An inhomogeneous Jarnik theorem

Yann Buceaup (Strasbourg)

Abstract. We compute the generalized Hausdorff measure of sets of
points in R® which satisfy an inhomogeneous system of Diophantine
inequalities infinitely often. This provides an inhomogeneous analogue of
a classical result of Jarnik on simultaneous Diophantine approximation.

1. Introduction

A classical result of Khintchine [21] asserts that, given a non-increasing function ¥ :
Z-y — R+, the set

K(¥):={{ e R: |gé —p| < ¥(q) for infinitely many integers p and ¢ with ¢ > 1.}

has full Lebesgue measure if the sum »_ -, ¥(q) diverges, while it has Lebesgue measure
zero otherwise. However, since the Hausdorff measure allows us to discriminate between
null sets, we may search for a more precise statement in the convergence case. For instance,
Jarnik [18] and Besicovitch [7] proved, independently, that for any A > 1 the Hausdorff
dimension of IC(z +— z~*) is equal to 2/(\ + 1). In fact, a little later Jarnik obtained the
more general and precise result [19] which involves generalized Hausdorff measures (for the
definition, see Section 2). It also deals with simultaneous Diophantine approximation: for
an integer s > 1 and ¥ as above, Jarnik considered the set

K(®):={{=(&,...,&) e R®: max [g&, — pu| < ¥(g)

for infinitely many (p1,...,Dps,q) € Z**! with ¢ > 1}

and he proved the following statement ([19], Theorems 3 and 4).

Theorem J. Let ¥ be as above, with lim, ,,, ¥(z) = 0. Let s > 1 be integer. Let
f : R>0 — R be a strictly increasing continuous function such that f(0) = 0 and f(z)/x*
tends monotonically to infinity when x tends to 0. Assume that the sum Y .5 ¥%(z)
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converges and that the functions x — z°T! f(2¥(z)/z) and  — x¥*(z) are non-increasing.
Then H (K (¥)) = +oo if the sum

+oo
> 2 f(2%(x)/x)

diverges, and H/(K(¥)) = 0 otherwise.

Theorem J can be regarded as a definitive result, and a natural question is whether
the same conclusion also holds for any set
Ka(¥) :=={€= (&, -,&) € R : max g€, —pu —au| < ¥(g)

for infinitely many (p1,...,Dps,q) € Z5+! with ¢ > 1}.

where a = (a3, ..., as) is some fixed real s-tuple. The answer does not seem to follow from
Theorem J. In fact, inhomogeneous Diophantine approximation is rather different (and can
be much more difficult) than the homogeneous case, and often it deserves different meth-
ods. For instance, an inhomogeneous analogue of Dirichlet’s theorem does not hold. How-
ever, Schmidt [26] proved a very general metric result which includes the inhomogeneous
analogue of the aforementioned result of Khintchine as a special case. Namely, Schmidt
showed that the set Ko(¥) has full Lebesgue measure if the sum »_ -, ¥¥(q) diverges,
and Ky (¥) is a null set otherwise. In the case of convergence of that theorem, Levesley
[22] has recently established (as a special case of a more general result) that the Hausdorff
dimension of Iy (¥) is equal to (s + 1)/(A + 1), where A = liminf,_, (—log ¥(z))/logx
is assumed to be > 1/s. We like to mention that the so-called doubly metric case, where
one considers the joint measure of the set of points (£, «) in R® x R? is easier. We refer
to Dickinson [12] and Dodson [15] for a general form of the inhomogeneous version of the
doubly metric Jarnik—Besicovitch theorem.

One of the purposes of the present work is to strengthen Levesley’s result by proving
an inhomogeneous analogue of Theorem J. To this end, we define the notion of optimal
reqular system, which asks more than the concept of reqular system, introduced by Baker
& Schmidt [1] in order to compute the Hausdorff dimension of sets of real numbers very
close to infinitely many algebraic numbers of bounded degree. We prove (see Theorem
3) a general statement valid for approximation of real numbers by points belonging to an
optimal regular system, from which, thanks to our Theorem 2, we derive the inhomogeneous
analogue of Theorem J. At the end of Section 2, we point out that Theorem 3 can be applied
to a wide class of Diophantine approximation problems.

