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ON THE EXPANSIONS OF REAL NUMBERS IN TWO
MULTIPLICATIVE DEPENDENT BASES
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Abstract

Letr > 2 and s > 2 be multiplicatively dependent integers. We establish a lower bound for the sum of the
block complexities of the r-ary expansion and of the s-ary expansion of an irrational real number, viewed
as infinite words on {0, 1,...,r — 1} and {0, 1,..., s — 1}, and we show that this bound is best possible.
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1. Introduction

Throughout this paper, | x| denotes the greatest integer less than or equal to x and [x]
denotes the smallest integer greater than or equal to x. Let b > 2 be an integer. For a
real number &, write

£=l6l+ ) T =lEl+ 0.,

k>1

where each digit g; is an integer from {0, 1, ..., b — 1} and infinitely many digits a; are
not equal to b — 1. The sequence a := (ax)r>1 1s uniquely determined by the fractional
part of £. With a slight abuse of notation, we call it the b-ary expansion of £ and we
view it also as the infinite word a = a;a; ... over the alphabet {0, 1,...,b — 1}.
For an infinite word X = x;x; ... over a finite alphabet and for a positive integer n,
set
p(n,x) = Card{xy(...Xxj, : j 20}

This notion from combinatorics on words is now commonly used to measure the
complexity of the b-ary expansion of a real number &. Indeed, for a positive integer
n, we denote by p(n, &, b) the total number of distinct blocks of » digits in the b-ary
expansion a of &, that is,

p(nsf’ b) = P(",a) = Card{aj+l <o Qjyp t .]Z 0}

This work was supported by the National Research Foundation of Korea (NRF-2015R1A2A2A01007090)
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Obviously, we have 1 < p(n, &, b) < b", and both inequalities are sharp. If & is rational,
then its b-ary expansion is ultimately periodic and the numbers p(n,&,b), n > 1, are

uniformly bounded by a constant depending only on & and b. If ¢ is irrational, then, by
a classical result of Morse and Hedlund [8], we know that p(n,&,b) > n + 1 for every
positive integer n, and this inequality is sharp.

DermviTION 1.1, A Sturmian word x is an infinite word which satisfies
pn,x)=n+1, forn>1.

A quasi-Sturmian word x is an infinite word which satisfies
p(n,x) =n+k, forn > ng,

for some positive integers k and no.

The following rather general problem was investigated in [2]. Recall that two
positive integers x and y are called multiplicatively independent if the only pair of
integers (m, n) such that x™y" = 1 is the pair (0, 0).

ProBLEM 1.2. Are there irrational real numbers having a ‘simple’ expansion in two
multiplicatively independent bases?

We established in [3] that the complexity function of the r-ary expansion of an
irrational real number and that of its s-ary expansion cannot both grow too slowly
when r and s are multiplicatively independent positive integers.

TueoreM 1.3 ([3]). Let r and s be multiplicatively independent positive integers. Any
irrational real number & satisfies

im (p(n,&7) + p(n. £, 5) = 2n) = +oo.

Said differently, ¢ cannot have simultaneously a quasi-Sturmian r-ary expansion and
a quasi-Sturmian s-ary expansion.

We complement Theorem 1.3 by the following statement addressing expansions of
a real number in two multiplicatively dependent bases.

THeEOREM 1.4. Let r,s > 2 be multiplicatively dependent integers and m,{ be the

smallest positive integers such that " = s’. Then, there exist uncountably many real
numbers & satisfying

lim (p(n,&,r) + p(n,&,5) —2n) =m+ ¢
n—+00
and every irrational real number ¢ satisfies
lim (p(n,&,r) + p(n,&,s)—2n) >2m+ L.
n—+oo

The next result, used in the proof of Theorem 1.4, has its own interest.
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THeoreM 1.5. Let b > 2 be an integer and p, o be positive integers. If o divides p, then
every real number whose b°-ary expansion is quasi-Sturmian has a quasi-Sturmian
b7 -ary expansion. Moreover, every real number whose b°-ary and b’ -ary expansions
are both quasi-Sturmian has a quasi-Sturmian b"-ary expansion, where u is the least
common multiple of p and o

We conclude by an immediate consequence of Theorems 1.3 and 1.4.

