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Abstract. Let b ≥ 2 be an integer and ξ an irrational real number. We prove

that, if the irrationality exponent of ξ is equal to 2 or slightly greater than

2, then the b-ary expansion of ξ cannot be ‘too simple’, in a suitable sense.

Our result applies, among other classical numbers, to badly approximable

numbers, non-zero rational powers of e, and log(1 + 1
a

), provided that the

integer a is sufficiently large. It establishes an unexpected connection between

the irrationality exponent of a real number and its b-ary expansion.

1. Introduction and main result

Throughout the present paper, b always denotes an integer greater than or equal

to 2 and ξ a real number. There exists a unique infinite sequence (aj)j≥1 of integers

from {0, 1, . . . , b− 1}, called the b-ary expansion of ξ, such that

ξ = bξc+
∑
j≥1

aj
bj

(1.1)

and aj 6= b − 1 for infinitely many indices j. Here, b·c denotes the integer part

function. Clearly, the sequence (aj)j≥1 is ultimately periodic if, and only if, ξ is

rational.

The real number ξ is called normal to base b if, for any positive integer k, each

one of the bk blocks of k digits from {0, 1, . . . , b− 1} occurs in the b-ary expansion

a1a2 . . . of ξ with the same frequency 1/bk. The first explicit example of a number

normal to base 10, namely the number

0.1234567891011121314 . . . ,

whose sequence of digits is the concatenation of all positive integers ranged in

increasing order, was given in 1933 by Champernowne [15]; see the monograph [13]
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for further results. Almost all real numbers (here and below, ‘almost all’ always

refers to the Lebesgue measure) are normal to every base b, but proving that a

specific number, like e, π,
√

2 or log 2 is normal to some base remains a challenging

open problem, which seems to be completely out of reach.

In the present paper, we focus our attention to apparently simpler questions.

We take a point of view from combinatorics on words. Let A be a finite set called

an alphabet and denote by |A| its cardinality. A word over A is a finite or infinite

sequence of elements of A. For a (finite or infinite) word x = x1x2 . . . written

over A, let n 7→ p(n,x) denote its subword complexity function which counts the

number of different subwords of length n occurring in x, that is,

p(n,x) = #{xj+1xj+2 . . . xj+n : j ≥ 0}, n ≥ 1.

Clearly, we have

1 ≤ p(n,x) ≤ |A|n, n ≥ 1.

If x is ultimately periodic, then there exists an integer C such that p(n,x) ≤ C for

n ≥ 1. Otherwise, we have

p(n+ 1,x) ≥ p(n,x) + 1, n ≥ 1, (1.2)

thus p(n,x) ≥ n+ 1 for n ≥ 1. There exist uncountably many infinite words s over

{0, 1} such that p(n, s) = n+ 1 for n ≥ 1. These words are called Sturmian words.

Classical references on combinatorics on words and on Sturmian sequences include

[19, 23, 9].

A natural way to measure the complexity of the real number ξ written in base b

as in (1.1) is to count the number of distinct blocks of given length in the infinite

word a = a1a2 . . .. Thus, for n ≥ 1, we set p(n, ξ, b) = p(n,a). Obviously, we have

p(n, ξ, b) = #{aj+1aj+2 . . . aj+n : j ≥ 0}, n ≥ 1,

and

1 ≤ p(n, ξ, b) ≤ bn, n ≥ 1,

where both inequalities are sharp.

If ξ is normal to base b, then p(n, ξ, b) = bn for every positive integer n. Clearly,

the converse does not always hold. To establish a good lower bound for p(n, ξ, b)

is a first step towards the confirmation that the real number ξ is normal to base b.
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This point of view has been taken by Ferenczi and Mauduit [17] in 1997. It follows

from their approach (see also [8]) that we have

lim
n→+∞

(
p(n, ξ, b)− n

)
= +∞,

for every algebraic irrational number ξ and every integer b ≥ 2. Subsequently, by

means of a new transcendence criterion established in [6], their result was improved

in [4] as follows.

Theorem 1.1. For every integer b ≥ 2, every algebraic irrational number ξ satisfies

lim
n→+∞

p(n, ξ, b)

n
= +∞.

Much less is known for specific transcendental numbers. The only result available

so far was obtained in [3]; see also Section 8.5 of [13]. Before stating it, we recall a

basic notion from Diophantine approximation.

Definition 1.2. The irrationality exponent µ(ξ) of an irrational real number ξ is

the supremum of the real numbers µ such that the inequality∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qµ

has infinitely many solutions in rational numbers p
q .