Acknowledgements: The author would like to thank Victor Beresnevich and the referee for
their useful remarks.

2. Statement of our results

Before stating our results, we briefly recall the definition of the generalized Hausdorff
measure of a set £ C R®. We denote by diamU = sup{||z — y||w : @,y € U} the diameter
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of a bounded set &/ C R?, that is, the greatest distance apart of any pair of points in i.
Let f: Rso — Rso be a dimension function, that is, a function which is increasing in a
neighbourhood of the origin and satisfies lim,_,o f(x) = 0. Let § be a positive real number
and set

h(f,8,E) :=inf Y _ f(diam;),
J

where the infimum is taken over all finite or enumerable families of sets U; C R® of
diameter diam{; < 6 which cover E. As § decreases to 0, the quantity h(f,d, F) increases
to a finite or infinite limit H/(E), called the Hausdorff f-measure of E. When there exists
some positive real number ¢, such that f(z) = zt, we simply write ¢ instead of H/: this
defines the t-dimensional Hausdorff measure. Then, the Hausdorff dimension of E, which
we denote by dim E, is the real number tq € [0, 1] defined by

to = inf{t : H'(E) = 0} = sup{t : H'(E) = +o0}.

We refer the reader to e.g. the books of Bernik & Dodson [6], of Falconer [17] and of
Rogers [23] for further definitions and results on Hausdorff measures.

The choice of the letter s for the dimension of the ambient space originates in [19];
it should however cause no confusion with the usual notation for the Hausdorff dimension
since we are concern with general dimension functions.

Our main result is the following.

Theorem 1. Let s > 1 and o = (a1, ...,as) be a real s-tuple. Let ¥ be a non-increasing
function, with lim,_,, ¥(z) = 0. Let f : R~g — Rx¢ be a dimension function such that
f(x)/z* tends monotonically to infinity as z tends to 0. Assume that the sum 3 ;2% ¥°(z)
converges and that the functions x — z°T1 f(2¥(z)/z) and z — x¥*(z) are non-increasing.
Then H7 (K4(¥)) = 400 if the sum

+oo
Y 2 f(2%(x)/x)

diverges, and H' (K, (¥)) = 0 otherwise.

Remark: The technical hypotheses are the same as those in Theorem J, and are not very
restrictive. Recall that, according to Schmidt’s result quoted in the Introduction, the set
Ko (®) has full Lebesgue measure if the sum $° ¥*(z) diverges.

Theorem 1 gives the generalized Hausdorff measure H7 of K, (¥) and so is more dis-
crimating than the Hausdorff dimension result given by Levesley’s theorem quoted above.
We take the following example from [14], to which we refer the reader for further obser-
vations. Let a be a given s-tuple of real numbers. Let 7 > (s + 1)/s, and, for any € > 0,
define the function ¥, by

U, (z) =z 7 (logz) ")/ s+ - for & > 3.
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It follows from Levesley’s result that

d:= dim(/Cg(‘I’s)) =2 j__ 17

thus the Hausdorff dimension of K,(¥.) does not depend on . For 0 < g1 < g3, we
consider the dimension function f defined by

f(z) := 2 (logz™/7)"".
An easy calculation shows that Theorem 1 yields that
HI (Ko (Te,)) = +o0,

whilst
HT (Ko(Te,)) = 0.

Thus, the (generalized) Hausdorff measure H/ distinguishes between the sizes of the sets
Ka(¥,), unlike the ¢t-dimensional Hausdorff measure.

In [5], Beresnevich, Dickinson & Velani have applied the main result of [14] to de-
termine the (generalized) Hausdorff measure of sets of matrices with ‘exact ¢t-logarithmic
order’ (that is, the approximating function ¢ — ¥(q) is of the general form ¢¢ times a
finite product of powers of iterated logarithms). See also [8] for a similar discussion in the
context of approximation by real algebraic numbers of bounded degree. With the same
arguments as in [5], we can deduce an inhomogeneous analogue of Theorems 1 and 2 of
[5], in the particular case m = 1.

