
TRANSCENDENCE WITH ROSEN CONTINUED
FRACTIONS

YANN BUGEAUD, PASCAL HUBERT, AND THOMAS A. SCHMIDT

Abstract. We give the first transcendence results for the Rosen con-
tinued fractions. Introduced over half a century ago, these fractions
expand real numbers in terms of certain algebraic numbers.

1. Introduction

In 1954, D. Rosen defined an infinite family of continued fraction algo-

rithms [21]. Introduced to aid in the study of certain Fuchsian groups, these

continued fractions were applied some thirty years later by J. Lehner [15]

in the study of Diophantine approximation by orbits of these groups.

The Rosen continued fractions and variants have been of recent interest.

For studies of their dynamical and arithmetical properties, see [8], [19],

[12]. For their applications to the study of geodesics on related hyperbolic

surfaces, see [24], [7], [18]. For applications to Teichmüller geodesics arising

from (Veech) translation surfaces, see [28], [5], [27] and [6]. Several basic

questions remain open, including that of arithmetically characterizing the

real numbers having a finite Rosen continued fraction expansion; see [16],

[14] and [6]. Background on Rosen continued fractions is given in the next

section.

The first transcendence criteria for regular continued fractions were proved

by E. Maillet, H. Davenport and K. F. Roth, A. Baker, and recently im-

proved by B. Adamczewski and Y. Bugeaud; see [1, 2, 10] and the references

Date: 14 February 2011.
2000 Mathematics Subject Classification. 11J70, 11J81 .
Key words and phrases. Rosen continued fractions, Liouville inequality, Hecke groups,

transcendence.
The second named author is partially supported by project blanc ANR: ANR-06-

BLAN-0038. The third author thanks FRUMAN, Marseille and the Université P.
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given there. In particular, Theorem 4.1 of [2] asserts that if ξ is an alge-

braic irrational number with sequence of convergents (pn/qn)n≥1, then the

sequence (qn)n≥1 cannot increase too rapidly. It is natural to ask whether

similar transcendence results can be proven using Rosen continued fractions.

We give the first such results.

Theorem 1.1. Fix λ = 2 cos π/m for an integer m > 3 , and denote the

field extension degree [Q(λ) : Q] by D. If a real number ξ /∈ Q(λ) has

an infinite expansion in Rosen continued fraction over Q(λ) of convergents

pn/qn satisfying

lim sup
n→∞

log log qn
n

> log(2D − 1) ,

then ξ is transcendental.

For stating our second result, we associate to the Rosen continued fraction

expansion

[ ε1(x) : r1(x), ε2(x) : r2(x), . . . , εn(x) : rn(x), . . .] :=
ε1

r1λ+
ε2

r2λ+ · · ·
of a real number x in [−λ/2, λ/2) the sequence of pairs of integers (εi, ri)i≥1,

which we call the partial quotients, and thus consider A = {±1}×N as the

alphabet of the Rosen continued fraction expansions.

As usual, we denote the length of a finite word U = u1 · · ·uk as |U | = k.

For any positive integer s, we write U s for the word U · · ·U (s times repeated

concatenation of the word U). More generally, for any positive real number

s, we denote by U s the word U bscU ′, where U ′ is the prefix of U of length

d(s− bsc)|U |e.
Just as Adamczewski and Bugeaud [1, 10] showed for regular continued

fraction expansions, a real number whose Rosen continued fraction expan-

sion is appropriately “stammering” must be transcendental.

Theorem 1.2. Fix λ = 2 cos π/m for an integer m > 3 , and denote the

field extension degree [Q(λ) : Q] by D. Let ξ be an infinite Rosen continued

fraction with convergents (pn/qn)n≥1 such that

B := lim sup
n

q1/nn < +∞ .
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Write

b := lim inf
n

q1/nn .