CoroLLARY 1.6. Let r, s > 2 be distinct integers. No real number can have simultane-
ously a Sturmian r-ary expansion and a Sturmian s-ary expansion.

Our paper is organized as follows. Section 2 gathers auxiliary results on Sturmian
and quasi-Sturmian words. Theorems 1.4 and 1.5 are established in Section 4.

2. Auxiliary results
We will make use of the following characterisation of quasi-Sturmian words.

Lemma 2.1. An infinite word x written over a finite alphabet A is quasi-Sturmian if
and only if there are a finite word W, a Sturmian word s defined over {0,1} and a
morphism ¢ from {0, 1}* into A* such that $(01) # ¢(10) and

x = W¢(s).
Proor. See [4]. O

Throughout this paper, for a finite word W and an integer ¢, we write W' for the
concatenation of ¢ copies of W and W* for the concatenation of infinitely many copies
of W. We denote by |W| the length of W, that is, the number of letters composing W.
A word U is called periodic if U = W' for some finite word W and an integer ¢ > 2. If
U is periodic, then the period of U is defined as the length of the shortest word W for
which there exists an integer ¢ > 2 such that U = W'.

Lemma 2.2, Let U be a finite word. Assume that there exist words Uy, U, V, W such
that U = U Uy and UU = VU, U\ W, with \Uy| # |V]| and 0 < |V| < |U|. Then, the
word U is periodic.

Proor. Since V is a prefix of U and W is a suffix of U, we get
U=UU, =VW,
thus, VU,U;W = UU = VWV W. This implies
U,U, = WV.

If |Uy| < |VI, then we can write V = V’U, for a nonempty word V’, thus U, = WV’.
Therefore,

UwWVvV =U U, =VW =V'UW.
Our assumption 0 < |V| < |U| implies that the word Z := U; W is nonempty. Since
ZV' = V'Z, it follows from Theorem 1.5.3 of [1] that U = ZV" is periodic. The proof
of the case |U;| > |V| is similar. O
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Lemma 2.3. Let A be a finite set, s a Sturmian word over {0, 1}, and ¢ a morphism
from {0, 1} into A* satisfying ¢(01) # ¢(10). Then there exists an integer ng
such that, for any factor A of s of length greater than ny, if one can write ¢(A) as
Vid(bybs ...by—1)Va, where B = bi1b;...b, by, is a factor of s, the word V is a
nonempty suffix of ¢(by1), and V, is a nonempty prefix of ¢(b,,), then Vi = ¢(b1), V, =
¢(b,) and A = B.

Proor. We may assume that 1 is the isolated letter in s, i.e., that 11 is not a factor of
s. Since s is balanced, there exists a positive integer k such that 10’1 is a factor of s if
andonly ift = kork + 1.

We first consider the case where V| = ¢(b;). Suppose that A # B. Then, by
deleting the maximal common prefix of A and B, we may assume that A and B have
no common prefix. Thus, the prefixes of A and B are 00 and 10.

If $(00) = ¢(10)V;, then ¢(0) = ¢(1)V, = Vo¢(1) and there exist a word U and
positive integers s, 7 such that ¢(1) = U* and ¢(0) = U’. This gives a contradiction to
$(01) = ¢(10).

If ¢(10) = ¢(0")V; for some integer 4 > 2 and a nonempty prefix V, of ¢(0), then,
writing ¢(0) = V,V’, we get ¢(0) = VoV’ = V’'V,, thus there exist a word U and
positive integers s, 7 such that ¢(1) = U* and ¢(0) = U’. This gives a contradiction to
$(01) = ¢(10).

