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Abstract. Let £ > 3 be an integer. We study the possible existence
of pairs of distinct positive integers (a,b) such that any of the three
numbers a+ 1, b+ 1, and ab+ 1 is a k-th power. We further investigate
several related questions.

1. Introduction

For any integer n > 2 we have

(n?-1)((n+1)?-1)=(n*+n—-1)°> -1,

which implies that the Diophantine equation (22 —1)(y?—1) = (22 —1) has infinitely many
solutions. Equivalently, there are infinitely many pairs of integers (a, b) with 2 < a < b such
that a+1, b+ 1, and ab—+ 1 are perfect squares. This observation resembles the celebrated
problem (dating back to Diophantus) on the existence of quadruples (a1, as,as,as) of
positive rational numbers such that a;a; + 1 is a perfect square whenever 1 < ¢ < j < 4.
The reader wishing more information on this question and on related problems is directed
to the remarkable paper of Dujella [5] and to the references quoted therein.

Recently, Bugeaud & Dujella [3] proposed a generalization of the problem of Dio-
phantus to higher powers £ > 3. They investigated the possible existence of m-tuples
(@1,...,an) of positive integers such that any number a;a; + 1, with 1 <i < j < m, is
a k-th power. They proved that m is at most equal to 3 if k£ is greater than 176. In the
present note, we show among other results that if (1, a,b) is such a triple (that is, if a + 1,
b+1, and ab+1 are k-th powers), then k cannot exceed 74. Furthermore, we study several
variants of the Diophantine equation (z* — 1)(y* — 1) = (2% — 1).

Our results are stated in Section 2 and proved in Section 4, with the help of auxiliary
lemmas collected in Section 3. Section 5 is devoted to a brief discussion around some of
our results.
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2. Statement of the results

We state our first result in terms of an exponential Diophantine equation.

Theorem 1. The Diophantine equation (z* — 1)(y* — 1) = (2* — 1), in positive integers
x,Yy, 2,k with z > 2, has no solution satisfying k > 75. Furthermore, there is an absolute,
effectively computable constant ¢y such that it has no solution with k > 5 and min{z,y} >
Ci.

Unfortunately, we are not able to drop the assumption min{z,y} large enough in
Theorem 1. In case of Theorem 4 of [3], the situation is quite different, and there is no
such restriction. Furthermore, we have no relevant results on the Diophantine equations
(3 —-1)(y>—1) = (23— 1) and (2* —1)(y* — 1) = (2* — 1). Notice that Kashihara [7] (see
also Katayama & Kashihara [9]) described the set of all integer solutions to the equation
(@ -1)(y* - 1) = (2 - 1).

Our second result deals with variants of the problem of Diophantus.

Theorem 2. Let 2 < a < b and k > 3 be integers such that a + 1 and ab + 1 are k-th
powers. Then, if k > 150, none of the numbers b+ 1, ab®? + 1, and a?b+ 1 is a k-th power.
Furthermore, if k > 8 and if a is sufficiently large, then none of the numbers b+ 1, ab? +1,
and ab + 1 is a k-th power.

The proofs of Theorems 1 and 2 follow an idea already used in [3]: thanks to a strong
gap principle, we are able to use the full strength of the estimates of linear forms in two
logarithms obtained via Schneider’s method by Laurent, Mignotte & Nesterenko [10]. This
yields a very sharp upper bound for k. The key point is that we deal with rational numbers
very close to 1. This allows us furthermore to use strong results on irrationality measures
of roots of rational numbers to treat the remaining values of &, up to the smallest ones. The
reader is directed to Section 2 of [3] for more information and bibliographical references.

Actually, our method offers much flexibility and allows us to get similar results for
families of related equations.

k k

Theorem 3. Let a be a positive real number. If the Diophantine equation (z" — u)(y"* —

v) = (zF — w), in positive integers x,y, z,u,v, w, k, has a solution with
222, k>3, 1<u<z? 1<v<y® 1<w<z%

then k is bounded from above by some effectively computable number depending only on
.

It is worth to point out an immediate consequence of Theorem 3.

Corollary 1. Let n be a non-negative integer. There exists an effectively computable
constant ca(n) such that the Diophantine equation

2@ -y (yF - 1) = 2" (- 1)
has no solution with z > 2 and k > ca(n).

The (infinite) set of solutions to the Diophantine equation z(z — 1)y(y — 1) = 2(z — 1)
has been described by Katayama [8] (see also Baragar [2] who showed that, up to a change
of variables, this equation is a Markoff-type equation).
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In Section 4, we do not give full proofs of Theorems 2 and 3, but we merely content
ourselves to explain how the proof of Theorem 1 should be adapted to get Theorems 2 and
3.