Assume that there are two infinite sequences (Un)n≥1 and (Vn)n≥1 of finite

words over the alphabet A and an infinite sequence (wn)n≥1 of real numbers

greater than 1 such that, for n ≥ 1, the word UnV
wn
n is a prefix of the infinite

word composed of the partial quotients of ξ. If

(1) lim sup
n→+∞

|Un|+ wn|Vn|
2|Un|+ |Vn|

>
3D

2
· logB

log b
,

then ξ is either (at most) quadratic over Q(λ) or is transcendental.

Lemma 2.1 gives that log b is positive.

The key to our proofs is that both numerator and denominator of a

Rosen convergent dominate their respective conjugates in an appropriate

fashion; see Lemma 3.1. From this one can bound the height of a Rosen

convergent in terms of its denominator; see Lemma 3.2. Then, exactly as

in the case of regular continued fractions, we apply tools from Diophantine

approximation, namely an extension to number fields of the Roth theorem,

for the proof of Theorem 1.1, and the Schmidt Subspace Theorem for the

proof of Theorem 1.2.

Both theorems are weaker than their analogues for regular continued frac-

tions, since we must work in a number field of degree D rather than in the

field Q. However, for m = 4 and m = 6, that is, for λ4 =
√

2 and λ6 =
√

3,

our results can be considerably strengthened and we can get, essentially, the

exact analogues of the results established for the regular continued fractions.

The key point is that, in both cases, for every convergent pn/qn, exactly one

of pn, qn is in Z, the other being in λZ ; see Remark 2 below.

Thanks. We thank both Kariane Calta and the referee for their comments.

2. Background

2.1. Rosen fractions. We set λ = λm = 2 cos π
m

and Im = [−λ/2, λ/2 )

for m ≥ 3. For a fixed integer m ≥ 3, the Rosen continued fraction map is
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defined by

T (x) =


∣∣ 1
x

∣∣ − λb
∣∣ 1
λx

∣∣+ 1
2
c x 6= 0;

0 x = 0

for x ∈ Im; here and below, we omit the index “m” whenever it is clear from

context. For n ≥ 1, we define

εn(x) = ε(T n−1x) and rn(x) = r(T n−1x)

with

ε(y) = sgn(y) and r(y) =

⌊ ∣∣∣∣ 1

λy

∣∣∣∣+
1

2

⌋
.

Then, as Rosen showed in [21], the Rosen continued fraction expansion of

x is given by

[ ε1(x) : r1(x), ε2(x) : r2(x), . . . , εn(x) : rn(x), . . .] :=
ε1

r1λ+
ε2

r2λ+ · · ·
.

As usual we define the convergents pn/qn of x ∈ Im by(
p−1 p0
q−1 q0

)
=

(
1 0
0 1

)
and (

pn−1 pn
qn−1 qn

)
=

(
0 ε1
1 λr1

)(
0 ε2
1 λr2

)
· · ·
(

0 εn
1 λrn

)
for n ≥ 1. From this definition it is immediate that |pn−1qn − qn−1pn| = 1,

and that the well-known recurrence relations

p−1 = 1; p0 = 0; pn = λrnpn−1 + εnpn−2, n ≥ 1

q−1 = 0; q0 = 1; qn = λrnqn−1 + εnqn−2, n ≥ 1,

hold. It also follows that

(2)
pn
qn

= [ ε1 : r1, ε2 : r2, . . . , εn : rn]

and

(3)
qn−1
qn

= [ 1 : rn, εn : rn−1, . . . , ε2 : r1] .
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We define

(4) Mn =

(
pn−1 pn
qn−1 qn

)
, and find that x = Mn · T n(x),

where · denotes the usual fractional linear operation, namely

x =
pn−1T

n(x) + pn
qn−1T n(x) + qn

.