The theory of continued fraction implies that every irrational real number ξ

satisfies µ(ξ) ≥ 2. Combined with an easy covering argument, we get that the

irrationality exponent of almost every real number is equal to 2. Theorem 1 of

[3], reproduced below as Theorem 1.3, extends the result of Ferenczi and Mauduit

mentioned above to real numbers whose irrationality exponent is equal to 2 (recall

that, by Roth’s theorem [24], the irrationality exponent of every real algebraic

irrational number is equal to 2).

Theorem 1.3. For every integer b ≥ 2, every irrational real number ξ whose

irrationality exponent is equal to 2 satisfies

lim
n→+∞

(
p(n, ξ, b)− n

)
= +∞.

Theorem 1.3 is an almost immediate consequence of two combinatorial state-

ments established in [11] and [5] on the structure of Sturmian words. It applies

to a wide class of classical numbers, including non-zero rational powers of e, badly
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approximable numbers, tan 1
a , where a is a positive integer, etc. Further examples

of real numbers whose irrationality exponent is known to be equal to 2 are listed

in [3].

Theorem 1.3 covers all what is known at present on the b-ary expansion of

transcendental numbers. The main result of the present paper is the following

considerable improvement of Theorem 1.3.

Theorem 1.4. Let b ≥ 2 be an integer and ξ an irrational real number. If µ

denotes the irrationality exponent of ξ, then

lim inf
n→+∞

p(n, ξ, b)

n
≥ 1 +

1− 2µ(µ− 1)(µ− 2)

µ3(µ− 1)
. (1.3)

and

lim sup
n→+∞

p(n, ξ, b)

n
≥ 1 +

1− 2µ(µ− 1)(µ− 2)

3µ3 − 6µ2 + 4µ− 1
. (1.4)

In particular, every irrational real number ξ whose irrationality exponent is equal

to 2 satisfies

lim inf
n→+∞

p(n, ξ, b)

n
≥ 9

8
and lim sup

n→+∞

p(n, ξ, b)

n
≥ 8

7
. (1.5)

We display an immediate consequence of Theorem 1.4.

Theorem 1.5. For any integer b ≥ 2 we have

lim inf
n→+∞

p(n, e, b)

n
≥ 9

8
and lim sup

n→+∞

p(n, e, b)

n
≥ 8

7
.

Theorem 1.4 establishes an unexpected connection between the irrationality ex-

ponent of a real number and its b-ary expansion. It gives a non-trivial result on the

b-ary expansion of a real number ξ when 2 ≤ µ(ξ) < 2.1914 . . . It applies to a much

wider class of classical numbers than Theorem 1.3, which includes in particular the

transcendental number log(1 + 1
a ), where a is a large positive integer. More exam-

ples are given in Section 2. Theorem 1.4 is sharp up to the values of the numerical

constants occurring in (1.3) to (1.5).

The present paper illustrates the fruitful interplay between combinatorics on

words and Diophantine approximation, which has already led to several recent

progress. The proof of Theorem 1.4, given in Section 3, is mostly combinatorial

and essentially self-contained. The main ingredient is the study of two new com-

binatorial exponents which measure the repetitions occurring at the beginning of
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an infinite word x = x1x2x3 . . .: a (classical) exponent rep and a uniform exponent

Rep. These exponents are defined as follows (see Definition 3.4): for every positive

real number ε, for arbitrary large integers n (resp., for every sufficiently large inte-

ger n), the prefix of x of length bn(rep(x) + ε)c (resp. bn(Rep(x) + ε)c) contains

two (possibly overlapping) distinct occurrences of a word of length n, and this is

not anymore true if rep(x) and Rep(x) are replaced by smaller numbers. The key

point of the proof of Theorem 1.4 is Theorem 3.5 below, where we establish that

Rep(x) is always greater than rep(x) (provided that, of course, rep(x) is finite).

Combined with the fact that n 7→ p(n,x) is increasing (when x is not ultimately

periodic) and with an easy relationship, given in Lemma 3.6, between rep(x) and

the irrationality exponent of the real number whose digits in some integer base are

x1, x2, x3, . . ., we get Theorem 1.4.

2. A further result, comments, and examples

A key ingredient for the proof of Theorem 1.4 is the study of a complexity

function which takes into account the smallest return time of a factor of an infinite

word. For an infinite word x = x1x2 . . . and an integer n ≥ 1, set

r(n,x) = min{m ≥ 1 : xi . . . xi+n−1 = xm−n+1 . . . xm for some i with 1 ≤ i ≤ m−n}.

