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Abstract. We prove that there exist arbitrarily small positive real num-
bers ε such that every integral power (1 + ε)n is at a distance greater
than 2−17ε| log ε|−1 to the set of rational integers. This is sharp up to
the factor 2−17| log ε|−1. We also establish that the set of real numbers
α > 1 such that the sequence of fractional parts ({αn})n≥1 is not dense
modulo 1 has full Hausdorff dimension.

1. Introduction

Throughout this note, {·} denotes the fractional part and || · || the distance to the
nearest integer. In 1935, Koksma [4] established that the sequence ({αn})n≥1 is uniformly
distributed modulo 1, for almost all (with respect to the Lebesgue measure) real numbers
α greater than 1. However, very little is known on the distribution of ({αn})n≥1 for a
specific real number α greater than 1. If α is a Pisot number, that is, an algebraic integer
greater than 1 all of whose Galois conjugates except α lie in the open unit disc, then ||αn||
tends to 0 as n tends to infinity, and the limit points of ({αn})n≥1 are contained in {0, 1}.
Pisot and Salem [8] established that if α is a Salem number, that is, an algebraic integer
greater than 1 all of whose Galois conjugates except α and 1/α lie on the unit circle,
then ({αn})n≥1 is dense but not uniformly distributed modulo 1. We do not know any
explicit transcendental real number α larger than 1 for which the sequence ({αn})n≥1 is
not uniformly distributed modulo 1.

In the present note, we are concerned with the set E composed of the real numbers α >
1 for which ({αn})n≥1 is not dense modulo 1. In 1948, Vijayaraghavan [9] established that,
for every real numbers a and b with 1 < a < b, the intersection E ∩ (a, b) is uncountable.
Noticing that, in the proof of his Theorem 2, the parameter η should be taken equal to
δ/(1+b+ . . .+bh−1) and not to 1/(1+b+ . . .+bh−1), the following quantitative statement
follows from his proof.
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Theorem V1. There exist arbitrarily small positive real numbers ε such that

inf
n≥1
‖(1 + ε)n‖ > ε2/ε.

In the same paper, Vijayaraghavan [9] also showed that, for any interval I of positive
length contained in [0, 1], there are uncountably many α all of whose integral powers are
lying in I modulo 1. This result was recently reproved by Dubickas [2]. Theorem 1 of [9]
includes the following statement.

Theorem V2. Let H ≥ 3 be an integer. For every δ > 2/H and every interval I of length
δ, there exists α in (H,H + 1) such that {αn} lies in I for every n ≥ 1.

The first purpose of the present note is to significantly improve Theorem V1, by means
of a suitable modification of a method introduced by Peres and Schlag [7] (see also [5, 6]),
based on the Lovász local lemma.

Surprisingly, it seems that no metric result is known on the size of the set E. The sec-
ond aim of this note is to give a suitable adaptation of Vijayaraghavan’s proof of Theorem
V2 for showing that E has full Hausdorff dimension.

2. Main results

Our first result is a considerable improvement of Theorem V1.

Theorem 1. There exist arbitrarily small positive real numbers ε such that

inf
n≥1
‖(1 + ε)n‖ > 2−17 ε | log ε|−1.

Theorem 1 is sharp up to the factor 2−17| log ε|−1, since the above infimum is clearly
at most equal to ε, when ε < 1/2. The numerical constant 2−17 occurring in Theorem 1
can certainly be reduced, but we have made no effort in this direction.

The Peres–Schlag method is an inductive construction. Roughly speaking, at each
step k, we remove finitely many intervals, which have (in all known applications until now)
essentially the same length. The novelty in the present application of the method is that
these intervals are far from having the same length: here, at step k, the quotient of the
longest length by the smallest one grows exponentially in k. Consequently, the original
approach of Peres and Schlag does not allow us to prove Theorem 1, and we have to
perform a more complicated induction.

In [1] we have combined the Peres–Schlag method with the mass distribution principle
to show that, in many situations, the exceptional set constructed by means of the Peres–
Schlag method has full Hausdorff dimension. A similar approach allows us to establish
that, for every small positive ε, the Hausdorff dimension of{

ε′ ∈ (ε, 2ε) : inf
n≥1
‖(1 + ε′)n‖ > c ε | log ε|−1

}
tends to 1 when c tends to 0. Brief explanations are given at the end of the proof of
Theorem 1.