2.2. Approximation with Rosen fractions. We briefly discuss the con-

vergence of the “convergents” to x. One can rephrase some of Rosen’s origi-

nal arguments in terms of the (standard number theoretic) natural extension

map T (x, y) = (T (x), 1
rλ+εy

) where r = r1(x) and ε = ε1(x) . The “mirror

formula” Equation (3) shows that T n(x, 0) = (T n(x), qn−1

qn
) . Extending

earlier work of H. Nakada, it is shown in [8] that T (x, y) has planar domain

Ω with y-coordinates between 0 and R = R(λ) , where R = 1 if the index

m is even and, otherwise, R is the positive root of R2 + (2− λ)R − 1 = 0 ,

in which case we have 1 > R > λ/2 (see Lemma 3.3 of [8]). Therefore,

the sequence (qn)n≥1 is strictly increasing. But, as Rosen mentions, if x has

infinite expansion, then either εn = 1 or rn > 1 occurs infinitely often; from

this one has both that qn ≥ 1 for all n and that the limit as n tends to

infinity of qn is infinite.

One easily adapts Rosen’s arguments so as to find the following.

Lemma 2.1. For every x ∈ Im of infinite expansion, we have

lim inf
n

q1/nn > 1 .

Proof. We know that the sequence (qn)n≥1 increases and that, if either

εn = 1 or rn > 1, then qn > λqn−1. Furthermore, there are no more than

h consecutive indices i with (εi, ri) = (−1, 1), with h = m/2, (m − 3)/2

depending on the parity of m; see [21] or [8]. Consequently, for any n, there

is some i = 1, . . . , h+ 1 such that qn+i > λqn+i−1, giving

qn+h+1 ≥ qn+i > λqn+i−1 ≥ λqn .

As q1 ≥ λ, letting s(n) = 1 +

⌊
n− 1

h+ 1

⌋
, we have qn ≥ λs(n). Since λ > 1,

this proves the lemma. �
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Remark 1. In fact, H. Nakada [20] shows that for almost all such x,

limn→∞
1

n
log qn exists, being equal to one half of the entropy of T . He also

shows that the entropy equals C · (m− 2)π2/(2m), where C = 1/ log(1 +R)

when m is odd, and equals 1/ log[(1 + cos π/m)/ sin π/m] when m is even.

This C is the normalizing constant of the invariant measure with density

(1 + xy)−2 on the domain Ω of the planar natural extension T ; see [8].

Rosen also gave bounds on |x− pn/qn | . Using Equation (4)∣∣∣∣x− pn
qn

∣∣∣∣ =
1

q2n

1

| qn+1

qn
+ T n+1x |

,

from which Nakada (see [20] Lemma 4) finds

1

qn (qn+1 + qn)
≤
∣∣∣∣x− pn

qn

∣∣∣∣ ≤ c1
q2n
,

with c1 = c1(λ) = R/(1−Rλ/2). (The lower bound is in [21].)

Now, from Equation (4) one also finds∣∣∣∣x− pn
qn

∣∣∣∣ =
1

qnqn+1

1

| 1 + qn
qn+1

T n+1x |
.

Since the closed, compact planar region Ω is of finite measure with respect

to the measure with density (1 + xy)−2, we certainly have that T n+1(x, 0)

remains a bounded distance from the curve y = −1/x. Thus, there is some

c2 such that

(5)

∣∣∣∣x− pn
qn

∣∣∣∣ < c2
qnqn+1

.

Rosen, arguing differently, gave a c2 with value 1/(1 − λ/2); in particular,

convergence of the approximation sequence follows. Rosen’s value is not

optimal. To see this, one combines Proposition 4.1 of [8] with the approach

of Theorems 4.4 and 4.5 (depending on parity of m) also of [8].

2.3. Traces in Hecke groups. Rosen introduced his continued fractions

to study the Hecke groups. The Hecke (triangle Fuchsian) group Gm with
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m ∈ {3, 4, 5, . . . } is the group generated by(
1 λm
0 1

)
and

(
0 −1
1 0

)
,

with λm as above. The Rosen expansion of a real number terminates at a

finite term if and only if x is a parabolic fixed point of Gm ; see [21]. These

points are clearly contained in Q(λm) but in general there are elements of

this field that have infinite Rosen expansion; see [16], [14] and [6].