Said differently, r(n,x) denotes the length of the smallest prefix of x containing

two (possibly overlapping) occurrences of some word of length n. The function

n 7→ r(n,x) has been introduced and studied in [14], where the following two

assertions are established. For every infinite word x which is not ultimately periodic,

there exist arbitrarily large integers n such that r(n,x) ≥ 2n+ 1. The only infinite

words x such that r(n,x) ≤ 2n+ 1 for n ≥ 1 and which are not ultimately periodic

are the Sturmian words.

Let ξ be an irrational real number and b ≥ 2 be an integer. Write ξ in base b as

in (1.1) and set a = a1a2 . . . For n ≥ 1, set r(n, ξ, b) = r(n,a). The following result

asserts that, if the irrationality exponent of ξ is not too large, then the function

n 7→ r(n, ξ, b) cannot increase too slowly.
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Theorem 2.1. Let b ≥ 2 be an integer and ξ an irrational real number. If µ

denotes the irrationality exponent of ξ, then

lim sup
n→+∞

r(n, ξ, b)

n
≥ 2 +

1− 2µ(µ− 1)(µ− 2)

3µ3 − 6µ2 + 4µ− 1
. (2.1)

In particular, every irrational real number ξ whose irrationality exponent is equal

to 2 satisfies

lim sup
n→+∞

r(n, ξ, b)

n
≥ 15

7
. (2.2)

By Lemma 3.1 below, p(n, ξ, b) ≥ r(n, ξ, b)−n holds for all integers n ≥ 1, b ≥ 2

and every irrational real number ξ. Thus, (1.4) and the second assertion of (1.5)

are immediate consequences of (2.1) and (2.2), respectively.

We will establish Theorems 1.4 and 2.1 simultaneously in Section 3. Our key

ingredient is a purely combinatorial auxiliary result, stated as Theorem 3.5 below.

We stress that, even for real numbers whose irrationality exponent is equal to 2,

Theorem 1.4 improves Theorem 1.3. Indeed, Aberkane [2] proved the existence of

infinite words x with the property that

lim
n→+∞

p(n,x)− n = +∞ and lim
n→+∞

p(n,x)

n
= 1.

Furthermore, he established in [1] that, for any real number δ with δ > 1, there are

infinite words x satisfying

1 < lim inf
n→+∞

p(n,x)

n
< lim sup

n→+∞

p(n,x)

n
≤ δ.

See also Heinis [20, 21] for further results on words with small subword complexity.

Independently, Kmošek [22] and Shallit [25] (see also Section 7.6 of [13]) estab-

lished that the real number ξKS :=
∑
k≥1 2−2

k

has a bounded continued fraction

expansion. In particular, it satisfies µ(ξKS) = 2. Since

lim sup
n→+∞

r(n, ξKS, 2)

n
=

5

2
and lim inf

n→+∞

p(n, ξKS, 2)

n
=

3

2
,

this shows that the value 15
7 in (2.2) cannot be replaced by a real number greater

than 5
2 . Also, the value 9

8 in (1.5) cannot be replaced by a real number greater

than 3
2 . Actually, with some additional effort and a case-by-case analysis, it is

possible to replace the value 15
7 in (2.2) and 9

8 in (1.5) by slightly larger numbers;

see the additional comments at the end of Section 3. We have, however, chosen
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to present an elegant, short proof of Theorem 2.1, rather than a more complicated

proof of a slightly sharper version of it.

It has been proved in [12] (see also Section 7.6 of [13]) that, for every real

number µ ≥ 2, the irrationality exponent of ξµ :=
∑
k≥1 2−bµ

kc is equal to µ. Since

p(n, ξµ, 2) = O(n), this shows that Theorems 1.4 and 2.1 are best possible up to

the values of the numerical constants.

Any real number whose sequence of partial quotients is bounded has its irra-

tionality exponent equal to 2, thus it satisfies (1.5) and (2.2), and its expansion in

an integer base b cannot be ‘too simple’.

Theorems 1.4 and 2.1 give non-trivial results on the b-ary expansion of a real

number ξ when 2 ≤ µ(ξ) < 2.1914 . . . By means of a specific analysis of repetitions

in Sturmian words, we were able in [14] to extend Theorem 1.3 to real numbers

whose irrationality exponent is less than or equal to 5
2 . Note that if f = f1f2 . . .

denotes the Fibonacci word f = 01001010 . . . (that is, the fixed point of the substitu-

tion 0 7→ 01, 1 7→ 0; this is a Sturmian word), then the real number ξf :=
∑
k≥1 2−fk

satisfies µ(ξf ) = 3+
√
5

2 = 2.618 . . . and p(n, ξf , 2) = n+ 1 for n ≥ 1.