3. Auxiliary lemmas
We begin by stating a strong gap principle, whose proof is close to that of the beginning
of Theorem 1 of Gyarmati [6].

Lemma 1. Let k > 3 be an integer. Let 2 < a < b be integers such that a +1, b+ 1 and
ab+ 1 are k-th powers. Then we have b > (k*a*~1)/2.

Proof : Since ab + 1 is strictly less than (a + 1)(b + 1) and both are k-th powers, we get

((ab+1)V* +1)* < (a+1)(b+ 1),
thus
k(ab+1)F=D/k < g b,

This implies that
kX (ab)*! < k*(ab + 1)F1 < (a + b)* < b + 2Fad*1,

and the claimed result follows. O

We need the following refinement, due to Mignotte [11], of a theorem of Laurent,
Mignotte & Nesterenko [10] on linear forms in two logarithms. For any non-zero algebraic
number «, we denote by h(a) its logarithmic absolute height. For instance, for any non-zero
rational number p/q, written under its irreducible form, we have h(p/q) = log max{|p|, |q|}.

Lemma 2. Consider the linear form
A =bylogas — by logasy,

where by and bs are positive integers. Suppose that oy and as are multiplicatively inde-
pendent. Put

D= [Q(O[l,()Q) : Q] / [R(Oél,Oéz) : R]

Let aq, as, h be real positive numbers, and p a real number > 1. Put A\ = logp and
X = h/\. Suppose that there exists a number xo > 0 such that x > xo and

h > D(log(Z—1 + Z—2> + log X + f([KO])> +0.023,
2 1

a; > max{1, p|loga;| — log |o;| + 2Dh(e;)}, (i =1,2),
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where

(l-l-\/a:—l)\/f_l_ log = 3 3 logz%

=1 Z +log
f(z) =log z—1 bew—1) 2 B3t L1
and
2
1 (v2+2x0 2(1+x0) 2X/1 1 402+ xo
Ko=~5|—F—"—+4/—F— —(— —)-1—7 a10a2.
A 3 9 3 \ay as 3\/@
Put

v=4x+4+1/x and m= max{25/2(1 +x)%2, (1 + 2x)5/2/x}.

Then we have the lower bound

2
1 (v 1 [v2 4w/ 1 1 8\m
ogAl>— =241 /Y _(_ _)
og [A] = )\<6+2\/9+ 3 \a, Ta/ T3 a1a2> 2102

. max{)\(l.S +2x) + log(((2 2024 (24 20)2VE ) A+ 2+ 2x)) ,Dlog 2}

where

1+2v\2 1/2 2(1 1/2
A = max{a;,as} and k*:—( + X> +X(_+§%>'

3x X
Proof : This is Theorem 2 of [11]. O

Finally, we need a result proved by means of the hypergeometric method first devel-
oped by Thue and Siegel.

Lemma 3. Let k > 3 be an integer and € > 0 be a real number. There exist effectively
computable positive constants c3 and c4 depending only on k and on € such that

1/k
1 p 3
14 - — = > —F
‘ ( a) Q‘ ag*te
holds for any a > c4 and any rational number p/q.

Proof : This is a straightforward corollary of a theorem of Baker [1]. |

4. Proofs

Proof of Theorem 1 :
Let x,y, 2z, k be positive integers with k£ > 3, z > 2, and

(@ =" -1) = (=" - 1).
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Clearly, there exist integers a and b with 2 < a < b and
a+l=zF b+1=1¢* and ab+1=2zF
We assume that £ > 75 and we aim to get a contradiction. Since a + 1 > 2% we have
b>a>2™ (1)

Furthermore, it follows from Lemma 1 that

logb > (k—1)loga+ klogk —log2 (2)
holds. We set
Ty a+1
a1 =—, Q2= )
z a

and we consider the linear form in logarithms

10g<a:1> —klog(i—y)‘.

Before applying Lemma 2 with b = 1 and b; = k in order to bound A, we need some
estimates.
Firstly, we have

A =|logas — klogaq| =

|042—1\=042—1:1/a. (3)

Secondly, from (1) and the estimation

atl_ @k_ﬂ<l (4)
a z ~alab+1) ~ b’

we deduce that
A<

> N

i (5)
Let us now define the quantities a1, as, h, p appearing in Lemma 2. We set
p=a (thus X\ =loga),
and, by (1) and (3), we may take

2
a1:1+E10g((a+1)(b+1)) and az =1+ 2log(a+1).