Remark 2. The values of finite Rosen expansion form the set Gm ·∞, which

is in fact a subset of λQ(λ2)∪{∞}. To see this, one uses induction on word

length in the generators displayed above — an ordered pair (a, c) giving

a column of any element of Gm must be such that exactly one element of

the pair is in Z[λ2] , and the other is in λZ[λ2] . Note that this also applies

to convergents pn/qn: exactly one of pn, qn is in Z[λ2], the other being in

λZ[λ2] .

When m = 3 , we have G3 = PSL(2,Z). In general each Gm is isomorphic

to the free product of a cyclic group of order two and a cyclic group of order

m. Recall that a Fuchsian triangle group is generated by even words in the

reflections about the sides of some hyperbolic triangle. Thus any Fuchsian

triangle group is of index two in the group generated by these reflections;

for each Gm, we denote this larger group by ∆m .

Since λm is the sum of the root of unity ζ2m := exp 2πi/(2m) with its

complex conjugate, Q(λm) is a number field of degree d := φ(2m)/2 over

the rationals, where φ denotes the Euler totient function.

The following key phenomenon property of Hecke groups can be shown

in various manners. The result holds for a larger class of groups, from

Corollary 5 of [26], due to [11] (extending the arguments from Gm to ∆m is

straightforward). Independent of this earlier work, Bogomolny-Schmit [7]

gave a clever proof of the result specifically for ∆m . See the next remark

for another perspective.

Theorem 2.1. Fix m as above, and let ∆m be the full reflection group in

which Gm has index two. Then for any M ∈ ∆m whose trace is of absolute
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value greater than 2, we have

| tr(M) | ≥ | σ( tr(M) ) | ,

where σ is any field embedding of Q(λm) .

Remark 3. This result can be proven “geometrically”. Up to conjugacy,

each of the Hecke groups appears as the Veech group of some translation

surface; see [28]. Those elements of trace greater than 2 in absolute value

are the “derivatives” of the affine pseudo-Anosov diffeomorphisms of the

surface. The dilatation of a pseudo-Anosov φ is the dominant eigenvalue λ

of the action of φ on the integral homology of the underlying surface. (The

other eigenvalues are hence conjugates of λ.) The corresponding element of

the Veech group has trace of absolute value λ + λ−1 from which it follows

that this trace dominates its conjugates.

2.4. Approximation by algebraic numbers. The following result was

announced by Roth [23] and proven by LeVeque; see Chapter 4 of [17]. (The

version below is Theorem 2.5 of [9].) Recall that given an algebraic number

α, its naive height, denoted by H(α) , is the largest absolute value of the

coefficients of its minimal polynomial over Z .

Theorem 2.2. (Roth-LeVeque) Let K be a number field, and ξ a real al-

gebraic number not in K . Then, for any ε > 0 , there exists a positive

constant c(ξ,K, ε) such that

| ξ − α | > c(ξ,K, ε)

H(α)2+ε

holds for every α in K.

The logarithmic Weil height of α lying in a number field K of degree D

over Q is h(α) = 1
D

∑
ν log+ maxν∈MK

{||α||ν}, where log+ t equals 0 if t ≤ 1

and MK denotes the places (finite and infinite “primes”) of the field, and

|| · ||ν is the ν-absolute value. This definition is independent of the field K

containing α. Recall that the product formula states that the product over

ν ∈MK of the ||α||ν equals 1. Using this, for α, β ∈ K, with β 6= 0, one has

(6) h(α/β) ≤
∑
σ

1

D
log max{|σ(α)|, |σ(β)|} ,
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where the sum in σ is taken over the field embeddings of K into the complex

numbers, and | · | denotes the usual complex norm.