An important feature of Theorems 1.4 and 2.1 is that they apply not only to real

numbers whose irrationality exponent is equal to 2, but also to real numbers whose

irrationality exponent is slightly larger than 2. To prove that the irrationality

exponent of a given real number is equal to 2 is often a very difficult problem,

while it is sometimes possible to bound its value from above. For example, Alladi

and Robinson [7] (who improved earlier results of A. Baker [10]) and Danilov [16]

established that, for any positive integer s, the irrationality exponents of log(1 + s
t )

and
√
t2 − s2 arcsin s

t are bounded from above by a function of t which tends to

2 as the integer t tends to infinity. The next statement then follows at once from

Theorem 1.4.

Theorem 2.2. Let ε be a positive real number. For any positive integer s, there

exists an integer t0 such that, for any integer t > t0, we have

lim inf
n→+∞

p
(
n, log

(
1 + s

t

)
, b
)

n
≥ 9

8
− ε
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and

lim inf
n→+∞

p(n,
√
t2 − s2 arcsin s

t , b)

n
≥ 9

8
− ε.

Using the results from [16, 7], it is easy to give a suitable explicit value for t0 in

terms of s and ε. In particular, there exists an absolute positive constant c such

that, if s, t are integers with s ≥ 2 and t ≥ sc, then

lim inf
n→+∞

p
(
n, log

(
1 + s

t

)
, b
)

n
≥ 9

8
− 4

log s

log t
.

Up to now, not a single result was known on the b-ary expansion of the transcen-

dental real number log(1 + 1
a ).

3. Proofs

We start with establishing a relationship between the subword complexity func-

tion of an infinite word x and the function n 7→ r(n,x).

Here and below, for integers i, j with 1 ≤ i ≤ j, we write xji for the factor

xixi+1 . . . xj of the word x = x1x2 . . .

Lemma 3.1. For any infinite word x and any positive integer n, we have

p(n,x) ≥ r(n,x)− n.

Proof. It follows from the definition of r(n,x) that the r(n,x)− 1− (n− 1) factors

of length n of x
r(n,x)−1
1 are all distinct. Since x

r(n,x)
r(n,x)−n+1 is a factor of x

r(n,x)−1
1 ,

we have

p(n,x) ≥ p(n, xr(n,x)−11 ) = p(n, x
r(n,x)
1 ) = r(n,x)− n. �

We stress that there is no analogue lower bound for the subword complexity

function of x in terms of n 7→ r(n,x).

In the course of the proof of Theorem 3.5, we need the following auxiliary lemma,

which is Lemma 5.4 of [14].

Lemma 3.2. Let x be an infinite word and n a positive integer. If r(n + 1,x) ≥

r(n,x) + 2, then r(n+ 1,x) ≥ 2n+ 3.

For sake of completeness, we give an alternative proof of Lemma 3.2, based on

a theorem of Fine and Wilf [18, Theorem 1].
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Proof. For shorten the notation, we simply write r(·) for r(·,x). Let n be a positive

integer and assume that r(n+ 1) ≥ r(n) + 2 and r(n+ 1) ≤ 2(n+ 1). There exist

integers s, t with

1 ≤ s ≤ r(n)− n, 1 ≤ t ≤ r(n+ 1)− n− 1,

such that

xs+n−1s = x
r(n)
r(n)−n+1, xs+n 6= xr(n)+1, and xt+nt = x

r(n+1)
r(n+1)−n.

Observe that t ≤ r(n + 1) − n − 1 ≤ n + 1 ≤ r(n). Thus, the non-empty word

x
r(n)
max{s,t} is periodic with period r(n)− s− n+ 1 and r(n+ 1)− t− n, but x

r(n)+1
s

is not periodic with period r(n) − s − n + 1. A theorem of Fine and Wilf [18,

Theorem 1] asserts that if (fn)n≥1, (gn)n≥1 are periodic sequences of periods h, k,

respectively, such that fn = gn for h + k − gcd(h, k) consecutive integers n, then

fn = gn for every n ≥ 1. By applying this theorem we get that, if

|xr(n)max{s,t}| ≥ r(n)− s− n+ 1 + r(n+ 1)− t− n

− gcd(r(n)− s− n+ 1, r(n+ 1)− t− n),

then x
r(n+1)
min{s,t} is periodic with period r(n) − s − n + 1, which is a contradiction.