The proof of Theorem 1 can be readily adapted to give the more general following
statement.
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Theorem 2. LetM be a positive real number. For any non-zero real number ξ in [−M,M ]
and for any sequence (ηn)n≥1 of real numbers, there exist a positive number γ, depending
only on M , and arbitrarily small positive real numbers ε such that

inf
n≥1
‖ξ(1 + ε)n + ηn‖ > γ ε | log ε|−1.

Our last result implies that the set of real numbers greater than 1 all of their integral
powers stay, modulo one, in a given interval of positive length is rather big. It strengthens
Corollary 5 of [2].

Theorem 3. Let ξ be a positive real number. Let ε < 1 be a positive real number. Let
(an)n≥1 be a sequence of real numbers satisfying 0 ≤ an < 1− ε for n ≥ 1. The set of real
numbers α such that an ≤ {ξαn} ≤ an + ε for every n ≥ 1 has full Hausdorff dimension.

Theorem V2 suggests the next question, which seems to be quite difficult.

Question. Let ε be a positive real number. Are there arbitrarily large real numbers α
such that α is not a Pisot number and all the fractional parts {αn}, n ≥ 1, are lying in an
interval of length ε/α ?

Dubickas [2] gave an alternative proof of a version of Theorem V2 in which the lower
bound 2/H is replaced by 8/H.

Throughout the present paper, λ denotes the Lebesgue measure. Furthermore, bxc
and dxe denote respectively the largest integer smaller than or equal to x and the smallest
integer greater than or equal to x.

3. Proof of Theorem 1

First, note that if the real numbers ε, δ and the positive integers k,m satisfy 0 < ε, δ <
1/5 and

|(1 + ε)k −m| ≤ δ,

then we get ∣∣∣∣ (1 + ε)k

m
− 1

∣∣∣∣ ≤ δ

m

and ∣∣∣∣log(1 + ε)− logm

k

∣∣∣∣ ≤ 2δ

km
.

1. Dangerous sets.

Let t be a large positive integer and set

η = 2−t, ψ =
η

214 log(1/η)
=

1

2t+14t log 2
. (3.1)
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Our aim is to find a real number ξ such that

2−t ≤ ξ ≤ 2−t+1

and, for every k ≥ 1,

ξ 6∈ Ak =

de2ηke⋃
m=beηkc

Ak,m, where Ak,m =

(
logm

k
− ψ

km
,

logm

k
+

ψ

km

)
. (3.2)

Setting ε := eξ−1, this proves our theorem in view of the preliminary observation. Indeed,
ε then satisfies

|(1 + ε)k −m| ≥ ψ

2
,

for every positive integers k,m.
In the union occurring in (3.2), the integer m varies between beηkc and de2ηke. Since

the quotient of these two numbers depends on k, we cannot use the Peres–Schlag method
as it was applied in [7, 5, 6]. Fortunately, it is possible to adapt it to prove our theorem.

In the sequel, we use an inductive process to establish that

[2−t, 2−t+1] \
⋃
k≥1

de2ηke⋃
m=beηkc

Ak,m

is non-empty. Put

h = (t+ 6)2t+6 =
26

η log 2
log

26

η
(3.3)

and
kn = hn, for n ≥ 1.

2. Initial steps.

We construct real numbers

W1,W2, . . . ,Wn−1, . . . ∈ [η, 2η], Wn ≤Wn+1, n ≥ 1,

and positive integers
l1, l2, . . . , ln, . . . , w1, w2, . . . , wn, . . .

in such a way that

Wn =
wn
2ln

, n ≥ 1,

and

Jn =

[
Wn,Wn +

1

2ln

]
⊂ Jn−1 =

[
Wn−1,Wn−1 +

1

2ln−1

]
⊂ [η, 2η], n ≥ 2.
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Let l1 be such that

2−l1 <
2ψ

hde2ηhe
≤ 2−l1+1,

and observe that
l1 ≥ 5t, (3.4)

if t is large enough. Then, for each set Ak,m with k ≤ k1, we consider the shortest dyadic

interval Â1
k,m of the form ( a1

2l1
,
a2
2l1

)
, a1, a2 ∈ Z,

which covers the interval Ak,m, and we define

Â1
k :=

de2ηke⋃
m=beηkc

Â1
k,m ⊃ Ak.