The two heights are related by

(7) logH(α) ≤ deg(α)h(α) + log 2,

for any non-zero algebraic number α; see Lemma 3.11 from [29].

We recall a consequence of the W. Schmidt Subspace Theorem; see The-

orem 9A of [25].

Theorem 2.3. Let d be a positive integer and ξ be a real algebraic number

of degree greater than d. Then, for every positive ε, there exist only finitely

many algebraic numbers α of degree at most d such that

|ξ − α| < H(α)−d−1−ε.

Note that the Roth theorem is exactly the case d = 1 of Theorem 2.3.

In the proof of Theorem 1.2, we could apply Theorem 2.3, but the al-

gebraic numbers α which we use to approximate ξ are of degree at most

2 over a fixed number field. In this situation, the next theorem, kindly

communicated to us by J.-H. Evertse [13], yields a stronger result than the

previous one.

Theorem 2.4. (Evertse) Let K be a real algebraic number field of degree d.

Let t be a positive integer and ξ be a real algebraic number of degree greater

than t over K. Then, for every positive ε, there exist only finitely many

algebraic numbers α of degree t over K and δ over Q such that

|ξ − α| < H(α)−dt(t+1+ε)/δ.

Note that Theorem 2.4 extends Theorem 2.2.

2.5. Sturmian sequences: towards an application of Theorem 1.2.

To give an explicit family of Rosen expansions satisfying the hypotheses of

Theorem 1.2, we recall a result of [3] on Sturmian sequences.

Let a and b be letters in some alphabet. The complexity function of a

sequence u = u1u2 · · · with values in {a, b} is given by letting p(n,u) be the

number of distinct words of length n that occur in u. A sequence u is called
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Sturmian if its complexity satisfies p(n,u) = n + 1 for all n. As Arnoux

[4] writes, one can obtain any such sequence by taking a ray with irrational

slope in the real plane and intersecting it with an integral grid, assigning a

when the ray intersects a horizontal grid line and b when it meets a vertical

grid line. Indeed, the slope of a Sturmian sequence is the density of a in the

sequence (one shows that the limit as n tends to infinity of the average of

the number of occurrences a in u1 · · ·un exists; see [4], Proposition 6.1.10).

Lemma 2.2. Let u be a Sturmian sequence whose slope has an unbounded

regular continued fraction expansion. Then, for every positive integer n,

there are finite words U , V and a positive real number s such that UV s is

a prefix of u and |UV s| ≥ n|UV |.

Proof. This follows from the proof of Proposition 11.1 from [3]. �

Remark 4. We apply the above lemma to Sturmian sequences where both

a, b are of the form (ε, r), with ε = ±1 and r ∈ N. In particular, we use this

in the context of Rosen expansions to prove Corollary 4.1.

3. Bounding the height of convergents

In what follows, we fix λ = λm for some m > 3, and suppose that

ξ ∈ (0, λ/2) is a real algebraic number having an infinite Rosen continued

fraction expansion over Q(λ) . Our goal is to estimate the naive height

H(pn/qn ) of the nth convergent pn/qn. In light of Theorem 2.1, we let n0

be the least value of n such that qn > 2 .

Lemma 3.1. Let c3 = c3(λ) be defined by c3 = minσ
|σ(λ) |
λ

, where the

minimum is taken over all field embeddings of Q(λ) into R . Then for all

n ≥ n0, and any such σ , we have both

qn ≥ c3 |σ(qn) | and pn ≥ c3 |σ(pn) | .

Proof. For any n ≥ n0, recall that Mn =

(
pn−1 pn
qn−1 qn

)
; this is clearly an

element of ∆m . By Theorem 2.1 we have qn + pn−1 ≥ |σ(qn + pn−1) | .
Now let j ∈ N and set

Mn,j =

(
pn−1 pn
qn−1 qn

)(
1 jλ
0 1

)
=

(
pn−1 pn + jλpn−1
qn−1 qn + jλqn−1

)
.
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This is also an element of ∆m of trace greater than 2, and hence

| pn−1 + qn + jλqn−1 | ≥ |σ(pn−1 + qn) + jσ(λqn−1) | .