The strategy for proving Theorem 1 proceeds in two steps, and rests on the notion of
regular system of points in R, introduced by Baker & Schmidt [1] for determinating the
Hausdorff dimension of sets of real numbers close to infinitely many algebraic numbers
of bounded degree. However, when we search for sharper results, involving generalized
Hausdorff measure, we need to refine this notion, by introducing that of optimal regular
system.

Definition 1. Let E C R be a, bounded or unbounded, interval. Let S = (o, )n>1 be a
sequence of real numbers in E. Then § is called an optimal regular system of points in E
if there exist positive constants c1, ¢y and c3, depending only on S, and, for any bounded
interval I C E, a number ko = ko(S, I) such that, for any K > kg, there exist integers

aK<ipn<..<4u <K (1)
with o;; € I for any 1 < j <t,
C2 .
oy i 22 (L<jAL<Y)

and
cs|I|K <t <|I|K.
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For instance, it follows from Dirichlet’s theorem that the set of rational numbers p/q
ordered firstly by increasing values of the maximum of |p| and |g|, then by increasing
numerical order, is an optimal regular system. Further, Beresnevich [2] proved that, for
any integer n > 2, the set of real algebraic numbers of degree n, with a suitable ordering,
is an optimal regular system (he did not show the existence of ¢; in (1), but this easily
follows from his proof, see Proposition 1 of [8]). The same holds for the set of algebraic
integers of degree n, see [9] (here also, the positive constant ¢; in (1) is not explicitly given;
however, a suitable value follows from inequality (8) of [9]).

We refer the reader to the survey of Beresnevich, Bernik & Dodson [4] for more
explanations and examples of regular systems and optimal regular systems (which they
call best possible reqular systems). In the present work, we have chosen a slightly different
presentation of this notion, since we have imposed an ordering for the set of points forming
our optimal regular system (Rynne [24] did the same for a regular system). This allows us
to establish a general result which, as will be explained below, can be applied to a number
of different problems.

The importance of the notion of optimal regular system appears firstly in the work of
Beresnevich [2], where he considers the particular case of the set of algebraic numbers of
fixed degree. However, using his arguments, it is easy to get the following result, proved
in [3] (see also Lemma 3 in [4]).

Theorem B. Let E C R be a, bounded or unbounded, interval. Let S = (an)nzl be a
sequence of real numbers which is an optimal regular system in E. Let ¥ : Z~y — Ry
be a non-increasing function and set

E(a;) :={ € E:[§ — o4 <V(j)}

for any 57 > 1 and
E(¥) = limsup E(a;).
J—~+oo
Then the set E(¥) is a null set if the sum ), ¥(j) converges and E(¥) has full measure
if this sum diverges. -

A natural extension of Theorem B is the computation of the generalized Hausdorff
measure of F(¥) in the convergence case, which was the purpose of [8] with S being the set
of algebraic numbers of fixed degree. A general statement follows from Theorem 3 below.

Following Beresnevich’s ideas [3], we can extend the notion of (optimal) regular system
to sequences of points in R®, with s > 2. In the present paper, we use the following
notation. The cube C = C(a, V) in R® is the compact subset of R?, centered at the point
a and having volume V. In other words, writing a = (04(1), cen, oz(s)), we have

Cla,V)= ][ [a™ —v'/e/2,al 4 V1o,
1<u<s

We denote by Vol(C) the volume of a cube C and by (C) its sidelength, hence we have
Vol(C) = (C)*.



Definition 2. Let s > 2 be an integer. Let E C R® be a Cartesian product of closed
intervals. Let S = (a,,)n>1, With a,, = (a%l), ce a,(f)) be a sequence of points in E. Then
S is called an optimal regular system of points in E if there exist positive constants ¢y, co
and c3, depending only on S, and, for any cube C C E, a number ko = ko(S,C) such that,

for any K > kg, there exist integers
aK < <..<u <K
with Q; € Cforany1<j<t,

C2
Kl/s

max |a) —af| > (1<j#L<t)

1<u<s L

and
esVol(C)K <t < Vol(C)K.

