer n. Let k be the unique positive integer such that
an S H(Oé) < qS,¢+1' (615)

Denote by M; the largest integer such that ¢X¥ > qfws o | and observe that
K P 1

€ —al <qpm,...] (6.16)
for every 1 < h < M,. By definition of M;, we have
2
G < Dwspary 1) (6.16a)

Given a positive integer ¢, we have by assumption that ¢, < A¢, while Lemma, 4.4 ensures that
qe > (V/2)'"1. We thus get from (6.16a) that

(\/ﬁ)x(sn—l) S A2w85+M1+1

and, using (iii’), we obtain
(VB < grus0H

Consequently, Inequality (6.14) holds if we have
M; < co(log 3d)?(log log 3d)?

for some constant ¢y which does not depend on d.
We will argue by contradiction. From now on, we assume that

M > c;1(log 3d)?(loglog 3d)?, (6.17)

for some constant ¢y, and we will derive a contradiction if ¢; is sufficiently large.

For every integer n > 1, set
an = [0,V]

13



and observe as previously that «,, is a root of the quadratic polynomial
Po(X) = qs,-1X* + (g5, — Ps,—1)X — Ds,,-
Rolle’s Theorem and Lemma 4.1 give that
|Pa()] = [Pa(€) = Pulan)| <345, 1€ — anl <345, 4], ;s (1), (6.18)

since the condition (i) implies that the first |ws,,| partial quotients of £ and «, are the same.
Furthermore, we infer from the theory of continued fractions that

G5, € = Ps, | < a3} and |qs,—1& — ps, 1] < g7 (6.19)
Using again Rolle’s Theorem, Inequalities (6.16) and (6.18) imply that
[Pt (@)] <[Purn(E)] + 3054 1€ = <605,y s, s (L<h< M), (6.20)
Inequalities (6.16) and (6.19) ensure that, for every 1 < h < My,

|gsin® = Ps,inl| < 2‘]‘;1% and  [qs, ,p—10 — Ps, . p—1| < Qq;ih. (6.21)

We are now going to apply Theorem Ev to the following system of linear forms:

Li(X1, Xo, X3, X4) =0 Xo + a(X1 — X4) — X3,
Lo(Xy, Xo, X35, Xy) =aX; — X3,

L3(X1, Xa, X3, Xy) =X,

Li(X1, X9, X3, X4) =Xo.

Observe first that these linear forms are independent and with algebraic coefficients. Set
N1 = {seqn, 1 < h < M}and Pr = {Pn = (Gn,qn 1,Pn,Pn1), 7 €N1}. Let n be in
Ni. Evaluating these linear forms at the integer point p,, we infer from Inequalities (6.20)
and (6.21) that

[T 1Ziea)l <1207 472, (6.22)
1<i<4

01
Using again that v2 < g, < A’ holds for every non-negative integer ¢, we get that

q|wn| > q1+277

for some positive real number 7, depending only on w and on A. Thus, if the height of « is
large enough, then s, is itself sufficiently large to guarantee that

H |L;(prn)| < |det(L1, Lo, L3, L4)|q,".
1<i<4

On the other hand, all elements of the set P; are primitive (since p,, and g, are always
relatively prime) and with height larger than the height of a. Thus, H(p,) > H(L;) for

14



i=1,...,4 and n € N;j. Furthermore, [Q(L;) : Q] < d for ¢ = 1,...,4. We can thus apply
Theorem Ev with m =4 and € = 7. Let T3 be the upper bound given by (5.1) for the number

of exceptional subspaces. Set
M2 = LMI/TIJ

Since 1 does not depend on the constant c¢;, Inequality (6.17) ensures the existence of a constant
¢ such that
My > co(log 3d)?(log log 3d). (6.24)

By the pigeonhole principle, there exists a proper subspace of Q* containing at least Ms
points of P;. Thus, there exist a non-zero integer vector x = (z1,x2,x3,74) and a set of
integers N> C N7 with cardinality r > M such that

T1qn + T2qn—1 + T3P + T4pn_1 = 0, (6.25)
for every n € Ns. Let [; < ly < ... < [, denote the elements of N5 once ordered.