If ¢(10) = ¢(0")V, for some integer & > 2 and a nonempty prefix V, of ¢(1), then
there exists a positive integer £ and a prefix V' of ¢(0) such that ¢(1) = ¢(0)‘V’. Write
#(0) = V'V”. Then, ¢(10) = ¢(0)'V'¢(0) = ¢(0)*' V' and we get V'¢(0) = ¢(0)V".
Thus, there exist a word U and positive integers s, f such that ¢(1) = U* and ¢(0) = U".
This gives a contradiction to ¢(01) = ¢(10).

Similarly, we show that, if V, = ¢(b,,), then A = B.

It only remains for us to treat the case where V| # ¢(by) and Vo, # ¢(by).
There exists an integer ny such that any factor A of s of length greater than ng
contains 10¥10%*110. It is sufficient to consider the case where ¢(10¥10¢*110) =
Vid(bybs . .. by—1) V>, for afactor b1 b; ... b, of s and with V| a proper nonempty suffix
of ¢(b)) and V; a proper nonempty prefix of ¢(b,,;).

If bobs...by 1 = OF110F1, then by = 1 and b,, = 0. Thus |V;| < |#(1)] and
[V2] < |¢(0)], which contradicts

Vil + [Va] < lg(D)] + (0] = [¢(10°10°*110)] — (0 105 1))

Therefore, since any subword of s in which 1010 and 10¥*'1 do not occur is a factor
of 01101, we deduce that if ¢(10¥10*110) = V,¢(b,...b,_1)V> as above, then
by ...by_ contains 1010 or 10F11.
We distinguish three cases:
Case (i) : ¢(10°10¥110) = W;p(10¥10)W>, where 0 < |[W| < |¢(105)].
Then
$(10°10%) = Wy p(105 W5, $(0¥100°10) = W;p(0X10)Ws,

where [W3| = [W>| — ¢(0)] and [Wi| = [W,].
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Case (ii) : ¢(10K1057110) = W, ¢(10F10)W,, where |¢(10%)] < [W;| < [p(104+1)).
Then
P(10°10%) = W[ (0 1) W5, $(0K100°10) = W} p(0X10)Ws,
where [Wi| = [Wi| = [¢(0")], IW5| = [Wa| + |¢(0*"")| and [W['| = [W)].
Case (iii) : (10¥10110) = W;p(10F+11)W,, where 0 < [Wy| < |¢(10F+1)].
Then
$(10°10%) = W (105 W5, $(0K100°10) = W0+ 1)W,,
where [W| = [W;| — |¢(0)] and [W]| = [W;].
By Lemma 2.2, in each Case (i), (ii), (iii), the factors ¢(10%) and ¢(0*10) are
periodic. Denoting by A;, A, the periods of ¢(10%), (0¥10), we get
< lp(105)]  Klp(0)| + [¢(1)| b < [p(0*10)] _ (k + DI(0)] + [¢(D)]
1 = - ’ 2= - .
2 2 2 2
Write ¢(10%) = U’ for a word U with |U| = A, and integer ¢ > 2. Then ¢(1) = U" U,
#(0%) = U,U" for some words U, U, with U = U, U, and some nonnegative integers
11,1, satisfying #; + t, = ¢t — 1. Thus, we get
@(0°1) = Ua (U Up)> (U Un)" U,y = (U, Uy, U2 Uy | = 1.
Since ¢(0) is a prefix of (U,U,)", we deduce that ¢(0¥10) = (U,U,)-- - (U,U)U’ for
a prefix U’ of U, Uy, It then follows from [5, Lemma 3 (v)] that A; = A, or

A

1
I$(0°10) < A1 + A < (k + FNBO) + oDl < I$(0“10)],

in which case we have a contradiction. If 4; = A, then A; divides |¢(0¥10)| and
|p(10%)], thus A; divides |¢(0)| and |¢(1)|. This implies that ¢(01) = ¢(10) = UU --- U,
giving again a contradiction. O

We end this section with an easy result on the convergents of irrational numbers.