Remark: We can replace the cubes occurring in Definition 2 by Cartesian products of
compact intervals.

In all what follows, we denote by {z} the fractional part of a real number z. In order
to prove Theorem 1, we first have to prove that, given a real s-tuple a = (ay, ..., as), the

set of points
({pl_i;%},_._’{ps:as}), qZ]" p17""p320’

with a suitable ordering, form an optimal regular system. When a; = ... = a, = 0,
this follows from Dirichlet’s theorem. However, in the general case, this is slightly more
complicated.

Theorem 2. Let a = (a1,...,0,) be a fixed real s-tuple. The set S, composed of the

bl 7

pla"'7ps’qeza qzla and 0§p1a7ps§q_1

with

ordered firstly by increasing values of q, then by increasing values of maxi<y<s Py, IS an
optimal regular system in [0, 1]°.

The proof of Theorem 2 heavily depends on an approach due to Khintchine [20]. We
do not give full details: we merely point out how to use an intermediate result of [20] to
get our desired statement.

Remark: Theorem 2 can be compared with Lemma 4 of Levesley [22]. This lemma is
sufficiently sharp to imply that S, is a regular system, and to get (using classical tools)
the exact Hausdorff dimension of sets K, (¥). However, because of the term log® N, we
cannot infer from it that S, is an optimal regular system.
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As previously mentioned, the generalization of Theorem J for set of real numbers close
to infinitely many real algebraic numbers of given degree n has been obtained in [8]. The
idea of the proof arises from [19] and was also used by Dickinson & Velani [14] in a quite
similar context. We constructed inductively a Cantor set and a positive measure on it, and
we applied Frostmann’s lemma (see Proposition 2 in Section 4). It appears that the only
property of the set of real algebraic numbers of degree n we used is the fact that, with a
suitable ordering, it forms an optimal regular system.

Theorem 3. Lets > 1. Let E C R® be a Cartesian product of intervals. Let S = (a,,)n>1
be a sequence of points a,, = (ag), e a,(f)) of real numbers, which is an optimal regular

system in E. Let ¥ : Z~o — R~ be a non-increasing function and set

Ve fe = (¢ (s) . (W) _ () :
Bly) = {€ = (€0,...,€9) € B+ max €% — ol < 9(j)}
for any 5 > 1 and
E(¥) = limsup E(q;).
j—+oo
Let f be a dimension function such that lim,_,, f(x)/z® = +o00 and x — f(x)/x*® is non-
increasing in a neighbourhood of the origin. Assume that the sum .-, ¥*(j) converges
and that  — z(f(2%(z))) is non-increasing and tends to 0 when z goes to infinity. Then
we have
HI(E(T)) = +oo if Zf(%ll(j)) diverges
j21
and
HI(E(?)) =0 if Zf(2\I!(j)) converges.

i>1

Remark: The assumption on the convergence of the sum i>1 ¥° (j) cannot be removed.
Indeed, when this sum diverges, then the set E(¥) has full Lebesgue measure, by a result
of Beresnevich [3], extending Theorem B above.

We keep the notation of Theorem 3 and we let ¥y,... ¥, : Zyo — Ry be given
non-increasing functions. A possible generalization consists in studying the sets

Blay) == {¢=(",...,¢9) € B: max ¢ - ol < T, (j)}
for any j > 1 and
E(¥q,...,¥,) = limsup E(q;).
j—+oo
When § is the optimal regular system given by Theorem 2 with a; = ... = a; = 0, Rynne
[25] has determined the Hausdorff dimension of the sets E(¥q,...,¥). In a subsequent
work, we plan to give an analogue of Theorem 1 for these sets.

Applying Theorem 3 with the optimal regular system formed by the real algebraic
numbers of degree n, we recover the main result of [8], without an extra technical hypoth-
esis. See the remark following Proposition 1 for more details.
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Some examples of regular systems and optimal regular systems have been stated above
(see also [4]), but our list is not exhaustive. We briefly mention, without any details, two
other examples, as well as another important application of Theorem 3.

