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Abstract. We discuss the following question: How close to each other
can be two distinct roots of an integer polynomial ? We summarize what
is presently known on this and related problems, and we establish several
new results on root separation of monic, integer polynomials.

1. Introduction

It is easy to construct integer polynomials having two distinct roots arbitrarily close
to each other. Since an usual measure for the size of an integer polynomial P (X) is given
by its height H(P ), defined as the maximal of the absolute values of its coefficients, it is
natural to compare the distance between two distinct roots of P (X) with H(P ). The first
result in this direction was proved by Mahler [12], who established that

|α − β| ≫ H(P )−d+1, (1.1)

for any distinct roots α and β of the integer polynomial P (X) of degree d. Here, as
well as throughout the present text, all the constants implied by ≪ and ≫ are explicitely
computable, and depend at most on the degree d of the polynomials involved. Furthermore,
we write f ≍ g when both f ≪ g and f ≫ g hold.

Since the publication of Mahler’s paper, the numerical constant implied in (1.1) was
improved by several authors, but the exponent of H(P ) remained unchanged. In 1982,
Mignotte [13] exhibited the family of integer polynomials Xd − 2(aX − 1)2, for arbitrary
integers d ≥ 3 and a ≥ 2, which have two roots separated by ≪ a−(d+2)/2. This shows that
the exponent −d + 1 in (1.1) cannot be replaced by a quantity greater than −(d + 2)/4.
However, this is not sharp enough to give a satisfactory answer to the following question.

Problem. How close to each other can be two distinct roots of an integer polynomial ?

Three recent papers [5, 9, 17] shed new light on this fascinating problem and it is
the purpose of this text, firstly, to summarize what is presently known on this and re-
lated questions and, secondly, to establish several new results. By ‘related questions’, we
mean that we may as well restrict our attention to irreducible polynomials or to monic
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(irreducible) polynomials, as explicitly asked in Problem 52 from [4]. Also, we consider
clusters of more than two roots close to each other.

Throughout, by polynomial, we always mean ‘integer polynomial’. The present paper
is organized as follows. In Section 2, we introduce the various quantities we are studying
and treat the easy case of quadratic polynomials. Then, we gather in Sections 3 and 4
the results on polynomials and on monic polynomials, respectively. The main new point
concerns root separation of cubic, monic polynomials. Quite surprisingly, this problem is
strongly related to the Hall conjecture on small values of x3 − y2, hence, in particular,
to the abc-conjecture. In Section 5, we exhibit several explicit families of polynomials
that allow us to establish some of our statements. The remaining proofs are postponed to
Sections 6 and 7.

2. Preliminaries

Throughout, we denote the minimal distance between two distinct roots of the integer
polynomial P (X) of degree d and distinct roots α1, . . . , αd by

sep(P ) := min
{

|αi − αj | : 1 ≤ i < j ≤ d
}

,

With this notation, (1.1) can be rewritten as

sep(P ) ≫ H(P )−d+1.

The discriminant ∆(P ) of P (X) is defined by

∆(P ) = |ad|2d−2
∏

1≤i<j≤d

(αi − αj)
2,

where ad is the leading coefficient of P (X). Recall that ∆(P ) is a rational integer and is
nonzero if, and only if, P (X) has no multiple roots. In the latter case, we have the sharper
estimate

sep(P ) ≫ |∆(P )|1/2 H(P )−d+1, (2.1)

established e.g. in [14]. In some cases, this estimate is sharp: Consider the cubic poly-
nomials Pa(X) = X3 − (aX − 1)2, where a is a large positive integer, and observe that
sep(Pa) ≪ a−5/2, while the right-hand side of (2.1) gives sep(Pa) ≫ a3/2 × a−2(3−1) =
a−5/2, since ∆(Pa) = 4a3 − 27.

Furthermore, (1.1) is a particular case of the lower bound

∏

1≤i<j≤k

|αi − αj| ≫ H(P )−d+1, (2.2)

valid for any integer polynomial P (X) of degree d having at least k ≥ 2 distinct roots
α1, . . . , αk.