We are now going to make the following assumption that will be justified thereafter.

Assumption A: There exist three integers 1 < a < b < ¢ < [r/4] such that the vectors
pi,; Py, and p;, are linearly independent.

This makes possible the choice of x = p;, A p;, A pi, in Equality (6.25). Here, A denotes
the vector product in R*. An easy computation shows that with this choice of x we have

hy = max{|z1], |2|, [z3], |za]} < 12¢; . (6.26)

Let us remark now that (z2,x4) # (0,0) since the vectors (¢n,, Pn,) and (¢n,, Pn,) are not
collinear. Furthermore, a being irrational, the real number

T+ Tr3a
To + a0

is well-defined. It then follows from Lemma 4.8 and Inequality (6.26) that
H(B) < ¢)" H(a)?. (6.26a)
Since l. > s, we infer from (6.15) and (6.26a) that
H(B) < ¢, (6.27)
if the height of a has been chosen large enough. Following (6.25), we have

T1 + T30 T1 + T3Pn/qn

Ty + T4 To + TaPn—1/qn-1|

qn

for every n € N,. Using (6.19), we thus obtain

hi

¢ |2 + zaaf?
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Then, Inequality (6.26) and Liouville’s inequality given in Lemma 4.7 give that

n

'ﬁ_ dn—1

— 6(d+1 _
< WP H() < g Hia) g
n

Once again, the height of a can be chosen large enough so that

n

Iﬂ_M
q

n

< ql7c(d+1)q’2 (6.27a)

for every n € M. Since by assumption ¢ < |r/4], lj41 > 2l; and r > M, we deduce from
(6.24) that

a8 — qi;—1] < ql;I/Q, (6.28)

for every j with |r/2] < j <r. Set Ny = {n € N2, n >1|,/2)}. Denote by Mj the cardinality
of this set and observe that M} > My /2.

We are now going to apply again Theorem Ev. Let us consider the following new system
of linear forms:

Lll(YlaYéaY:i) = ﬁYl - YV2’ L/2(Y13Y25YE’:) = OéYl - YE%, L/S(YlaYZaY3) = Yl-

Observe that these linear forms have algebraic coefficients and are linearly independent. Fur-
thermore, we have det(L}, L5, L5) = 1 and [Q(L}) : Q] < d for i = 1,2, 3. Let us also remark
that by Inequality (6.27), we have H(L}) < max{H(f), H(a)} < gy, for i = 1,2,3 and every
n € Nj.

Let n be in NV}. Evaluating these linear forms at the primitive integer point (¢n, ¢n—1,Pn),
we infer from Inequalities (6.19) and (6.28) that

H |L;(qn7Qn—lapn)| < q;1/2.
1<i<3

We can thus apply Theorem Ev with ¢ = 1/2 and m = 3. Let us denote by 75 the upper bound
given in (5.1) for the number of exceptional subspaces. Set Mj := |T>/M}]. Then, Inequality
(6.24) implies the existence of a constant c3 such that

Ms > c3logd. (6.29)

By the pigeonhole principle, there exists a proper subspace of Q2 which contains at least
M3 points lying in the set Po := {p,, n € Nj}. Thus, there exist a non-zero integer vector
y = (y1,92,y3) and a set of integers N3 C N} with cardinality s > M3, and such that

Y1qn + Y2gn—1 + Yspn =0, (6.30)

for every n € N3. Let 1 < mj < mg < ... < ms denote the elements of N3 once ordered.

Observe that pi = (¢m,, @mi—1,Pm,) and Py = (Gmas Gma—1,Pm,) are not collinear since
mo > my > 1. This make possible the choice of y = p) A p, in Equality (6.30). Here and in
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the rest of the proof, A denote the vector product in R3. Then, an easy computation shows
that

ho = max{|y1], |y2|, |ys|} < @, (6.31)

For every n € N3, we can rewrite Equality (6.30) as

y1 +y28 + ysa + y2 <qn_1 —ﬁ> + y3 (Zﬁ—a> =0.