LEmmA 2.4. Let (p—:)kzo be the sequence of convergents of an irrational number
[0;a1,a0,...] in (61, 1) and d > 2 be an integer. Let ¢\, ¢ be integers not both
multiple of d. Then, for any positive integer k, we have cipy + coqrx # 0 (mod d)
or C1Pi+1 + C2qk+1 E 0 (mod d)

Pe Pest|_ (O L]0 1| 0O 1
g G| |1 ar||l a 1 aga|’
we have

T I | Y B O

Proor. Since

a a Ap+1
thus

— 1 — 1{[- 1
[Cl Cz]=[Clpk+Czqk ClPk+1+62Qk+1][ a1k+1 O][ ;lz OH fl O]'

Hence, if [clpk + Cgr  C1Pk+1 +czqk+1] = [0 O] modulo d, then ¢; and ¢, are
multiple of d. o
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3. Proofs of Theorems 1.4 and 1.5
We begin with the proof of Theorem 1.5.

Proor or THEOREM 1.5. Let b > 2 be an integer and p, o be positive integers. Assume
that p = do for some integer d > 2. Let & be a real number and assume that there are
integers aj, az,...in{0,1,...,b° — 1} and k, ny such that

&= L§J+Z% and p(n,&,b°) =n+kforn > ny.

i>1

Then, by Lemma 2.1, there are a finite word W, a Sturmian word s defined over {0, 1}
and a morphism ¢ from {0, 1}* into {0, 1,..., " — 1}* such that ¢(01) # ¢(10) and

a=ayday...= W¢(S)

Let a be in {0,1,...,b° — 1} and consider its representation in base b’ given by
a = ¢;h4V7 4 cpd=20 4 b0, where ¢y, ..., cq are in {0,1,...,b7 — 1}.
Define the function ¢, , on {0, 1,...,b° — 1} by setting ¢, ~(a) = cic3 ... cq. It extends
to a morphism from {0, 1,...,p* — 1}* to {0, 1,...,b” — 1}*, which we also denote by
¢p.- Then, we have

d:
£=1¢1+ ) por Where d = didy ... = 6.0(W) (B 0 ).
izl
We deduce from Lemma 2.1 that the b7 -ary expansion of ¢ is quasi-Sturmian. Thus
we have established the first assertion of the theorem.

For the second assertion of the theorem, we may assume that p and o are relatively
prime (otherwise, we replace b by b% where g is the greatest common divisor of p and
o).

Let & be a real number and write

a; b;
E=LEl+ ) n=lel+ ) ok
i1 j=1
where ay,a»,...arein{0,1,...,b°—1}and by, b,,...arein {0, 1,...,b7 — 1}. Assume
thata = aja; ... and b = b1b; ... are both quasi-Sturmian. By Lemma 2.1, there are
a finite word W, a Sturmian word s defined over {0, 1} and a morphism ¢ from {0, 1}*
into {0, 1,...,b° — 1} such that ¢(01) # ¢#(10) and

a=aay...= W¢(S)

We claim that |¢(0)| =: Iy and |¢(1)| =: [; are both multiple of o.

In order to deduce a contradiction, we suppose that o does not divide at least one
of [p and /;.

Let ¢,,1 be the morphism ¢, , defined above in the case o = 1. For each factor U
of s, let

AWU)={0<j<o-1:¢,1(a) =V, o ¢(U) for some V with |[V| = j (mod o)}
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denote the nonempty set of positions modulo o~ where ¢,, | o ¢(U) occurs in ¢, ;(a). If
U’ is a prefix of U, then A(U) is a subset of A(U”). Consequently, there exists N such
that A(sy...s,) = A(sy...sy) foreachn > N.

Let [0;ay, ay, . . .] denote the continued fraction expansion of the slope of s and, for
k > 1, let g, be the denominator of the convergent [0; ay, ..., a] to this slope. Define
the sequence (My )0 of finite words over {0, 1} by

My=0, M;=0""1 and My =M)“M_y, (k=1).

For k > 1, the word M is a factor of length g; of s (see e.g. [7]). Since there are py
occurrences of the digit 1 in M, we get

(M)l = lo(gx — pr) + Lipx = (h = lo) pr + logx.