To discuss the sharpness of (1.1) and (2.2), it is convenient to introduce the following
quantities.
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Definition 1. Let k and d be integers with 2 ≤ k ≤ d. We denote by E(d, k), respectively
Eirr(d, k), the infimum of the real numbers δ for which

∏

1≤i<j≤k

|αi − αj | ≥ H(P )−δ

holds for every integer polynomial P (X), respectively irreducible integer polynomial P (X),
of degree d and sufficiently large height, with distinct roots α1, . . . , αd. [In other words,
E(d, k) is the supremum of the exponents δ for which the reverse inequality

∏

1≤i<j≤k

|αi − αj | ≤ H(P )−δ

has infinitely many solutions in integer polynomials P (X) of degree d.] We further use the
notation E∗(d, k), respectively E∗

irr(d, k), when we restrict our attention to monic integer
polynomials, respectively monic integer irreducible polynomials. To shorten the notation,
we set

e(d) = E(d, 2) and eirr(d) = Eirr(d, 2),

and
e∗(d) = E∗(d, 2) and e∗irr(d) = E∗

irr(d, 2).

In Definition 1 we consider only polynomials with distinct roots. We can remove this
restriction (and assume only that α1, . . . , αk are distinct) without changing the values of
e(d), . . . since, in view of Gelfond’s Lemma (see Lemma A.3 in [4]), we have H(PQ) ≍
H(P ) · H(Q) for every non-zero integer polynomials P (X) and Q(X).

Clearly, it follows from (2.2) that

Eirr(d, k) ≤ E(d, k) ≤ d − 1 and E∗
irr(d, k) ≤ E∗(d, k) ≤ E(d, k),

for any d, k with 2 ≤ k ≤ d.
Not surprisingly, to find lower bounds for E(d, k) is much easier than to find lower

bounds for Eirr(d, k). The study of E∗
irr(d, k) and of E∗(d, k) seems to be the hardest.

In particular, it is not clear whether (2.2) can be improved for monic polynomials: This
seems however to be plausible since there remain only d free coefficients.

We begin our study with the case of quadratic polynomials, which is elementary. Let
P (X) = aX2 + bX + c be a squarefree quadratic polynomial, with a > 0 and nonzero
discriminant ∆ = b2 − 4ac. Then, we know the exact formula sep(P ) =

√

|∆|/a.
Choosing a = k2 + k + 1, b = 2k + 1 and c = 1, we get ∆ = −3, the polynomial P (X)

is irreducible, has two complex roots, and satisfies

sep(P ) =

√
3

a
=

√
3

H(P )
.

Those who are more interested in separating real roots may choose a = k2+k−1, b = 2k+1
and c = 1. Then, we get ∆ = 5, the polynomial P (X) is irreducible, has two real roots
and, for k ≥ 2, it satisfies

sep(P ) =

√
5

a
=

√
5

H(P )
.
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Clearly, all these results are essentially best possible, and they show that estimate (1.1) is
optimal for quadratic polynomials. Further explicit examples were given in [3]. With the
above notation, we have proved that

eirr(2) = e(2) = 1,

and, moreover, these infima are both minima.
The study of monic, quadratic polynomials is almost trivial and gives

e∗irr(2) = e∗(2) = 0.

In the sequel we always assume that the degree d is at least equal to three and we
shall see that to find the best possible lower bound for sep(P ) is no more an easy problem.

The basic idea for constructing integer polynomials having k distinct roots close to
each other is to perturb slightly an integer polynomial having a root of multiplicity k. This
is precisely how the polynomials Xd − 2(aX − 1)2, mentioned in the Introduction, were
found. Indeed, 1/a is a root of 2(aX−1)2 of multiplicity 2, very close to 0 when a is large,
and Xd is then — numerically — a ‘small’ perturbation.

Unfortunately, at present, there is no general theory for constructing integer polyno-
mials of degree at least four with two roots close to each other. We just exhibit suitable
families of polynomials to bound e(d), eirr(d), . . . from below.

3. Root separation and clusters of roots

We begin with the cubic case. Beside the quadratic case, this is the only case for
which the definitive answer is known.

Theorem 1. For cubic integer polynomials, we have

eirr(3) = e(3) = 2. (3.1)

Theorem 1 was first proved by Evertse [9]. An alternative, and much simpler, proof was
found by Schönhage [17] who established that the value of eirr(3) is actually a minimum.
We provide a proof of this assertion in Section 6.