In particular, for n = mg, Inequalities (6.19), (6.28) and (6.31) give
ly1 + y28 + ysal < QCI%@qu_ni’ﬂ- (6.32)
On the other hand, we have

lyszaa® + (z2ys + T3y2 + Tay1)a + (z1y2 + y122) |
ly1 + Y28 + ysa| = :
|z + x4

Thus, if y1 + Y20 + ysa # 0, we infer from Liouville’s inequality given in Lemma 4.7 that
1+ 28+ ysal > hy hy T H(a) 7%
Using (6.15), (6.26), (6.31) and the fact that my > I, > s,11, the previous inequality gives
ly1 + 128 + ysal > gt (6.33)

By (6.29), we have s > M3z > c3logd and since by assumption m; > 2m;_;, we can secure
that gn,, > qz,fg and

1+ Y28 + ysal > a2 amt
if c3 is chosen large enough. But, then, (6.32) contradicts (6.33). Thereby, we obtain

y1 + Y28 + ysa = 0. (6.34)

In order to obtain the desired contradiction, we need another equation linking o and (.
Actually, it is sufficient to slightly modify the previous system of linear forms. Indeed, consider
the following linear forms:

LY(Z1,25,Z3) = BZ1 — Zao, Ly(Z1,Z2,Z3) = aZy — Z3, L4(Z1,Z2,Z3) = Z.

We still have that det(L), L5, L) = 1, [Q(L)) : Q] < d for ¢ = 1,2,3, and H(L,) <
max{H(8), H(a)} < ¢, for i = 1,2,3 and every n € Nj. Given an integer n € N and
evaluating these linear forms at the integer point (¢, ¢n—1,Pn—1), we infer from (6.19) and
(6.28) that

IT 12/ (s an-1.pn1)l < g, /2.
1<i<3

We can apply Theorem Ev exactly as before and we will thus omit some details in what follows.
The pigeon principle ensures the existence of a proper subspace of Q? containing at least M3
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points of P). Consequently, there exist a non-zero integer vector z = (z1, z2,23) and a set
Ny C N with cardinality ¢ > Ms3, such that

21qn + 22qn—1 + 23pn—1 = 0,

for every n € Ny. Let 1 <mnj; <mngy <...< n; denote the elements of N, once ordered.
Then, Inequality (6.31) can be replaced by

max{|z1l, [z, [2]} < 4,

while (6.32) becomes

Z1 _
— 4+ 20+ 230 < 2q32qnt3/2.

g

Using Lemma 4.7, we argue as above to show that

% + 20+ 2300 =0 (6.35)

if ¢3 is sufficiently large.

Our last step is to show that Equalities (6.34) and (6.35) provide a contradiction. Indeed,
since « is irrational, y, is not zero and these equalities imply

(zza+ z2)(ysa + y1) = ya221. (6.36)

Now, if ysz3 = 0, then (6.34) and (6.35) imply that g is rational which gives a contradiction
in virtue of (6.27) and (6.28). Consequently, we can assume that yszz # 0. But, then we
obtain from (6.36) that a is a quadratic irrational. This contradicts the fact that « is an
algebraic number of degree at least three. We have proved that the constant c3 cannot be
taken arbitrarily large. Thus, the constant ¢; in (6.17) is bounded, as well. This ends the proof
in the case where Assumption A is satisfied.

We turn now to the case where Assumption A is not satisfied. Since some steps are very
close from the previous exposition, we just outline the proof.