By Lemma 2.4 and the assumption that o does not divide at least one of /y and [}, we
conclude that at least one of |¢p(M;)| and |p(My.1)| is not a multiple of o.

Let U be a factor of s. Then U is a factor of M for some integer k. Since M; My
is a factor of My oMiy1 = (Myy1)%2 My (Myp)*+ M,_,, which is a factor of s, there are
two positions of ¢(U) which differ by |¢(My)|. Thus, there exist two occurrences of
¢(U) in ¢(s) separated by exactly pl¢p(M;)| letters. Replacing k by k + 1 is necessary,
we can assume that p|¢(M;)| is not a multiple of o and we deduce that |A(U)| > 2 for
any factor U of s.

A finite word U is called right special if U is a prefix of two different factors of s of
the same length. If the initial word s ... s, of s is not a prefix of a right special word,
then either s;.1...5jn # S1...5, forall j > 1, or s is periodic. Since a Sturmian
word is recurrent and not periodic (see, e.g., [0, page 158]), there are infinitely many
prefixes sj ... s, of s which are right special. Let n > N be such that s; ... s, is right
special. Then, there exists a letter ¢ such that ¢ # s, and s; ... s,c is a factor of s.
Thus, we get

A(ST ... 8pSpe1) = A(S1 ... 8,) D A(ST ... 8,0).

Choose 7, jin A(s; ...s,c) with 0 <i < j < o — 1. Then we can write

Pp1(@) = UU iy 0 (51 ...5,00U ... = U'Uspp1 0 (51 ... 8u80:1)Uj ...
and

Pp1(@) = VVig,10¢(s1...5.0)V]...= V' Vady1 0 P(s1...8u8m1)V5. ..,

for some words U,U’,V, V', Uy, U, V1, V2, U{, Uj, Vi, V; written over {0,...,b — 1}
and satisfying

U =10l =i, Vil = Vol = j, [UI=|U'|=[VI=[V'|=0 (mod o),
0<|Ujl=1U5l <01, OL|V]|=|V)|<o—-1,

and o divides i + (n + 1)p + |U]| and j + (n + 1)p + |V]{|. Thus, there exist uy, us, vy, v2
in{0,1,...,b” — 1} and words X, Y, A, A,, By, By written over {0, 1, ...,b" — 1} with

=) a2
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and
Aty Bi# B Al=Mal<E42 BI=lBI<E 42,

such that

Uigp,i 0 p(s1...5,00U] = ¢po1(ui1 XAy),
Usgp1 0 ¢(s1 ... SpSns) U5 = o1 (U2 XA5),
Vigpi 0 d(s1...5,0)V] = po1(viYBy),
Vagp1 0 ¢(s1 ... $pSnt1)V5 = o1 (n2Y Ba).

Here, ¢, 1 is defined analogously as ¢, ;. Therefore, u1 XA, uo XA, and viYBy, v,Y B,
are all factors of ¢;"1 (¢p,1(¢(s))). Denoting by A (resp., by B) the longest common
prefix (it could be the empty word) of A; and A, (resp., of By and B,), we deduce that
XA and YB are both right special.

Let Wy be the longest common prefix of ¢, jod(si ... 5,8,+1) and @, 1 0P(s ... 5,0).
Then, there exist finite words Wy, W, Wi, W] over {0, ..., b—1} satisfying |W;| = o —1i,
[Wa| =0 — j, IW]| <o, [W)| < o, and

Wo = Wigo 1 (XA)W| = Wado | (YB)WS,

Thus, we get |XA| < |YB| < |XA| + 1.
Suppose that XA is a suffix of Y B. Then, there exists a nonempty finite word W’ of
length less than o such that

Wo = WoW'¢o 1 (XAYW] = Was 1 (XA)W;, if [XA| = |YB,
Wo = Wi 1 (XAW, = Wi W' ¢ (XA)WS, if XAl + 1 =|YB).