Theorem 2. For any even integer d ≥ 4, we have

e(d) ≥ eirr(d) ≥ d/2. (3.2)

For any odd integer d ≥ 5, we have

e(d) ≥ (d + 1)/2 and eirr(d) ≥ (d + 2)/4. (3.3)

Theorem 2 is proved in Section 5. The fact that the lower bound for eirr(d) is much
sharper for even values of d than for odd values of d is a consequence of a lack of a suitable
irreducibility criterion for the family of odd degree polynomials that we construct.

We now consider clusters of roots.
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Theorem 3. For any integer d ≥ 3, we have

Eirr(d, d − 1) = d − 1. (3.4)

For any integer d ≥ 4 and any integer k ≥ 2 that divides d, we have

Eirr(d, k) ≤ d(k − 1)

k
. (3.5)

The first statement of Theorem 3 extends (3.1) and is proved in Section 6. This was
obtained in the general case by Evertse [9], with a rather intricate proof involving Roth’s
theorem, and by Schönhage [17] for d = 3 and d = 4. We present in Section 6 an alternative
proof of (3.4).

4. The case of monic polynomials

Most of the results of the present section are new. The first statement is concerned
with the root separation of cubic polynomials.

Recall that a well-known conjecture of Hall [10] asserts that, for any positive real
number ε, we have

|x3 − y2| > x1/2−ε,

for any sufficiently large positive integers x and y with x3 6= y2. Hall’s conjecture is one
of the many consequences of the abc-conjecture, as proved e.g., in [16], page 206.

Theorem 4. For cubic, monic polynomials, we have

e∗irr(3) = e∗(3) ≥ 3/2. (4.1)

If Hall’s conjecture is true, then equality holds in (4.1) and conversely. Furthermore, if α
and β are distinct roots of a monic, cubic polynomial P (X), then

|α − β| ≫ H(P )−2 (log H(P ))c,

for some positive constant c.

For monic polynomials of arbitrary degree, our next result is only slightly weaker than
Theorem 2.

Theorem 5. For any even integer d ≥ 4, we have

e∗(d) ≥ d/2 and e∗irr(d) ≥ (d − 1)/2. (4.2)

For any odd integer d ≥ 5, we have

e∗(d) ≥ (d − 1)/2 and e∗irr(d) ≥ (d + 2)/4. (4.3)

Our last statement is devoted to clusters of roots of monic polynomials. It is only
slightly weaker than Theorem 3.
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Theorem 6. For any integer d ≥ 3, we have

E∗
irr(d, d − 1) ≥ d − 2 +

d − 2

2(d − 1)
. (4.4)

For any integer d ≥ 4 and any integer k ≥ 2 that divides d, we have

E∗
irr(d, k) ≥ d(k − 1)

k
− k − 1

2
. (4.5)

We stress that to get all our lower bounds for E(d, k) (and its relatives), we construct
infinite families of polynomials P (X) with

∏

1≤i<j≤k

|αi − αj | ≤ c H(P )−E(d,k),

for some positive constant c.
Our results suggest that it is very hard to make any reasonable conjecture for root

separation of (monic) polynomials of degree at least four.

5. Explicit families of polynomials with clusters of roots

The example
P (X) = Xd − 2(aX − 1)2,

already mentioned in Section 1, was given by Mignotte [13]. The factor 2 appears just to
imply the irreducibility of P (X) by means of the criterion of Eisenstein. For small ε, we
have that P (a−1 + ε) = (a−1 + ε)d − 2a2ε2 is very close to a−d − 2a2ε2, and it follows that

sep(P ) ≍ a−(d+2)/2.

Thus, for a tending to infinity, since H(P ) = 2a2, we get

sep(P ) ≪ H(P )−(d+2)/4.

Hence
e∗irr(d) ≥ (d + 2)/4,

and this proves the second statements of (3.3) and (4.3).
For even degrees, better examples were given recently in [5], namely the polynomials

P (X) = (Xn − aX + 1)2 − 2X2n−2(aX − 1)2. (5.1)

It follows from results from [15, 11] that P (X) is irreducible for a large enough. Moreover,
it is easy to verify that

sep(P ) ≪ H(P )−d/2,
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where d = 2n is the degree of P (X). This proves (3.2).
The family of polynomials (5.1) can be slightly pertubated, and it is easily seen that

the study of the irreducible polynomials

P (X) = (Xn − aX + 1)k − 2Xnk−k(aX − 1)k

and
P (X) = (Xn − aX + 1)k − 2Xnk−2k(aX − 1)k

implies (3.5), the second statement of (4.2) and (4.5).
For completeness, we add that the study of the family of polynomials