In a recent paper, Dickinson & Dodson [13] have calculated the Hausdorff dimension
of points close to the circle S'. To this end, they have used ubiquity, but, as they mention,
they could also have used the notion of regular system. Through their proof, they have
indeed shown (see Lemma 2 of [13]) that a certain set of points form an optimal regular
system. Thus, thanks to Theorem 3, it is possible to refine some of their results.

In [11], we have computed the Hausdorff measure of sets of real numbers close to
infinitely many elements of the sequence ({na}),>1, where o is a given irrational number.
Following our proof, it turns out that this sequence is an optimal regular system when «
has bounded partial quotients, hence we can apply Theorem 3 in this case in order to get
a sharper statement.

As explained in [10] the notion of intersective sets, first introduced by Falconer [16], is
well adapted in the context of Diophantine approximation. Indeed, following the approach
of [10], it turns out that Proposition 1 below is enough to assert that we end up with an
intersective set. We refer the reader to [10] for more details on this notion.

Lastly, it should be feasible to prove a p-adic analogue of Theorem 1. The reader
interested in Diophantine approximation over the p-adic field is directed to Chapter 6 of
[6] and the references given therein.

3. Proof of Theorem 2

Let s > 1 be an integer and let & = (o, ..., a5) be a fixed real s-tuple. Let C be a
cube in [0, 1]° with sidelength (C). Let @ > 10 be real. For any s-tuple £ = ({3,...,&;) in
[0,1]°, let ¢(£) denote the smallest positive integer such that there exist integers p1,. .., ps
with - .

1q(§) &u — pul < o 1<u<s.

It follows from Dirichlet’s theorem that ¢(§) < Q*. Let Cy denote the set of £ € [0,1]° for

which we have ¢(§) < 57°Q*, and set C; = C \ Co. The Lebesgue measure A(Co) of Co is
bounded by

2

>y —)s(«:)x +2)°,

z=1

[5—SQS]+1 (

hence we have

(€
A(Co) <

and

A(C) < 2)(Cy), (2)
if @ is large enough (in terms of s and of (C)).
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We now follow the argument of Khintchine [20]. Let £ € C;. We point out that our
57% (resp. our Q) corresponds to the v (resp. the t') of [20]. Hence, by [19, p. 415], there

exist a constant 1, depending only on s, and integers z, y(*, ..., y(*) such that
() _ R
ol — Y — | < ) 1<u<s, 3
| | MRE (3)
and
q(§) <z < 2¢(8). (4)

In fact, in [20], the inequalities (4) are replaced by 0 < z < ¢(§). However, since x is
determined modulo ¢(§), the conclusion of Khintchine also holds with the condition (4).
Since 57°Q° < ¢(§) < Q°, it follows from (3) and (4) that, for 1 < u < s, we have

(w) s+1
Yy + ay K1 5 K1
£ x mq(é)l/s = Qst! (5)
and
57°Q° < x <2Q°.
Let
(P rar g +a, (P tar P +a
Y, = PO o oy, = 7:% ,...,7:%
be a maximal subset of distinct elements of S, with
57°Q° <z, <2Q° (6)
and
max |y —4®|>1/Q%*, for 1<h#j<t. (7)
1<u<s —th —j

Our assumption of maximality implies that each v = ((yM) + a1)/z, ..., (¥ + a5)/z) in
Sa with 575Q° < z < 2Q° is at most at a distance 1/Q°**! from some i, Hence, by (5)
and (6), if £ € Cy, then there exists 1 < £ < ¢ such that for any 1 < u < s we have

m 55—}—1&1 —|—1
Eu _%’(l )| < W

Thus, the cubes centered at the points Vi, 1 < h < t, and with sidelength 2(5°T1k; +
1)/Q*5t! cover the set C;, whence, by (2),

Vol(C) = A(C) < 2)(C1) < 2t<w)s

Qs+1



and there exists a positive constant k5 depending only on s such that
t > Ky Vol(C)Q3(+D), (8)