Therefore we get

|xr(n)max{s,t}| = r(n)−max{s, t}+ 1

≤ r(n) + r(n+ 1)− s− t− 2n− gcd(r(n)− s− n+ 1, r(n+ 1)− t− n)

≤ r(n) + r(n+ 1)− s− t− 2n− 1

≤ r(n)− s− t+ 1.

Hence, we obtain

max{s, t} ≥ s+ t,

which is a contradiction since s and t are positive. This completes the proof of the

lemma. �

We also need the following easy result, already established in [14].

Lemma 3.3. Let x be an infinite word such that r(n+ 1,x) = r(n,x) + 1 for every

sufficiently large integer n. Then x is ultimately periodic.
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Proof. Let n0 be an integer such that r(n + 1,x) = r(n,x) + 1 for every n ≥ n0.

Let j be the integer satisfying 1 ≤ j ≤ r(n0,x)− n0 and xj+n0−1
j = x

r(n0,x)
r(n0,x)−n0+1.

Let h be a positive integer. Since r(n0 + h,x) = r(n0,x) + h, we deduce that

xj+n0+h−1
j = x

r(n0+h,x)
r(n0,x)−n0+1 and conclude that x is ultimately periodic of period

r(n0,x)− n0 − j + 1. �

For our combinatorial analysis, it is convenient to introduce two combinatorial

exponents which measure the repetitions in an infinite word.

Definition 3.4. Let x be an infinite word. The exponent of repetition of x, denoted

by rep(x), is the quantity

rep(x) = lim inf
n→+∞

r(n,x)

n
.

The uniform exponent of repetition of x, denoted by Rep(x), is the quantity

Rep(x) = lim sup
n→+∞

r(n,x)

n
.

The key ingredient for the proof of Theorem 2.1 is the following combinatorial

theorem.

Theorem 3.5. Every infinite word x which is not ultimately periodic satisfies

Rep(x) ≥ 2,

Rep(x) ≥ rep(x) +
1

1 + rep(x) + (rep(x))2
, (3.1)

and

lim inf
n→+∞

p(n,x)

n
≥ rep(x)− 1 +

1

(rep(x))3
. (3.2)

Proof. Let x be an infinite word satisfying Rep(x) < 2. It follows from Lemma

3.2 that r(n+ 1,x) = r(n,x) + 1, for every sufficiently large integer n. By Lemma

3.3, this shows that x is ultimately periodic and proves the first assertion of the

theorem.

Let x = x1x2 . . . be an infinite word which is not ultimately periodic. Without

any loss of generality, we may assume that rep(x) is finite. Set ρ = rep(x). Since

Rep(x) ≥ 2 and p(n, x) ≥ n + 1 for n ≥ 1, inequalities (3.1) and (3.2) hold for

ρ ≤ 8
5 . Therefore, we may assume that ρ > 8

5 .

Let ε be a positive real number with ε < 1
10 and n0 ≥ 3ρ

2

ε be such that

(ρ− ε)n ≤ r(n,x), for n ≥ n0

8ρ .
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By Lemma 3.3, there are arbitrarily large integers n such that r(n + 1,x) ≥

r(n,x) + 2. Let n > n0 be an integer such that r(n+ 1,x) > r(n,x) + 1 and define

α by setting r(n,x) = αn. This implies that the word xαn(α−1)n+1 of length n has

two occurrences in xαn1 and that these two occurrences are not followed by the same

letter. Let m1 be the index at which the first occurrence of xαn(α−1)n+1 starts. We

have m1 + n− 1 < αn and the letters xm1+n and xαn+1 are different.

Let β be such that r(n + 1,x) = β(n + 1). Since r(n + 1,x) ≥ r(n,x) + 2, we

have β(n+ 1) ≥ αn+ 2, that is 1 + (β − 1)(n+ 1) ≥ (α− 1)n+ 2. Then, the word

x
β(n+1)
(β−1)(n+1)+1 of length n+ 1 has two occurrences in x

β(n+1)
1 . Let m2 be the index

at which its first occurrence starts. We have m2 < (β − 1)(n+ 1) + 1.

We assume that α < ρ+ 2 and

1− β + α− ε
β − 1

>
1 + ρ

(ρ− ε)2
(3.3)

and we will get a contradiction.