The choice of l1 implies that
λ(Â1

k,m) ≤ 4λ(Ak,m),

for beηkc ≤ m ≤ de2ηke.
Furthermore,

h∑
k=1

de2ηke∑
m=beηkc

2ψ

mk
≤ ψh2−t+3 ≤ 2−52−t.

By (3.4), this shows that there exists J1 := [W1,W1 +2−l1 ] such that J1∩ Â1
k = ∅ for every

k ≤ k1 and
W1 ≥ (1 + 2−6)η. (3.5)

We set

l2 =

⌈
log2

4k2 exp
((
W1 + 2−l1

)
k2
)

ψ

⌉
,

and, for n ≥ 3, we define ln by

ln =

⌈
log2

4kn exp
((
Wn−2 + 2−ln−2

)
kn
)

ψ

⌉
. (3.6)

Let n ≥ 2 be an integer. Instead of the interval Ak,m, where k ≤ kn, we consider the

shortest dyadic interval Ânk,m of the form( a1
2ln

,
a2
2ln

)
, a1, a2 ∈ Z,

which covers the interval Ak,m. Define

Ânk :=

de2ηke⋃
m=beηkc

Ânk,m ⊃ Ak.
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Let n ≥ 1 be an integer. We check that

2t ≤ ln+1 − ln ≤ 2h. (3.7)

In particular, we have ln+1 ≥ ln, thus

Ânk,m ⊃ Ân+1
k,m ⊃ Ak,m.

Here, we should note that Wn+1 is not defined yet, but it has to satisfy[
Wn+1,Wn+1 +

1

2ln+1

]
⊂ Jn. (3.8)

We claim that, for any such choice of Wn+1, we have

λ(Ân+1
k,m ) ≤ 4λ(Ak,m) (3.9)

for every k ≤ kn+1 and for every integer m such that

Ak,m ∩ Jn−1 6= ∅. (3.10)

The reason for (3.9) to be valid is as follows. Given an integer k, we define m1 = m1(k)
to be the maximal m for which (3.10) holds. Then

m1(k) ≤ exp
((
Wn−1 + 2−ln−1

)
k + 1

)
.

From (3.6) it follows that

λ(Ak,m) =
2ψ

mk
≥ 2ψ

m1(kn+1)kn+1
≥ 2

2ln+1
,

for k ≤ kn+1, and (3.9) holds for any possible value of Wn+1 satisfying (3.8).

3. Inductive assumption.

We describe the inductive assumption of our version of the Peres–Schlag method. It
consists, for n ≥ 2, of the following two points (in) and (iin), that have to be satisfied by
an interval J :

(in) J ∩ Ân−1k = ∅, for every k ≤ kn−1.

(iin) λ
(
J \

(⋃
k≤kn Â

n
k

))
≥ λ(J)/2.

Estimating

2h∑
k=h+1

dek(W1+2−l1 )e∑
m=bekW1c

2ψ

mk
≤ ψh2−l1 ≤ 2−l1−6,

our choice of l2 implies that

λ

(
J1 \

( ⋃
k≤k2

Â2
k

))
≥ λ(J1)

2
.

We have thus checked that (i2) and (ii2) hold for the interval J1.

4. Independence shift.

This subsection is devoted to the proof of a key lemma for the inductive step.
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Lemma 1. For n ≥ 2 and k satisfying kn ≤ k ≤ kn+1, we have

λ(Jn−1 ∩ Ân+1
k ) < 16ψλ(Jn−1).

Proof. It follows from (3.9) that it is enough to establish that

λ(Jn−1 ∩Ak) < 4ψλ(Jn−1), (3.11)

for k ≥ kn. Recall that

Ak =

de2ηke⋃
m=beηkc

(
logm

k
− ψ

km
,

logm

k
+

ψ

km

)
.