Our ordering of S, implies that, for any integer m > 1, the elements of S, with
denominator equal to m are exactly the Zj’s with 1+2°+...+4(m—-1)°*4+1<j <

1+2%+4...4+m*. Hence, by (6), there exists a constant k3, depending only on s, such that
r3Q T <y, < 29T Q( T, (9)

Setting K = 2°T1Q*(+1) we infer from (7), (8) and (9) that S, is an optimal regular
system in [0, 1]*. O

4. Proofs of Theorems 1 and 3

We first deal with the easy half of Theorem 3. We assume that the sum > .-, f(2¥(j))
converges, and we apply the Hausdorff-Cantelli Lemma (see e.g. [6], Lemma 3.10). More
precisely, we observe that, for any integer ¢ > 1, the union of the cubes centered at the
points a;, j > ¢, and with sidelength 2¥(j) covers the set E(¥). Keeping the notation of
Section 2, for any § > 0 and any integer ¢ sufficiently large in terms of §, we infer from
the monotonicity of the function z — x(f(2¥(z))) (which we invoke since the diameter of
a cube is not equal to its sidelength) that there exists an absolute constant x such that

h(f,6,E() <k > F(2U(j)).
j>t

Hence, h(f,0, E(¥)) = 0 since the above sum converges. As § is arbitrarily small, we
deduce that
#/ (E(¥)) =0,

as claimed.

Before proceeding with the remaining part of the proof of Theorem 3, we state and
prove a useful auxiliary result.

Proposition 1. Let S = (o, )n>1 be an optimal regular system in a Cartesian product of
intervals E£ in R®. Let C be a cube in E. Let F' be a positive, non-increasing function such
that the sum )., F(j) diverges and z — zF(z) is non-increasing and tends to 0 as z
goes to infinity. Let m > 0. Then there exist a positive constant ¢ = ¢(S) < 1, depending
only on §, and integers m < i1 < ... < i; such that the cubes

Clay;, F(i5))

are included in C and pairwise disjoint, and

t

D F(ij) > e(S)Vol(C).

J=1
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Remark: When S is the set of real algebraic numbers of degree n, Proposition 1 has been
proved in [8], but with an extra technical hypothesis. To remove this assumption, the key
point is to define the variable H in terms of the constant ¢; (with the notation occurring
in the proof below).

Proof : Since S is an optimal regular system, a consequence of Definition 2 is the existence
of positive constants ci, ¢g, ¢z and kg such that, for any K > kg, there are integers

aK<ip<..<u: <K

with Q;, € Cforany 1 <j<t,

(u) Ca .
mas o) —all|> 2 (1<j#e<)

Clay,, F(i5)) C (10)

and
csVol(C)K <t < Vol(C)K.

We have to justify (10). Notice first that, if K is sufficiently large, we have F'(i;) < ¢3/K
since F is non-increasing and lim,_,o, 2F(z) = 0. At most 2s(Vol(C)c, ' K'/%)*~! among
the cubes C (a , F'(i;)) are not completely included in C, hence, taking a smaller positive
value for c3 if necessary, we get that (10) holds for all cubes.

Decreasing the value of ¢y if necessary, we may assume that H := 201_1 is an integer
with H > 16°. By assumption, the integral f1 t)dt diverges, whence, by the change of
variables ¢ = ¢; H*, the integral

oo
/ HUF(ClHu)dU,
1

also diverges. Since x — xF'(z) is non-increasing, it follows that

Z HF*F(ci H) = +00. (11)
k>1

Let k1 > ko be an integer such that

cF(z) <8 "cics for any z > ¢, H", (12)
clHF >m (13)

and
csVol(C)H** > 10. (14)

By (11) and (12), there exists an integer M with

ki+M cs
k k 2
88+4 - kz]; H'F IH 8s+3' (15)
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We first apply the definition of optimal regular system with the integer K = H*'. By
(13), we get a set A(0) of [Vol(C)cs H**] integers > m such that the cubes

C(QjaF(j))v .7 € -A(O)’

are contained in C. These are pairwise disjoint. Indeed, on the one hand, we infer from
(12) that
8T F(ciHM) < c§H ™™,

hence
(Claj F(i)) < 2% HM/* for j € A(0). (16)

On the other hand, we have

11;151; |g,(lu) — gg.u)\ > coHk1/s for any h,j in A(0),

which, together with (16), allows us to conclude that the cubes are pairwise disjoint.