Consider the word Vn := xαn(β−1)(n+1)+1 of length

vn = (1− β + α)n− β + 1.

Observe that ρ− ε > 8
5 −

1
10 ≥

3
2 implies that β ≥ 3

2 and check that, by (3.3),

vn ≥ (β − 1)
1 + ρ

ρ2
n− (β − 1) ≥ 1

2

(n
ρ
− 1
)
≥ n

4ρ
,

since n ≥ 2ρ.

The word Vn is a proper suffix of xαn(α−1)n+1 and we have

Vn = xαn(β−1)(n+1)+1 = xm2+vn−1
m2

= xm1+n−1
m1+n−vn .

If m2 = m1 + n− vn, then xm2+vn = xm1+n and we deduce from xm2+vn = xαn+1

that xm1+n = xαn+1, a contradiction with our choice of n. Consequently, the word

Vn has (at least) three occurrences in xαn1 . Set

j3 = (β − 1)(n+ 1) + 1. (3.4)

Let j1, j2 with j1 < j2 < j3 be the indices at which the two other occurrences of

xαnj3 start. In particular, the letters xj1+vn and xj2+vn must be different.

The proof decomposes into five steps. We show that j2 and j1 cannot be too

small and that the three occurrences of Vn in xαn1 overlap. We conclude in Step
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5 that the letters xj1+vn and xj2+vn must be the same. This contradiction shows

that (3.3) cannot hold.

For a finite word W and a real number t > 1, we denote by (W )t the word equal

to the concatenation of btc copies of the word W followed by the prefix of W of

length d(t− btc)|W |e, where dxe denotes the smallest integer greater than or equal

to x. We say that (W )t is the t-th power of W .

Step 1. Since vn ≥ n
4ρ , our choice of n0 implies that

(ρ− ε)vn ≤ r(vn,x) ≤ j2 + vn − 1,

thus we get

j2 ≥ (ρ− 1− ε)vn + 1. (3.5)

We have established that j2 cannot be too small.

Step 2. Using the fact that j2 is not too small, we want to deduce that the

subwords xαnj3 = xj3+vn−1j3
and xj2+vn−1j2

(which are both equal to Vn) have a quite

big overlap.

By Theorem 1.5.2 of [9], the word Vn is the t-th power with

t :=
vn

j3 − j2

of some word Un of length un := j3 − j2 and xj3+vn−1j2
= (Un)1+t. By (3.4) and

(3.5) we get

t ≥ vn
(β − 1)(n+ 1)− (ρ− 1− ε)vn

.

Observe that n+ 1 > n0 ≥ 3ρ2

ε > ρ+2
ε > α

ε , thus vn ≥ (1− β + α− ε)(n+ 1) and,

by (3.3),

t ≥ 1 + ρ

(ρ− ε)2 − (ρ− 1− ε)(1 + ρ)
≥ 1 + ρ

1 + ε+ ε2
.

Recalling that ρ ≥ 8
5 and ε ≤ 1

10 , we have established that t ≥ 9
4 .

Step 3. Let Wn be the word such that Vn = UnWn and let wn denote its length.

Observe that

wn =
t− 1

t
vn = vn − j3 + j2 (3.6)

and, recalling that vn ≥ n
4ρ and t ≥ 9

4 ,

wn =
t− 1

t
vn ≥

5

9
· n

4ρ
≥ n

8ρ
.
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Since Vn = (Un)t and t > 2, the word Wn = (Un)t−1 is a prefix of Vn. Thus, Wn

has two occurrences in Vn and also in the prefix of x of length j1 + vn − 1. It then

follows from our choice of n0 that

(ρ− ε)wn ≤ r(wn,x) ≤ j1 + vn − 1.

Combined with (3.6), this gives

j1 ≥ (ρ− 1− ε)vn − (ρ− ε)(j3 − j2) + 1. (3.7)

We have established that j1 cannot be too small.

Step 4. Observe first that (3.3) is equivalent to the inequality

(ρ− ε)2(1− β + α− ε) > (β − 1)(ρ+ 1).

This gives

(ρ− ε)2(1− β + α)n− (ρ+ 1− ε)(β − 1)n > nε(β − 1)

> (β − 1)[(ρ− ε)2 + ρ+ 1− ε],

since nε > n0ε ≥ 3ρ2. Consequently, we get

(ρ− ε)2vn > (ρ+ 1− ε)(β − 1)(n+ 1) = (ρ+ 1− ε)(j3 − 1). (3.8)

We deduce from (3.5) that

(ρ− ε)2vn ≤ (ρ− ε)vn + (ρ− ε)(j2 − 1),

which, combined with (3.8), gives

(ρ− ε)vn ≥ (ρ+ 1− ε)(j3 − 1)− (ρ− ε)(j2 − 1)

= (ρ− ε)(j3 − j2) + j3 − 1.