Since this holds for all positive j , we must have that λqn−1 ≥ |σ(λqn−1) | .
That is,

qn−1 ≥
|σ(λ) |
λ
|σ(qn−1)| ≥

(
min
σ

|σ(λ) |
λ

)
|σ(qn−1)| .

Similarly, using

Nn,j =

(
pn−1 pn
qn−1 qn

)(
1 0
jλ 1

)
=

(
pn−1 + jλpn pn
qn−1 + jλqn qn

)
,

we find

pn ≥
|σ(λ) |
λ
|σ(pn)| ≥

(
min
σ

|σ(λ) |
λ

)
|σ(pn)| .

�

Remark 5. We conjecture that in fact qn is always greater than or equal

to its conjugates, thus that in the above one can replace c3 by 1.

Lemma 3.2. Let D denote the field extension degree [Q(λ ) : Q ] . There

exists a constant c4 = c4(λ) such that for all n ≥ n0,

H(pn/qn) ≤ c4q
D
n .

Proof. Since pn and qn are algebraic integers of degree at most D, it follows

from Lemma 3.1 and Equation (6) that

h(pn/qn) ≤
∑
σ

1

D
log max{|σ(pn)|, |σ(qn)|}

where σ runs through the complex embeddings. We thus have

h(pn/qn) ≤ c′4 + log qn

for a suitable positive constant c′4. Using (7), we get the asserted estimate.

�

Lemma 3.3. Let α be a real number in [−λ/2, λ/2) with an ultimately

periodic expansion in Rosen continued fraction. Denote by (pn/qn)n≥1 the

sequence of its convergents. Denote by µ the length of the preperiod and by

ν the length of the period, with the convention that µ = 0 if the expansion is
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purely periodic. Then α is of degree at most 2 over Q(λ), and there exists

c5 = c5(λ, α) such that

H(α) ≤ c5(qµqµ+ν)
D.

Proof. In the notation of Equation (4), α is fixed by M = M−1
µ Mµ+ν . It thus

satisfies a quadratic equation with entries in Z[λ], and hence is of degree

at most 2 over Q(λ). Indeed, α is a root of f(x) = cx + (d − a)x − b with

a, b, c, d denoting the entries of M . Each entry is a Z-linear combination of

monomials of the form rs with r an entry of Mµ and s an entry of Mµ+ν .

Now, α is also a root of f̃(x) =
∏

σ σ(f)(x) ∈ Z[x], where σ(f) denotes

the result of applying σ to the coefficients of f(x). By Lemma 3.1, all of the

conjugates of each of pµ, pµ−1, qµ−1, qµ can be bounded by the product of qµ

with a constant depending upon α and λ. Similarly for the entries of Mµ+ν .

After some computation, we conclude that the height of α is � qDµ q
D
µ+ν .

(One checks that the case of µ = 0 is subsumed by the above.) �

Remark 6. Whereas a real number whose regular continued fraction expan-

sion is ultimately periodic is exactly of degree two over the field of rational

numbers, in the previous lemma the words “at most” are necessary. Indeed,

x = 1 has an ultimately periodic Rosen expansion with respect to any λm

with m even; see [21]. Further examples of elements of Q(λm) with periodic

expansions are easily given when m ∈ {4, 6}; see Corollary 1 of [24]. Yet

further examples, including cases with m ∈ {7, 9}, are given in [22], [14].

4. Transcendence results

As usual, � and � denote inequality with implied constant.

4.1. Applying Roth–LeVeque: the proof of Theorem 1.1. We now

show that the sequence of denominators of convergents to an algebraic num-

ber cannot grow too quickly. Theorem 1.1 then follows.