Let m0,m0 + 1, . . . ,m0 + t = m1 be the integers m for which the interval Ak,m has non-
empty intersection with the segment Jn−1. Then

λ(Jn−1 ∩Ak) ≤
m1∑

m=m0

2ψ

km

and

m0 ≥ eWn−1k − 1 ≥ eWn−1kn

2
.

We check that

max
j=0,...,t−1

(
log(m0 + j + 1)

k
− log(m0 + j)

k

)
≤ 1

m0k
≤ 2

kneWn−1kn
.

Furthermore, since 2−ln−1kn ≤ 1, we get

kne
Wn−1kn ≥ kn−1e(Wn−3+2−ln−3 )kn−1e−2

−ln−1kneWn−1h

≥ (ψ2ln−1) · 1

4
· 64

ψ

≥ 2ln−1+4 ≥ 16

λ(Jn−1)
,

for n ≥ 4. We check below that the inequality

kne
Wn−1kn ≥ 16

λ(Jn−1)
(3.12)

also holds for n = 2 and n = 3.
For n = 2, inequality (3.12) is satisfied as soon as

2he2hW1ψ ≥ 25he2ηh,
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that is, using (3.5), as soon as

e2
−5ηhψ ≥ 24.

The latter inequality is a direct consequence of (3.1) and (3.3), provided that t is sufficiently
large.

For n = 3, inequality (3.12) holds as soon as

e3hW2 ≥ 25e2(W1+2−l1 )h,

which, by (3.4), holds for t sufficiently large.
Consequently, for n ≥ 2, at least two centers of the intervals Ak,m are lying inside

Jn−1 and

λ(Jn−1) ≥ log(m1/m0)

k
− 2ψ

knm0
.

Thus, we get

λ(Jn−1 ∩Ak) ≤
m1∑

m=m0

ψ

km
≤ ψλ(Jn−1) +

2ψ

knm0
. (3.13)

Since
1

knm0
≤ 1

kn(eWn−1kn − 1)
≤ 1

2ln−1
= λ(Jn−1),

the lemma follows from (3.11) and (3.13).

5. Inductive step.

Let n ≥ 2 be an integer and Jn−1 be an interval such that (in) and (iin) hold with
J = Jn−1. We consider the set

Jn−1 \

 kn⋃
k=kn−1+1

Ânk

 =

T⋃
ν=1

Iν ,

where T ≥ 1 and the Iν are distinct intervals of the form

Iν =

[
aν

2ln
,
aν + 1

2ln

]
.

We see that

λ(Iν) =
1

2ln
, Iν ∩ Âk = ∅,

for ν = 1, . . . , T and for k ≤ kn. For a given index ν consider the set

Iν \
kn+1⋃

k=kn+1

Ân+1
k .

8



We see that

λ

Iν \ kn+1⋃
k=kn+1

Ân+1
k

 ≥ 1

2ln
−

kn+1∑
k=kn+1

λ
(
Iν ∩ Ân+1

k

)
,

thus
T∑
ν=1

λ

Iν \ kn+1⋃
k=kn+1

Ân+1
k

 ≥ T

2ln
−

T∑
ν=1

kn+1∑
k=kn+1

λ
(
Iν ∩ Ân+1

k

)
.

But
T∑
ν=1

kn+1∑
k=kn+1

λ
(
Iν ∩ Ân+1

k

)
≤

kn+1∑
k=kn+1

λ
(
Jn−1 ∩ Ân+1

k

)
≤ 16ψhλ (Jn−1) ,

by Lemma 1. We deduce from the inductive assumption (ii) that

λ(Jn−1) ≤ 2λ

Jn−1 \
 kn⋃
k=kn−1+1

Ak

 .

Furthermore, we have

T

2ln
= λ

Jn−1 \
 kn⋃
k=kn−1+1

Ak


and, by (3.1) and for t large enough,

32ψh ≤ 1

2
.

Consequently,

T∑
ν=1

λ

Iν \ kn+1⋃
k=kn+1

Ân+1
k

 ≥ 1

2
· λ

Jn−1 \
 kn⋃
k=kn−1+1

Ak


=

1

2
·
T∑
ν=1

λ(Iν).

Thus, there exists ν0 = 1, . . . , T such that

λ

Iν0 \ kn+1⋃
k=kn+1

Ân+1
k

 ≥ 1

2
λ(Iν0).