We conclude by (3.7) that

vn > j3 − j1. (3.9)

Thus, the subwords xj1+vn−1j1
and xj3+vn−1j3

, which are both equal to Vn, overlap.

Step 5. It follows from (3.9) that

vn − (j2 − j1) > j3 − j2 = un,
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which means that the length of the overlap between the subwords xj1+vn−1j1
and

xj2+vn−1j2
exceeds the length un of Un. We show that this implies that xαnj1 =

xj3+vn−1j1
is equal to a (large) power of some word. To do this, we distinguish two

cases.

If there exists an integer h such that j2 = j1 + hun, then we have

xj3+vn−1j1
= xj2−1j1

xj3+vn−1j2
= (Un)h+1+t

and the letters xj1+vn and xj2+vn are the same, since j1 + vn and j2 + vn are

congruent modulo the length un of Un. This is a contradiction.

If j2− j1 is not an integer multiple of un, then let h be the smallest integer such

that j1 + hun > j2. The word Zn := xj1+hun−1
j2

is a suffix of Un and the word

Z ′n := xj2+un−1
j1+hun

= xj3−1j1+hun
is a prefix of Un. They satisfy

Un = ZnZ
′
n = Z ′nZn.

By Theorem 1.5.3 of [9], the words Zn and Z ′n are integer powers of a same word.

Thus, there exist a word Tn of length tn and positive integers k, ` such that

Zn = (Tn)k and Z ′n = (Tn)`.

Consequently, there exists an integer q such that j2 = j1 + qtn and we have

xj3+vn−1j1
= xj2−1j1

xj3+vn−1j2
= (Tn)q+(1+t)(k+`).

As above, the letters xj1+vn and xj2+vn are the same, since j1 + vn and j2 + vn are

congruent modulo the length tn of Tn. This is a contradiction.

We have shown that (3.3) does not hold and we are in position to complete the

proof of the theorem.

Let (nk)k≥1 denote the increasing sequence comprising all the integers n such

that r(n+ 1,x) ≥ r(n,x) + 2. For k ≥ 1, define αk and βk by setting

r(nk,x) = αknk and r(nk + 1,x) = βk(nk + 1).

Let ε be a positive real number with ε < 1
10 . Let k0 be an integer such that

r(n`,x) ≥ (ρ − ε)n` for ` ≥ k0. For every integer k greater than k0 and large

enough in terms of ε, we have established that αk ≥ ρ+ 2 or

1− βk + αk − ε
βk − 1

≤ 1 + ρ

(ρ− ε)2
.
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If αk ≥ ρ+ 2, then βk(n+ 1) ≥ (ρ+ 2)nk + 2 and we deduce that βk ≥ ρ+ 1 since

nk > n0 > ρ+ 1. Thus, we get

βk ≥ min
{
ρ+ 1,

(ρ− ε)2(ρ+ 1− 2ε) + ρ+ 1

1 + ρ+ (ρ− ε)2
}
,

by using that αk ≥ ρ− ε. Since ε can be taken arbitrarily small, this gives

lim sup
n→+∞

r(n,x)

n
≥ min

{
ρ+ 1,

(ρ+ 1)(ρ2 + 1)

1 + ρ+ ρ2

}
,

and we have established (3.1).

Observe that, by definition of the sequence (nk)k≥1,

r(nk+1,x) = r(nk + 1,x) + nk+1 − nk − 1 ≥ (ρ− ε)nk+1.

Consequently,

nk+1 ≤
r(nk + 1,x)− nk − 1

ρ− 1− ε
.

Let n be an integer with nk + 1 ≤ n ≤ nk+1. By (1.2) and Lemma 3.1 we have

p(n,x) ≥ p(nk + 1,x) + n− nk − 1 ≥ r(nk + 1,x) + n− 2nk − 2,

thus

p(n,x)

n
≥ 1 +

r(nk + 1,x)− 2nk − 2

n
≥ 1 +

r(nk + 1,x)− 2nk − 2

nk+1
,

giving that

p(n,x)

n
≥ 1 + (ρ− 1− ε) r(nk + 1,x)− 2nk − 2

r(nk + 1,x)− nk − 1

≥ ρ− ε− (ρ− 1− ε) 1

βk − 1
.