P (X) = (aX − 1)(Xn − aX + 1)

shows that e(d) ≥ d/2 for d ≥ 3. But these polynomials are reducible. Likewise, taking
the monic polynomial

P (X) = (Xn + X2 − aX + 1)(X2 − aX + 1), n ≥ 3,

an elementary study leads to sep(P ) ≍ a−(n+1) ≍ H(P )−(d−1)/2, where d = n + 2 is the
degree of P (X). We have proved the first statement of (4.3).

To prove (4.4), it is sufficient to consider the monic, irreducible polynomial

Xd − 2(aX − 1)d−1,

that has a cluster of d − 1 roots very close to each other.
It remains for us to establish the first inequalities of (3.3) and (4.2). The first assertion

of Theorem A below can be established following the method of Wirsing [20]. A different
proof is due to Bombieri and Mueller [2], see also Chapter 2 of the monograph [4], where
the second assertion of Theorem A is established.

Theorem A. Let n ≥ 2 be an integer and α be a fixed real algebraic integer of degree
n. There exist a constant c1(α), depending only on α, and infinitely many real algebraic
numbers β of degree n − 1 for which

|α − β| < c1(α) H(β)−n.

There exist a constant c2(α), depending only on α, and infinitely many real algebraic
integers γ of degree n for which

|α − γ| < c2(α) H(γ)−n.

Theorem A can be applied as follows to our problem. Denote respectively by Q(X),
R(X) and S(X) the minimal polynomials of α, β and γ. Putting P (X) = Q(X)R(X), we
get

sep(P ) ≪ H(R)−n ≪ H(P )−n,
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and deg P = 2n − 1. This proves the first assertion in (3.3).
Putting P (X) = Q(X)S(X), we get

sep(P ) ≪ H(P )−n,

and deg P = 2n. This proves the first assertion in (4.2), since Q(X) and S(X) are monic.

6. Proof that Eirr(d, d− 1) = d − 1

We now turn our attention to (3.4), which was established by Evertse [9]. We give
below an alternative proof, using the ideas of Schönhage, that has the advantage to show
that d − 1 is actually a minimum, a result not contained in [9].

For d ≥ 3, consider the polynomial P (X) = Xd + 3Xd−1 + (−1)d. It is easy to prove
that P (X) has a real root less than −2. An application of Rouché’s theorem on the unit
circle {z : |z| = 1} shows that P (X) has d − 1 roots of modulus at most 1. It is also easy
to see that P (X) has no root on the unit circle. This implies that the monic polynomial
P (X) is irreducible. It follows that the polynomial P1(X) = P (X −1) is irreducible, has a
real root α1,1 less than −1 and that its other roots, say αi,1 for 2 ≤ i ≤ d, have a positive
real part. Now, following Schönhage [17], we transform the polynomial by the change of
variable X = q1 + 1/Y , where q1 = ⌈α1,1⌉. Here, ⌈x⌉ denotes the smallest integer greater
than or equal to x. The resulting polynomial, denoted by P2(X), is also irreducible and
the formulæ

αi,1 = q1 + 1/αi,2, i = 1, 2, . . . , d

(with obvious notation) imply that it has a negative root α1,2 less than −1 and that all
its other roots are of modulus less than 1 with a positive real part. And we continue this
process, obtaining P3(X), P4(X), . . .

Now consider the square root D of the absolute value of the discriminant of P (X). A
short calculation shows that

D2 = 2d(d − 1)d−1 + (−1)d−1 dd. (6.1)

First, notice that this is also the square root of the absolute value of the discriminant
of any of the Pk(X)’s. For k ≥ 1, let ak be the (positive) leading coefficient of Pk(X).
Then

D = ad−1
k ·

d
∏

i=2

|α1,k − αi,k| ×
∏

2≤i<j≤d

|αi,k − αj,k| = Π1 × Π2 (say).