Indeed, we easily see that kh(a;) = h((a +1)(b+ 1)), and ajas > 4(loga)? holds, by (2).
Furthermore, since a > 2871, we may take h = \/2 and x = xo = 1/2.

We should also check that oy and as are multiplicatively independent. However, a
look at the proof of Theorem 1.5 of [11] shows that this is not needed. Indeed, we apply
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it with the choice L = 3, hence it is sufficient to check that the three numbers 1, a; and
o are distinct, which is clearly the case.

Since x = 1/2, we have v = 8 and m = 8v/2. Using (1) and (2), we get the lower
bound

1 (4 1 [64 32 322

2
Sy =422 ) aiaz — 2.51loga — log(7.5a1),

loga\3 2V 9 3 3
hence 1764
logA > — loéa aias — 2.5loga — log(7.5a1).

By (5) and after some rearrangement, we get

2 1.
% loga + 2.5loga + log(15a1) > logb — 7k—310gb

and, using (2), we obtain

71.3 72 2.5
— < .
P SwGom T Eog o0

1

which contradicts our assumption k£ > 75. This proves the first statement of the theorem.

Assume now that £ is fixed with 3 < k < 74. The constants c5 to cg occurring below
are effectively computable and depend only on k. It follows from (4) and Lemma 3 that
we have

b < c5 a(ab)®/ 2R
if a > cg. Combined with Lemma 1, this gives

p2k(k=1) < o p2k+5+5k—5

hence a contradiction for b > cg as soon as 2k(k—1) > 7k, that is, for k£ > 5. Consequently,
there exist an absolute, effectively computable, constant cg such that there is no pair of
integers (a, b) with min{a, b} > cg and such that a+1, b+ 1, ab+1 are perfect k-th powers
for some integer £ > 5. This gives the second assertion of Theorem 1. O

Proofs of Theorems 2 and 3 :

Theorem 1 covers the case where a+1, b+1 and ab+1 are assumed to be k-th powers.

To get a gap principle when a + 1, ab+ 1 and ab? + 1 are assumed to be k-th powers,
we simply observe that (ab+ 1) and (a + 1)(ab® + 1) are both k-th powers and satisfy
(a+1)(ab?+1) > (ab+1)%2. We obtain however a slightly weaker result than in Lemma 1,
namely the lower bound b > (k*¥a¥~2)1/2/2. This affects both bounds for k: the application
of Lemma 2 yields that £ < 149 and we can apply Lemma 3 only if & > 8.

To get a gap principle when a + 1, ab+ 1 and a?b + 1 are assumed to be k-th powers,
we simply observe that (a?b + 1) and (a + 1)(ab + 1) are both k-th powers and satisfy
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(a+ 1)(ab+ 1) > (a?b + 1). We obtain a result comparable to that stated in Lemma 1,
namely the lower bound b > k*¥a*~2/2. This affects solely one bound for k: the application
of Lemma 2 yields that k£ < 74 and we can apply Lemma 3 only if k£ > 6.

As for Theorem 3, setting a = ¥ —u and b = y* — v, we observe that (a+u)(b+v) >
(ab + w) if z,y, z,u, v, w, k satisfy the assumption of the theorem and if k is sufficiently
large compared to . Indeed, we cannot have zy = z in that case. Hence, we get a gap
principle, which, although not as strong as Lemma 1, is powerful enough to enable us to
apply Lemma 2. |

5. Some observations

Results of Theorem 2 can be viewed as a multiplicative analogue of a deep theorem
of Darmon & Merel [4], who proved that, for k£ > 3, there are no three terms arithmetic
progressions composed of k-th powers, that is, that the numbers a, a + b, and a + 2b
cannot be all k-th powers. Commonly, the triple (a + 1,ab + 1,ab? + 1) is viewed as the
‘multiplicative analogue’ of the triple (a,a + b, a + 2b).

The result of Darmon & Merel is proved thanks to tools developed for the resolution
of the Fermat equation (actually, they solved the Diophantine equation z* + y* = 22F),
and it may seem very surprising that results from the transcendental number theory yield
results as sharp as Theorem 2. As an explanation, we emphasize that the conditions of
application of Lemma 2 in the question considered here are such that even if we would
have used the most optimistic conjectural estimates for lower bounds of linear forms in
logarithms, we would not have been able to improve Theorem 2 significantly.
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