We come back to the place where Assumption A has been introduced. Set ./\/’2” ={n €
Nz, 18] <1 < ljya)} and P, = {pn, n € N, }. Since A is not satisfied, all points lying
in 77; belong to the subspace generated by p;, and p;,. Indeed, these vectors are clearly not
collinear. In particular, if we set

Y1 a, Qs
vo | = @1 | A @1 |,
yé by, b1,

we obtain that (v}, v5,v4) is a non-zero integer vector such that

Y1qn + Yadn-1 + Yspn =0
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for every integer n € ./\f2”. Moreover, an easy computation shows that

1 =max{|yj], 1 <j <3} <q

(6.36)
Then, we set

f_ Y1 tusa
g = M,
Y2
Note that [ is well-defined since it is easily checked that y5 # 0. Using now (6.36) and Lemma
4.8, we obtain

(6.37)
On the other hand, we can chose the height of a large enough to ensure that

|Qn5 - Qn—1| < q;l/Q

Y

for every n € N2H. Since ./\f2” is a set with cardinality M; > M5/8, we infer from lemma 4.7
and (6.37) that

21+ 258+ za = 0.

(6.38)
Setting
2y a1, a,
2 | = a1 | AN @1

Y

23 by —1 Piy—1
the non-zero integer vector (21, 25, 25) is such that

leQn + Zé‘]n—l + Zépn—l =0,
for every n € ./\/2”. As previously, this leads to

!/
% + 25 + zha = 0. (6.39)

We then obtain a contradiction using (6.38) and (6.39), exactly as in the case where Assumption
A is satisfied. This concludes the proof of the theorem.

|

7. Proof of Theorem 3.1
This section is devoted to the proof of Theorem 3.1.

Proof of Theorem 3.1. We keep the notation of Theorem 3.1 and denote by A an upper
bound for the sequence (ql}/e)gzl.

Let us consider the quadratic real number 8 whose continued fraction expansion is purely
periodic with period B = b, b, 1,..., by, that is,

ﬁZ: [brabr—la---;blabrabr—la---abla---] = [F,F,...,F ]

g oo ofe
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Let (r¢/s¢)e>1 denote the sequence of convergents to 5. For every positive integer k, set

/ /
Py = ppytrag, Qk = Quptrags Pr = Prgtran—15 @k = Qup+ra,—1 and Sk := Spx,.

Taking if necessary a subsequence of the sequence (ny)r>1, we can assume that there
exists a positive integer C' such that

Q% < Qr+1 < QF, (7.1)

for every positive integer k.
We also infer from (i) and (ii) that there exists a positive real number v such that

v<Ap/ni <1/v, (7.2)

for every positive integer k.
On the one hand, the theory of continued fractions gives

1 1
|Qré — Pl < Or and Q1€ — P < =, (7.3)
k k

while, on the other hand, the assumption made on the sequence a implies that

P
“* —0,a1,-+,an,—1,B,B,...,B|
Ak
By Lemma 4.2, we obtain
/ —_ [R—
Q—Z =1[0,B,B,...,B,an, 1, -,a1
Ak

and, following Lemma 4.1, we get that

Q%

Q1.8 — Qx| < 5 (7.4)

Furthermore, we infer from (3.2) that a,, 1...an, » # B. Thus, Lemmas 4.3 and 4.5 imply

that 0
k %
- = = 7.5
‘ AR )

where cg is a positive constant depending only on S.

Since the sequence (q;/é)gzl is bounded, we infer from Lemma 4.6 that wy(§) is finite. In
the sequel, we thus only have to deal with the approximations of £ by algebraic numbers of
degree at least equal to two. Let d > 2 be an integer. Let o be an algebraic number of degree d,
the height of which will be chosen large enough in the sequel. Let x be a positive real number
such that

£ —al < H(a)™X.
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Our aim is to find an upper bound for x as a function of d. More precisely, we have to prove
that
x < exp(c (log 3d)* (loglog 3d)?) (7.6)

for some constant ¢ which does not depend on d.