Since ε can be taken arbitrarily small, we conclude that

lim inf
n→+∞

p(n,x)

n
≥ min

{
ρ− 1 +

1

ρ
, ρ− 1 +

1

ρ3

}
.

This proves (3.2) and completes the proof of the theorem. �

Let b ≥ 2 be an integer. Our last auxiliary result establishes a close connection

between the exponent of repetition of an infinite word x written over {0, 1, . . . , b−1}

and the irrationality exponent (see Definition 1.2) of the real number whose b-ary

expansion is given by x.
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Lemma 3.6. Let b ≥ 2 be an integer and x = x1x2 . . . an infinite word over

{0, 1, . . . , b− 1}, which is not ultimately periodic. Then, the irrationality exponent

of the irrational number
∑
k≥1

xk

bk
satisfies

µ
(∑
k≥1

xk
bk

)
≥ rep(x)

rep(x)− 1
,

where the right hand side is infinite if rep(x) = 1.

Proof. Since the irrationality exponent of an irrational real number is at least equal

to 2, we can assume that rep(x) < 2. Let n and C be positive integers such that

1 < C < 2 and r(n,x) ≤ Cn. By Theorem 1.5.2 of [9], this implies that there are

finite words W,U, V and a positive integer t (we do not indicate the dependence

on n) such that |(UV )tU | = n (here and below, | · | denotes the length of a finite

word) and W (UV )t+1U is a prefix of x of length at most Cn. Observe that

|W (UV )t+1U | ≤ Cn ≤ C|(UV )tU |,

thus |WUV | ≤ (C − 1)|(UV )tU |. Setting ξ =
∑
k≥1

xk

bk
, there exists an integer p

such that ∣∣∣ξ − p

b|W |(b|UV | − 1)

∣∣∣ ≤ 1

b|W (UV )t+1U | ≤
1

b|WUV |b|WUV |/(C−1) .

Consequently, if there are arbitrarily large integers n with r(n,x) ≤ Cn, then

µ(ξ) ≥ 1 + 1
C−1 . Here, we have used the fact that |WUV | tends to infinity when n

tends to infinity: this follows from the assumption that x is not ultimately periodic.

By choosing C arbitrarily close to rep(x), we complete the proof. �

Lemma 3.6 shows that, when the exponent of repetition of an infinite word is

less than 2, then the irrationality exponent of the associated real number exceeds 2.

We are in position to complete the proof of Theorems 1.4 and 2.1.

Proof of Theorems 1.4 and 2.1.

Let b ≥ 2 be an integer and ξ an irrational real number. Write ξ in base b as in

(1.1) and put a = a1a2 . . .. Lemma 3.6 asserts that

rep(a) ≥ µ(ξ)

µ(ξ)− 1
.

Combined with Theorem 3.5, this gives

Rep(a) ≥ 1 +
(rep(a))3

1 + rep(a) + (rep(a))2
≥ 1 +

µ3

3µ3 − 6µ2 + 4µ− 1
,
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where µ denotes the irrationality exponent of ξ. As well, we obtain

lim inf
n→+∞

p(n,a)

n
≥ min

{
1, rep(a)− 1 +

1

(rep(a))3

}
≥ µ4 − 3µ3 + 6µ2 − 4µ+ 1

µ3(µ− 1)
.

We have established (1.3) and (2.1) and thereby completed the proofs of Theo-

rems 1.4 and 2.1.

Additional comments.

We can slightly improve Theorem 3.5 (and, consequently, Theorems 1.4 and 2.1)

by means of a refined case-by-case analysis. With the notation used in the proof of

Theorem 3.5, the two cases to distinguish are:

(i) j1 = m2 and j2 = m1 + n− vn (that is, m2 < m1 + n− vn);

(ii) j1 = m1 + n− vn and j2 = m2 (that is, m2 > m1 + n− vn).

Then, (3.1) can be replaced by the stronger inequality which holds for Case (i)

Rep(x) ≥ rep(x) +
1

rep(x) + (rep(x))2
(3.10)

and (2.1) by

lim sup
n→+∞

r(n, ξ, b)

n
≥ 2 +

2µ2 + µ− 1− µ3

µ(µ− 1)(2µ− 1)
.

Furthermore, we may also see that, under a slightly weaker assumption than (3.10),

Case (i) cannot occur for two consecutive integers n such that r(n+1,x) ≥ r(n,x)+

2. Hence, a further small improvement can be obtained.
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