Proof. Let ε be a positive real number. Let ζ be an algebraic number having

an infinite Rosen expansion with convergents rn/sn.

By the Roth–LeVeque Theorem 2.2, we have

|ζ − rn/sn| � H(rn/sn)−2−ε, for n ≥ 1.
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And, hence by Lemma 3.2, for n ≥ n0 = n0(ζ), we have |ζ − rn/sn| �
s−2D−Dεn . Inequality (5) then gives that there exists a constant c6 (indepen-

dent of n ≥ n0) such that

sn+1 < c6s
2D−1+Dε
n .

Set a = 2D − 1 + Dε . For j < n0, define `j such that sj < `js
a
j−1 . We

set c7 = max{1, c6, `1, . . . , `n0−1} and find that for any n > 1

sn+1 < c7s
a
n < c7(c7s

a
n−1)

a ≤ (c7sn−1)
a2

and continuing in this manner, we have sn+1 < (c7s1)
an . Since sn+1 > sn

letting c8 = c7s1, gives log sn < an log c8 . From this follows that

lim sup
n→+∞

log log sn
n

< log(D(2 + ε)− 1).

Letting ε go to zero, we see that every algebraic number satisfies

lim sup
n→+∞

log log sn
n

≤ log(2D − 1),

as asserted. �

4.2. Proof of Theorem 1.2 and an application.

Proof. With λ = 2 cos π/m fixed, given ξ of infinite Rosen continued fraction

with convergents (pn/qn)n≥1, we let b = lim infn q
1/n
n and B = lim supn q

1/n
n ,

and assume that B <∞. Let η be a positive real number with b−1 < η < b.

Since there are only finitely many n with either q
1/n
n < b−η or q

1/n
n > B+η,

we have both that qn � (b− η)n and qn � (B + η)n .

Suppose that w is a positive real number and U , V are finite words in

{±1} × N such that UV w is a prefix of the infinite word composed of the

partial quotients of ξ. Denote by α the real number of degree at most two

over Q(λ) whose Rosen continued fraction is given by the word UV ∞, where

V ∞ means the concatenation of infinitely many copies of V . Set |U | = u

and |V | = v. Since ξ and α have their first bu + vwc partial quotients in

common, we have

|ξ − α| < c1 q
−2
bu+vwc � (b− η)−2(u+vw).
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Furthermore, it follows from Lemma 3.3 that

H(α)� (qu qu+v)
D � (B + η)D(2u+v).

Combined with the previous inequality, this gives

|ξ − α| � H(α)−2(u+vw) log(b−η)/(D(2u+v) log(B+η)).

Now suppose that ξ is algebraic of degree greater than two over Q(λ).

Then, for every ε > 0, there exists a positive constant C(ε) such that every

real algebraic number β of degree at most 2 over Q(λ) satisfies

|ξ − β| > C(ε)H(β)−3−ε.

This follows from Theorem 2.2 if β is in Q(λ) and, otherwise, by applying

Theorem 2.4 with t = 2 and dt = δ to each subfield K of Q(λ).

This proves that ξ must be transcendental if there are u, v, w such that

u+ vw is arbitrarily large and

2(u+ vw) log b

D(2u+ v) logB
> 3,

as asserted. �

Corollary 4.1. A Rosen continued fraction whose sequence of partial quo-

tients is Sturmian with slope of unbounded regular continued fraction partial

quotients represents a transcendental number.

Proof. Combine Lemma 2.2 with Theorem 1.2. �

Remark 7. Using the Subspace Theorem as in [1, 10] does not yield in

general an improvement of Theorem 1.2. In case u = 0, b = B, inequality (1)

reduces to w > 3D/2, while, proceeding as in [1, 10], we would get w > 2D−
1. However, if b is much smaller than B and D is small, then the approach

of [1, 10] presumably gives a slightly better result than Theorem 1.2.
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