At this point it is convenient to introduce another usual measure for the size of polynomials,
namely the Mahler measure. For a complex polynomial F (X) of degree d written as

F (X) = cdX
d + cd−1X

d−1 + · · · + c0 = cd(X − β1) · · · (X − βd),

its Mahler measure is

M(F ) = |cd|
d

∏

j=1

max{1, |βj|}.
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It is well-known (see Lemma A.2 in [4]) that

2−d H(F ) ≤ M(F ) ≤
√

d + 1 H(F ).

Let k be a positive integer. For i = 2, . . . , d we have |α1,k − αi,k| ≥ ℜe(−α1,k) since
ℜe(α1,k) < 0 and ℜe(α1,k) ≥ 0. This implies that

Π1 > |akα1,k|d−1 = M(Pk)d−1,

as α1,k is the only root of Pk(X) outside the unit disc. Therefore, we have proved that

∏

2≤i<j≤d

|αi,k − αj,k| < D · M(Pk)−d+1.

Combined with (6.1), this gives

∏

2≤i<j≤d

|αi,k − αj,k| < (2d)d/2 · M(Pk)−d+1.

Since the polynomial P (X) is irreducible of degree at least three, the numbers α1,k are
irrational and the Mahler measures of the Pk(X)’s are not bounded from above, thus this
construction implies that

Eirr(d, d − 1) = d − 1,

as asserted.

7. The monic cubic case

We follow a suggestion of Umberto Zannier: To translate the polynomial so that the
coefficient of X2 vanishes in order to get a much simpler formula for the discriminant in
terms of the coefficients. Formally, with P (X) = X3 + aX2 + bX + c we associate the
polynomial P 0(X) defined by

P 0(X) =

{

P (X − a/3), if 3 | a,
27 P (X/3− a/3), otherwise.

Write P 0(X) = X3 + pX + q and observe that

∆(P 0) = −4p3 − 27q2 =

{

∆(P ), if 3 | a,
36 ∆(P ), otherwise.

It follows from (2.1) that polynomials P (X) with small discriminants are good candidates
for having two roots close to each other. Consequently, we are looking for pairs (p, q) of
integers such that 4p3 + 27q2 is small compared with max{|p|, |q|}.
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The study of this problem was initiated by Hall [10]. In 1982, Danilov [6] found
explicit infinite sequences of positive rational integers (xm)m≥1 and (ym)m≥1 such that

|x3
m − y2

m| ≍ √
xm, (m ≥ 1).

Put pm = −3xm and qm = ±2ym. This leads to a family of polynomials Pm(X) =
X3 + pmX + qm with integer coefficients and positive discriminant for which

∆(Pm) ≍
√

|pm|.

Denote by βm, αm, and α′
m the roots of Pm(X) labelled in such a way that sep(Pm) =

|αm − α′
m|. Note that, since the sum of the roots is zero, αm and α′

m are both close to
−βm/2. Then, it is easy to see that

∆(Pm) ≍ (sep(Pm))2 |βm|4.

Note that a similar estimate is true for any monic cubic polynomial with a coefficient of
X2 equal to zero. Hence, using the estimate |pm| ≍ |βm|2, we get

sep(Pm) ≍ |βm|−3/2.

Now, make an integer translation on the variable X to replace Pm(X) by, say, P̃m(X)
which has two roots of modulus < 1/2. Then, we get Hm := H(P̃m) ≍ |βm| and

sep(P̃m) ≍ H−3/2
m .

This establishes (4.1).
Along the way, we have proved the following result. If

λ = lim inf
x,y→+∞

log |x3 − y2|
log x

,

where the limit is taken over positive rational integers for which x3 − y2 6= 0, then

e∗irr(3) = e∗(3) = 2 − λ.

Consequently, the Hall conjecture is equivalent to

e∗irr(3) = e∗(3) = 3/2.

The last assertion of Theorem 4 follows from explicit lower bounds for the quantity
|x3 − y2| obtained by means of estimates for linear forms in the logarithms of algebraic
numbers, see e.g., Theorem 1.1 of Chapter VI from [18].

To summarize, we have given explicitly an infinite family (Qn(X))n≥1 of cubic, monic,
integer polynomials such that

sep(Qn) ≪ H(Qn)−3/2,
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and whose coefficients grow exponentially fast in terms of n.
It is a challenging problem to decide whether there are families (Pn(X))n≥1 of integer

polynomials such that sep(Pn) remains very small compared to H(Pn) and whose coeffi-
cients grow polynomially fast in terms of n, like for the families of polynomials given in
Section 5.