We put Jn = Iν0 . We have shown that (in) and (iin) are satisfied with J = Jn.
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6. Conclusion.

The sequence (Jn)n≥1 is a decreasing (with respect to inclusion) sequence of non-
empty compact intervals. Consequently, the intersection ∩n≥1 Jn is non-empty. By con-

struction, if ξ is in ∩n≥1 Jn, then ξ avoids every interval Ânk . This completes the proof of
Theorem 1.

We can slightly modify our construction to end up with an uncountable intersection
∩n≥1 J ′n. Indeed, in view of (3.7), the integer T occurring in the inductive step is not too
small. Thus, at each step n, we have at least two choices for the interval Jn, and we let
J ′n be the union of two such suitable intervals.

Furthermore, a (small) positive δ being given, we see that there are indeed at least
b(1 − δ)T c suitable choices for Jn at each step n, provided that the value 214 in (3.1) is
replaced by a larger number, say κ(δ), depending only on δ and tending to infinity as δ
tends to 0. Thus, we have a Cantor type construction and the Hausdorff dimension of the
resulting set Cδ can be bounded from below by means of the mass distribution principle,
as was done in [1]. Replacing the value 26 in (3.3) by

√
κ(δ), it follows from a rapid

calculation using (3.7) that the Hausdorff dimension of Cδ tends to 1 as δ approaches 0.
This establishes the metrical statement enounced after Theorem 1.

4. Proof of Theorem 3

We adapt the proof of Theorem 1 of [9]. For simplicity, we only treat the case where
ξ = 1. Set bn = an + ε for n ≥ 1. Without any loss of generality, we assume that ε ≤ 1/2.
Let η be a positive real number with η < 1. Let H be an integer such that εH > Hη > 2
and put c = bHηc − 2.

Set I1 = [H + a1, H + b1]. This is our Step 1. Since

(H + b1)2 − (H + a1)2 ≥ 2Hη ≥ c+ 2,

there is an integer j1 such that j1, . . . , j1 + c are in the interval [(H + a1)2, (H + b1)2]. For
h = j1, . . . , j1 + c− 1, let I2,h be the interval [

√
h+ a2,

√
h+ b2]. Since

(H + a1)2 ≤ h+ a2 < h+ b2 ≤ (H + b1)2,

the interval I2,h is included in I1. By construction, every real number ξ in I2,h is such that
{ξ} and {ξ2} are in [a1, b1] and [a2, b2], respectively. Let E2 be the union of the c intervals
I2,h. This completes Step 2.

We continue this process. Let h = j1, . . . , j1 + c− 1. Since

(
√
h+ b2)3 − (

√
h+ a2)3 ≥

(
(
√
h+ b2)2 − (

√
h+ a2)2

)√
h+ a2 ≥ Hε ≥ c+ 2,

there is an integer j2 such that j2, . . . , j2 + c are in the interval [(h + a2)3/2, (h + b2)3/2].
For i = j2, . . . , j2 + c−1, let I2,h,i be the interval [(i+a3)1/3, (i+ b3)1/3]. By construction,
I2,h,i is included in I2,h. Proceeding in this way, we construct at Step 3 a union E3 of
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c2 sub-intervals of I1, whose elements ξ have the property that {ξ}, {ξ2} and {ξ3} are in
[a1, b1], [a2, b2] and [a3, b3], respectively.

Continuing further in the same way, for j ≥ 4, we construct at Step j a set Ej which
is the union of cj−1 closed intervals of length approximately equal to

� (Hj + bj)
1/j − (Hj + aj)

1/j � εH−j+1/j.

Each of these intervals gives birth to c intervals at the next step. Furthermore, two different
intervals at Step j are separated by at least H−j+1/j times an absolute positive constant.
The set

Cη =
⋂
j≥1

Ej

is a Cantor type set, whose elements have the property that, for n ≥ 1, the fractional
part of their n-th power lies in [an, bn]. The Hausdorff dimension of Cη can be bounded
from below by using the mass distribution principle, as given, e.g., in Chapter 4 of [3]. We
get that the dimension of Cη is at least equal to (log c)/(logH) and, since η can be taken
arbitrarily close to 1, our theorem is proved.
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