It then follows from Theorem 1.5.2 of [1] that we have W, = Wz(W’)tW”W{ or
Wi(W")'W”W;, respectively, for some integer # and a prefix W of W’. Since p,o
are fixed and s is Sturmian, we deduce from Lemma 2.3 of [3] that (W’)' cannot be a
factor of ¢, 1 o ¢(s; ... s,) when n is sufficiently large. This shows that the lengths of
XA and Y B are bounded independently of n.

Consequently, the right special words XA and Y B are not suffixes of each others
if n is sufficiently large. Hence, there are arbitrarily large integers m such that
¢} © p1 o ¢(s) has two distinct right special words of length m. This implies that
b = ¢;"l o ¢, 1(a) is not quasi-Sturmian, which gives a contradiction. Therefore, we
have established that |#(0)| and |¢(1)| are both multiple of o.

Write

Ci - -
E=LEl+ ) mm ez ac.. =00, @) = G (WH()).
iz
Put |W| = ho + d for integers & > 0 and d with 0 < d < o. Let ¢(0) = X X>,
¢(1) = Y Y5, where |X;| = |Y;| = 0 —d. Assume that 11 is not a factor of s. Then there
exists a positive integer k such that 10™1 is a factor of s if and only if m = k or k + 1.
Thus, we can represent s as

s =0"fnhts. .., o =10, 1, € {105,0}, 0 <w <k + 1.
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It is not difficult to check that t := #t¢, . . . is Sturmian. Define ¢’ by
¢'(10% = oY (X X)X, ¢/(0) = Xo X

Then we get
B(s) = (X1 X2)" V1 a (X1 X)X ¢ (titats ),

thus
¢ = ¢ (WH(s)) = ¢0 ,(WX1X2)" Y1 V2(X1 X0) ' X1)( @), 0 ¢ (111215 ...

Since |¢(0)| and |¢(1)| are both multiple of o, the morphism ¢;;’p o ¢’ is well-defined.
We conclude that ¢ is quasi-Sturmian and the proof of the theorem is complete. O

Lemma 3.1. Letb > 2, d > 2, p, o be positive integers with p = do. Let x1x; ... be a
quasi-Sturmian word over {0, 1, ...,b° — 1}. Then, there exists an integer ngy such that
the real number & = 3 151 ;—‘k satisfies

pnd,&,b7) > (n+ 1)d, forn = nyg.

Furthermore, if s1s, ... is a Sturmian word written over {0, 1}, then there exists an
integer ng such that the real number & = -, h% satisfies

p(n,f,b0)=n+d, fOVHZnO.

Proor. Set A := {0,1,...,b° — 1}. There exist a Sturmian word s written over
{0, 1}, a morphism ¢ from {0, 1}* into A* satisfying ¢(01) # ¢(10), and a factor W
of X := x1x, ... such that x = W¢(s). Then, the word

y:= ¢p,o’(x) = ¢p,(r(W¢(S)) = ¢p,o’(W)(¢p,o' o ¢)(s)

is quasi-Sturmian.

Let n be a positive integer larger than the integer nj given by Lemma 2.3 applied to
the morphism ¢, o ¢. We claim that if U ¢, ,(A1)V| = Uz, +(A2)V>, where Ay, Ay
are factors of ¢(s) of length n and Uy, U, (resp., V1, V) are nonempty suffixes (resp.,
proper prefixes) of words of the form ¢, ,(a) for a in A, then U; = U,, A| = A, and
Vi =V,.

Suppose not. Then we may assume that there exist Aj, A, and U, V such that

bpor(ADV = Uy (A2).