The best polynomial family we found is given by the polynomials

X3 + (a5 + 3a2)X2 − (2a4 + 4a)X + (a3 + 1),

for which we have
sep(P ) ≍ H(P )−7/5.

Besides X3 − 2(aX − 1)2 mentioned in Section 5, other interesting examples are

X3 + (16a3 + 4a)X2 − (8a2 + 1)X + a,

X3 + (a4 + a3 + 3a2 + 1)X2 − (2a3 + 2a2 + 4a)X + (a2 + a + 1),

and

X3 + (a6 + a5 + 5a4 + 3a3 + 6a2 + 3a + 1)X2 − (2a5 + 2a4 + 8a3 + 4a2 + 6a + 2)X

+ (a4 + a3 + 3a2 + a + 1),

for which we have, respectively,

sep(P ) ≍ H(P )−4/3, H(P )−11/8, H(P )−4/3.

This question is very similar to a celebrated problem on small values of f3 − g2 whose
origin is in a paper by Birch et al. [1]. Davenport [7] established that if f , g are polynomials
with complex coefficients, then either f3 = g2 or deg(f3 − g2) ≥ 1 + (deg f)/2. There are
several examples of polynomials f , g of small degree, with rational coefficients, that attain
this lower bound; see [19, 8]. At present, no example is known with deg f ≥ 12. However,
if we remove the assumption that the polynomials should have rational coefficients, then,
for every degree, Davenport’s inequality cannot be improved. This was established by
Zannier [21].

Along our long search, the best example we could find is

P (X) = X3 + 305 X2 − 273 X + 61, for which
log sep(P )

H(P )
= −1.67076 . . . ,

i.e., sep(P ) < H(P )−1.67. A deeper analysis of the problem yields the following result.

Proposition 1. Let P (X) = X3 + aX2 + bX + c be a monic separable cubic polynomial
with integer coefficients of height H. Then,

sep(P ) ≫ H−5/4 if b2 − 4ac = 0.
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If the roots of P (X) are α, α′ and β with sep(P ) = |α − α′| and if γ = (α + α′)/2, then

sep(P ) ≫ H−7/5 if |γ| ≤ 1
2 H−1/5 or |γ| ≥ H3/20,

where the constants implied by ≫ are effectively computable.

We now prove Proposition 1. Consider a squarefree monic cubic polynomial with
integer coefficients,

P (X) = X3 + aX2 + BX + c = (X − α)(X − α′)(X − β)

of height H(P ) = H for which sep(P ) = |α − α′|. Our goal is to study the quantity

ρ = ρ(P ) = − log sep(P )

H(P )
,

more precisely we want to find examples for which ρ(P ) is rather large and we try to prove
non trivial upper bounds for ρ(P ).

The following inequalities hold (Cauchy, Mahler)

max{|α|, |α′|, |β|} < H +1, 1
3 H ≤ M(P ) := max{1, |α|} ·max{1, |α′|} ·max{1, |β|} < 2H

and
max{1, |α|−1} · max{1, |α′|−1} · max{1, |β|−1} < 2H.

Put
γ = (α + α′)/2, δ = (α′ − α)/2, π = αα′,

and also |γ| = Hθ; then

a = −β − 2γ, b = 2βγ + π, c = −βπ and sep(P ) = |2δ|.

The discriminant ∆ of P (X) satisfies

∆ = −4ca3 + b2a2 + 18abc − 4b3 − 27c2 = 4δ2
(

(β − γ)2 − δ2
)2

and
1 ≤ |∆| ≤ |4δ2|(|β − γ| + |δ|)4.

Hence
sep(P ) > (2H + 3)−2,

which implies the “trivial” upper bound ρ ≤ 2.

Because of the example P (X) = X3 − (tX − 1)2 with t ≥ 3 which is irreducible [for
any n ≥ 2 and ℓ ≥ 3 the polynomial Xd − (ℓX − 1)d−1 is irreducible “à la Pisot”] we
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could suppose that |δ| ≤ H−5/4, but we prefer to work under the (asymptotically) weaker
hypothesis

|δ| ≤ 1

17H
.