We now repeat this process with K = H*+¢ for 1 < ¢ < M. Since we want to end
up with disjoint cubes, we have to remove some ¢;’s at each step. To do this, we proceed
by induction, assuming that, for some 0 < ¢ < M — 1, we have already construct disjoint
sets of integers A(0), ..., A(¢) such that the cubes

Clay, F(7)), i € AQO)U...UA(®L),

are pairwise disjoint.
Applying the definition of optimal regular system with the integer K = H kbt
there is a set A(£ + 1) of [c3Vol(C) H**t#+1] integers with

max \ggu) — ggu)\ > cpH~(itetl) for any h,j in A({ +1). (17)
1<u<s
and such that the cubes 5
Cla;, F(7), JjeAl+1),
are contained in C and pairwise disjoint. Recall that at each step h, with 0 < A < ¢, we have
constructed not more than [c3Vol(C) H**+"] cubes of volume at most equal to F(c; H*¥1 7).
Hence, to be sure that the new cubes have empty intersection with the previous constructed

cubes, we have, by using (17) and the trivial upper bound (a + b)* < 2°(a® + b®), valid for
any positive numbers a and b, to remove at most

L
Ne:=> " csVol(C)H* 7 (F ey HF )Mo 2y H- (D ) rintial o
h=0

14
=) " 2%cgVol(C)HF T (F(cy HY T HRsHE+ o8 4 2%)
h=0
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points o; with j € A(¢+ 1).
By (15) and ¢ < M, we have

ki+M
N < 2303V01(C)Hk1+£+1< Y *HFF(c HY) +2° ZH—k>
k=k1 k>1

< csVol(C)HF H4+1 /2,

since H > 16°, by assumption.

Thus, there remain at least [c3Vol(C) H*11¢+1 /2] cubes, each of them having volume at
least equal to F(H*t¢+1), Since H = 2¢; ', the total volume of all the cubes constructed
is then, by (12) and (15), at least (we use (14) to ensure that [c3Vol(C)H* +¢+1/2] is
greater than c3Vol(C)H*+¢+1/3)

M
1
3 > Vol(C) s H* TR F(H ) > Z Vol(C) czey HF TP (e HF1 PR+
h=0
C1C3
> =5~ Vo 1(C <8s+4 — H*F(c; H’“))
6163
Z (8s+4 - 83+5)
616263
> Qo t5 Vol(C).
This implies that
N C165C3
JEA(0)U...UA(M)
as expected. O

Proof of Theorem 3:

Thanks to the above proposition, we are now able to prove Theorem 3. Our approach
originates in the work of Jarnik. We construct inductively finite sets of compact cubes:
at each step £ we associate to any cube a finite number of sub-cubes of controlled volume
and not too close to each other. The intersection of all these cubes is our Cantor set K, on
which we define a probability measure u. We conclude by applying the mass distribution
principle (Proposition 2 below). This method has also been used by Dickinson & Velani
[14], and is very clearly explained in the book of Falconer [17, Chapter 4].

e Construction of the Cantor set K contained in R?%.

It follows from the assumptions of Theorem 3 that the function  — f(2¥(z)) is non-
increasing. Denote by ¢ = ¢(S) the constant given by Proposition 1 applied to the optimal
regular system S. Since the Hausdorff measure #7 is subadditive, there is no restriction
in assuming that the set E is included in [0, 1]°.