Let us denote by k¢ the unique positive integer such that

@Qro < H(a) < Qrot1, (7.7)

and by M, the largest integer such that Q) > Q7 s, - Consequently,

€ —al < Qplin (7.8)
holds for every integer h = 1,..., M;. If
M; < co(log 3d)?(loglog 3d)?

holds for some constant ¢y which does not depend on d, then Inequality (7.6) also holds, as
shown by an easy computation using (7.1) (7.7) and (7.8).
We will argue by contradiction. From now on, we assume that

M > ¢;(log 3d)?(loglog 3d)?, (7.9)
where ¢; denotes a constant which could be chosen arbitrarily large in the sequel, and we aim

at deriving a contradiction.

It follows from Inequalities (7.3) and (7.8) that, for every integer h =1,..., M,

2
/ /
ko+h

|Qro+n0 — Prgtn| < (7.10)

Qk0+h

We are now going to apply Theorem Ev to the following system of linear forms:

L1(X1, X2, X3, X4) =aX; — X3,
Lz(Xl,Xz,X:s, 4) =aXy — Xy,
L3(X1, Xo, X3, Xy) =6X1 — Xo,
Li(X1, X2, X3, X4) =X1.

We first observe that these linear forms are linearly independent over Q and all have algebraic
coefficients. Set Ny = {ko +h, 1 <h <M} and P; = {pr = (Qk, Q%, Pr, P.), k € N1}. Let
k € N;. Evaluating these linear forms at the integer point pg, Inequalities (7.4) and (7.10)
give

4
IT 1zl < o (7.11)
1<i<4 k
By assumption, Qi < A™ 1" while Lemma 4.4 implies that S; > (f )™ ~1 We then infer

from Inequality (7.2) that
Sk > QY (7.12)
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for some positive real number 7, depending only on r, v and A. If the height of « is large
enough, we get from (7.11) and (7.12) that

H |L7/(pk)| < |det(L17L27L37L4)| Q]:n
1<i<4

On the other hand, every element in P; is a primitive vector (since Py and @, are relatively
prime) whose height is at least equal to the height of . Consequently, H(py) > H(L;) for
i = 1,...,4 and k € Ni. Furthermore, the degree of the number field generated by the
coefficients of our linear forms is at most 2d. We can thus apply Theorem Ev with m = 4 and
e = 1. Let T} be the upper bound given in (5.1) for the number of exceptional subspaces. Set

M2 = |_M1/T1J

Since 7 does not depend on the choice of the constant ¢1, Inequality (7.9) ensures the existence
of a constant co which does not depend on d and such that

My > c3(log 3d)?(log log 3d). (7.13)

Moreover, the constant co could be chosen arbitrarily large in the sequel. By the pigeonhole
principle, there exists a proper subspace of Q* containing at least My points of P;. That is,
there exist a non-zero integer vector x = (z1,z2,23,24) and a set of integers N> C N; with
cardinality s > My such that

1Qk + 22Q), + 3P, + x4 P =0, (7.14)
for every k € Ns. Let [; < Iy < ... < ls denote the elements of N> once ordered.

We are now going to make the following assumption that will be justified thereafter.

Assumption A: we assume that there exist three integers 1 < a < b < ¢ < |s/4] such
that the vectors p;,, p;, and p;, are linearly independent. This makes possible the choice of
x = p;, Apy, APy, in Equality (6.25). Here, A denotes the vector product in R*. As shown an
easy computation, this choice of x guarantee that

hy = max{|z1|, |x2]|, |z3|, |x4]} < 12@?6. (7.15)
It thus follows from Inequality (7.14) that

e, 1207
|r20Q) + 1Qk + 12Q), + 3P| = |24(Qlx — P})| < 2] < e

Or O (7.16)

for every k € N>.

Our next step consists in applying again Theorem Ev to the following new system of linear

forms: )
L1 (X4, X2, X3) =aX;1 — X3,

Ly(X1, Xo, X3) =11 X1 + (40 + 12) X2 + 23X3,
Lé(Xl,XQ,Xg) =X;.
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We first observe that these linear forms have algebraic coefficients. We also deduce from Equal-
ity (7.14) that (x2,z4) # (0,0). Consequently, z4cx + 2 # 0, since « is irrational. We then
deduce that our linear forms are linearly independent. Furthermore, the number field generated
by all the coefficients of these linear forms has degree d, and we have

det(L}, Ly, L}) = x4 + To.
We also infer from Lemma 4.7, (7.15) and (7.16) that
| det(L}, Lb, Ly)| = |wgo + 3| > Q%% (7.17)
if H(«) is large enough.