Thus there exist a;,a; in A, a factor A of ¢(s) of length n, and a factor A" of ¢(s) of
length n — 1 such that ¢, ,(A) = Wi¢, (A" )W,, where W, (resp., W) is a nonempty
proper suffix (resp., prefix) of ¢, (a;) (resp., of ¢, -(a2)). Consequently, there exist
b,b’,c,c’ in {0, 1} and factors B, B’ of s such that A = U¢(B)V, a1A’ay = U'¢p(B")V’,
where U (resp., U’) is a nonempty suffix of ¢(b) (resp., ¢(b”)) and V (resp., V') is a
nonempty prefix of ¢(c) (resp., ¢(c’)). Then A’ = U”¢p(B")V"” for words U", V"' such
that U’ = a,U”, V' = V"a,. Therefore, we get

Gp.r(A) = Gp o (U)Gp © $)B)Bpr(V) = Wiy o (U ) @p,r © 9)(B )y, (V" IW1.
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We deduce from Lemma 2.3 that ¢, ,(U) = Wi¢,(U"), ¢ps(V) = ¢ (V"IW,
and B = B’. This is a contradiction to the fact that W, (resp., W,) is a nonempty
proper suffix (resp., prefix) of ¢, (ai) (resp., of ¢, (a2)). Hence, the representation
of X = U¢, ,(A)V is unique.

If ¢(s) is written over an alphabet of three letters or more, then

pn=1,¢)>mn-1)+2=n+1,

which implies that the number of factors X of (¢, o ¢)(s) of length nd is at least
equal to (n + 1)d. If ¢(s) is written over an alphabet of two letters, say over the
alphabet A = {a, b}, then we can put ¢,,(a) = ZX and ¢, ,(b) = ZY, where Z is
the longest common prefix of ¢, ,(a), ¢, (b) and the first letters of X, Y are different.
If [V| > |Z], then for each right special factor A of s there are two distinct factors
o, (A1, ¢pr(A)V3 in ¢(s). If |V| < |Z], then |U| > |X| = |Y], thus for each left
special factor B of s there are two factors U ¢, (B), Ux$,-(B) in ¢(s). For each
¢ =0,...,d -1, the number of factors X = U¢, (A)V of (¢, o ¢)(s) of length nd
with [A| =n—1and |U| =d — |V| = cis at least equal to p(n — 1, ¢(s)) + 1. Therefore,
we get
p(nd, £,67) = p(nd, (d, © $)(S)) = (n + 1)d.

Since the function m — p(m, &, b?) is strictly increasing, this implies the first assertion
of the theorem.

For the second assertion, let s = 5155 ... be a Sturmian word written over the subset
{0,1}of {0, 1,...,b° — 1} and define

Since ¢, ,(0) = 09 and ¢, (1) = 0971, for n > 1, any factor of length dn of ¢, ,(s) is
a suffix of ¢, -(A)0, where A is a factor of length nins and 0 < k < d — 1. Since 0!
is a prefix of ¢, ,(A)0%, the number of suffixes of ¢, ,(A)0* of length nd is d(n + 1),
thus

pdn,&,b7)=dn+1)=dn+d.
Since the function m — p(m, &, b7) is strictly increasing, this completes the proof of

the theorem. O

Proor oF THEOREM 1.4. Suppose that the two bases r > 2 and s > 2 are multiplicatively
dependent and let m, £ be the coprime positive integers satisfying 7" = s¢. Then, there
exists a positive integer b such that » = b* and s = b"™.

Lets = 515, ... be a Sturmian word over the subset {0, 1} of {0, 1,..., 5™ — 1} and

define i
€= pr

i>1

By the second assertion of Lemma 3.1, there exists an integer ny such that

pn, &Y =n+m and  pm,E V™) =n+€,  forn > ny.
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Thus,
lim (p(n, &, r)+ p(n,&,s) —2n) =m+ L.
n—+0o

This proves the first assertion of the theorem.

For the second assertion of the theorem, it is sufficient to consider a real number
& whose b’-ary and b"-ary expansions are both quasi-Sturmian. By Theorem 1.5, the
b‘™-ary expansion of ¢ is also quasi-Sturmian and we deduce from the first assertion
of Lemma 3.1 that there exists an integer ny such that

pmn, &b >mn+1) and  p(n,&b™) > €n+1), forn > ny.

Therefore,
hm (p(l’l,é‘:, r) + P(”l,f, S) - 2]’1) >m+ f
n—+co
This completes the proof of the theorem. O
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