Then P (X) is irreducible and γ = −(a + β)/2 is irrational. Moreover, a short computer
verification shows that this inequality implies H ≥ 50 and from now on we assume H ≥ 50.
We notice that

|δ| ≥ 1
2 (|β| + |γ| + |δ|)−2

,

thus, if |β| ≤ |γ| then

1

17H
≥ |δ| ≥ 1

2

(

2|γ|+ 1

17H

)−2

,

and using the inequalities |γ|2 − |δ|2 ≤ M(P ) < 2H we reach a contradiction. Hence our
hypothesis on |δ| implies |β| > |γ|. Thus

1

17H
≥ |δ| ≥ 1

2

(

2|β| + 1

17H

)−2

,

which implies
|β| >

√
2H.

Now, since H ≥ |c| ≥ |β|(|γ|2 − |δ|2), we see that

|γ| < H1/4 − 1.

Applying one more the above inequalities we get the more precise estimates

|β| >
√

8H, |γ| + 1
2 < 1

2 H1/4.

Moreover, we see at once that β, γ and δ2 are real.

Our next step is to prove that we can restrict our study to the case |γ| ≤ 1/2.
Changing X into −X if necessary—that does not change sep(P )—we may assume that β
is positive. If |γ| > 1/2 let h be the integer such that |γ − h| < 1/2 and put

P0(X) = P (X + h) = X3 + a0X
2 + b0X + c0.

then clearly sep(P0) = sep(P ). We have

|h| ≤ |γ| + 1
2

< 1
2

H1/4.

Using
|a0| < β + 1 and |a| ≥ β − 0.5 H1/4,

we get

|a0| <
β + 1

β − 0.5 H1/4
|a| < 1.13 |a|.
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In a similar way, we obtain

|b0| <
2β + 1

2β|γ|(1 − 1.1|γ|/β)
|b| < 1.12 |b|,

and

|c0| <
(β + 1)(1/4 + |δ|2)

(β − 0.5 H1/4)(|γ|2 − |δ|2) |c| < 1.13 |c|,

so that
H(P0) < 1.13 H(P ).

This short study shows that, if we can prove that

sep(P0) ≥ C H(P0)
−ρ

then
sep(P ) ≥ 0.6 C H(P )−ρ,

this is the reason why we suppose |γ| < 1/2 from now on and put P0 = P .

Now consider
D = b2 − 4ac.

First, let us estimate D. We have

D = (π + 2γβ)2 − 4(2γ + β)πβ = −4πβγ + π2 + 4δ2β2.

It follows that (recall that |δ| ≤ 1
10

H−1)

|γ| ≤ 1
4

H−1/3 =⇒ D = 0 =⇒ 4|πβγ| < 1/3 =⇒ |γ| < 1
2

H−1/3.

• If D = 0 then |b|3 > 110|c|3 (indeed, we have b3 = 4abc, where a = H, b ≈ 2Hγ
and |c| ≈ Hγ2) and |b| > 0.98 |γβ|. Using the formula

2∆ = (2a2 − 9b)D − b3 − 54c3

we get
|∆| > 1

4
|b|3 > 1

4.5
|γβ|3.

Hence,
|δ| ≥ 1

2.5
|γ3/β|1/2 ≥ 1

3
H−5/4.

• Now we suppose that D 6= 0 and we consider the expression

G = bD + 8c2.

One can verify that
G = −2π2γβ + π3 + 4δ2(2γβ3 − πβ2).

14



It follows that (recall the notation |γ| = Hθ)

|δ| ≤ 1
4 H(−3+θ)/2 and |γ| ≤ 1

2 H1/5 =⇒ G = 0.

We notice that G = 0 is equivalent to the formula

b3 = 4(ab − 2c)c.

Now let p a prime divisor of c and suppose that pk ‖ c and that pℓ ‖ b. Then, from the
preceding formula we see that

3ℓ ≥ min{2k, ℓ + k},

which implies 2ℓ ≥ k. In other words, c divides b2, which implies that D is a multiple of
c. It follows that when G = 0, we have

|D| ≥ |πβ|,

but from the above estimate of D we see that |D| ≤ |5πβγ| when |δ| ≤ 1
4 H(−1+θ)/2. Hence

G = 0 =⇒ |γ| ≥ 1
5
.

If we compare the two above implications we see that we have proved that

|γ| ≤ 1
2 H1/5 =⇒ |δ| ≥ 1

4 H(−3+θ)/2.
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