Since by assumption ¢ < |s/4] and s > M,, we infer from (7.1) and (7.13) that the
constant co can be chosen large enough so that

VP> 12Q, (7.18)

for every |s/2| < k < s. For the same reason, we can assume that H(L}) < Q, for i =1,2,3
and every [s/2] <k <s.Set Nj = {n € Na, n >1|52)}. Let us denote by M; the cardinality
of this set and observe that

M > Msy/2. (7.19)

Given an integer k € N and evaluating these linear forms at the primitive integer point
P, = (Qk, Q), Pr), we infer from Inequalities (7.16), (7.17) and (7.18) that

IT 124Qk, Q, POl < | det(L}, Ly, Ly)| Qi /2.

1<i<3

We can thus apply Theorem Ev with ¢ = 1/2 and m = 3. Let us denote by 7% the upper bound
given in (5.1) for the number of exceptional subspaces. Set M3 := |1%/M3]. Then, Inequalities
(7.13) and (7.19) imply the existence of a constant cz such that

Mj3 > c3logd. (720)

Furthermore, the constant c3 can be chosen arbitrarily large. By the pigeonhole principle,
there exists a proper subspace of Q> which contains at least M3 points lying in the set Py :=
{p}., k € N}}. There thus exist a non-zero integer vector y = (y1, y2,y3) and a set of integers
N3 C N3 of cardinality ¢ > M3, and such that

Y1Qk + y2Q), + ysPr =0, (7.21)

for every k € N3. Let 1 <m; < my < ... < my denote the elements of N3 once ordered.

Observe that p| and p} are not collinear. This make possible the choice of y = p’ A pj in
Equality (7.21). Here and in the rest of the proof, A denote the vector product in R3. Then,
an easy computation shows that

hy = max{|yl, lyal, |ys|} < Q7. (7.22)
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For every k € N3, we can rewrite Equality (7.21) as

Y1+ 28 +ysa+y2 (% —ﬂ> + Y3 (i —oz) = 0. (7.23)
Qrk Qrk

Choosing k = m;, we can argue as in Theorem 2.1 and use (7.20) to deduce from the Liouville
inequality given in Lemma 4.7 that

Y1+ Y28+ ysa = 0. (7.24)
As a particular instance of Equality (7.23), we thus obtain

(g =8) = (G o).

Remark now that, on the one hand, we have

P, |ys| |ys| 1 1
N i < < < P, 7.25
yd (th a) %’Lt gnt_lsrznt th,1 S’?)’Lt ( )
while on the other hand, Inequality (7.5) shows that
/
m C3
L — > —- 7.26

Indeed, since a is irrational, we infer from (7.24) that y» # 0. The constant cg depending only
on 3, Inequality (7.25) and (7.26) provides us with a contradiction as soon as c3 is chosen large
enough. This ends the proof in the case where Assumption A is satisfied.

We turn now to outline the case where this assumption is not satisfied. We come back to
the place where Assumption A has been introduced. Set ./\f2” = {n € Na, lryg) < <1/}
and 73; ={pn, n € ./\/'2”} Since Assumption A is not satisfied, all points lying in 73; belong
to the vectorial plan generated by p;, and p;,. Indeed, these vectors are clearly not collinear.
In particular, if we set

y'1 qi, qi,
vy | = @tu=1 | A | @1a=1 |,
s Dl Dls

we obtain that (v}, v5,v4) is a non-zero integer vector such that
YiQr + 15Q), + ysPr =0
for every integer k € ./\/2”. Moreover, an easy computation shows that
1 =max{|yj], 1 <j <3} <Qp.

We are now in the same situation as in (7.22). We can thus argue exactely as previously to
conclude the proof of the theorem. O
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