13



Let A > 0 be a real number. We construct the set K(1) by applying Proposition 1 to
the cube C = K(0) = [0, 1]%, the function

F :z— AcVol(K(0))f(2¥(z))
and an integer mg > 2 such that
F(z) = AcVol(K(0))f(2¥(z)) > 4°¥®(x) for all z > my. (18)

Such mg does exist since

lim U(w) =0 and lim {%)

u—>—+00 z—0 I8

:+OO

Hence, we get a set A(1) := {igl), e zgll)} of distinct integers greater than mg, such that
the cubes
I(1,0,7) == C(Qia F(i)), i€ A(1),

are pairwise disjoint. By (18), for any i € A(1), the cube
K(1,0,7) = K(1,7) := C(e;, 2°P°(7))

is contained in I(1,0,7). We set

K1) = (J K@0)= ] K(1,9),

i€ A(1) i€A(1)
and we stress that the union is disjoint. Further, Proposition 1 asserts that the function

F satisfies
Y F(i) > ¢ Vol(K(0)),
i€A(1)

which yields that

> F((KL,0,0)) = > F(2()
i€A(1) i€A(1) (19)

1 . 1
= VoI (K(0) g(f@ =%

Assume now that for some ¢ > 1, we have constructed a set of integers A(¢
.(0) (e
{1,

bl

)

) :
...,ztl)} and a set K(¢), which is the union of ¢, compact, disjoint cubes K(¢, j
j € A(£), centered at the points a; and with volume

Vol(K (£, §)) = (K (£, §))* = 2°0°(j).

14



Then, we construct the set K(£ 4 1) as the disjoint union of compact sub-cubes of the
K(4,j)’s. To this end, for any integer j with 1 < j < ¢,, we apply Proposition 1 to K(¢, j),
with the function '

Vol(K(¢, 7))

Fpj:x— cf(2\Il(w)) —f((K(K,j»)

and with a real number my ; such that

Fyj(z) > 4°¥%(z) for any « > my,;. (20)
Thus, we get a set A({ + 1, j) of integers igfﬂ’j)
such that the cubes

, with 1 < h <1, ;, all greater than m, ;,

Clay, Fp;(2), 1€ A(+1,7),
are pairwise disjoint. Hence, by (20), the cubes
K(C+1,j,6) = Cla;, 2°0°(1), i € A(L+1,5),

are, a fortiori, pairwise disjoint. For each 1 < j < t,, we have built ¢, ; cubes K(¢+1, j, )
contained in the cube K(4, 7). Thus, we have constructed

te
b1 = Z te,j
j=1

cubes contained in K(¢), which we reindex as
K({+1,1),...,K({+1,t41)-
We set

tega
K(t+1) = K(+1,5),
7j=1
which is the union of ¢y, pairwise disjoint cubes. To complete the inductive process, it

remains for us to set
te

AlL+1) = A(L+1,5).
7=1
It is easy to check that the union is disjoint.
Since Proposition 1 yields, for any 1 < 5 <{,, that
Y. Fujli) 2 eVol(K(L, ),
1€A(L+1,7)

we get

S serng =t ¥ SEEI 5 )

i€ A(E+1,5) © icA(er1) (21)

1 f((K(44) L :
> p m cVol(K(¢, 7)) = f((K(EaJ»)'

The following important lemma easily follows from (19) and (21). We recall that, for
any ¢ > 1, the set K(¢) is the union of exactly ¢, disjoint cubes.

15



Lemma 1. For any £ > 1 and any 1 < j < t;, we have

> FK(E+1,5,1) > F((K(E ). (22)

1€A(L+1,7)

Further, for any ¢ > 1, we have

> =

Moy > Y fue) >
)

CEK () Cek(1

Proof : The first assertion is a rewriting of (21). An easy induction based on (22) and
(19) allows us to get the second part of the lemma. O

Then, we define the Cantor set

K:=[)K()
¢=0
Clearly, we have
K C E(7). (23)

Further, K(1) depends on the real number A, given at the beginning of the process. Thus,
K also depends on A. In order to simplify the notation, we do not use an additional index
in order to point out this dependence.

e Construction of a probability measure with support in K.

In order to apply the mass distribution principle (Proposition 2 below), we construct
a probability measure p with support in K such that for any cube C of sidelength (C) we
have
45\
c

u(€) < — f(C)). (24)

We define inductively the measure u on each cube of K(¢) as follows. We set u(K(0)) =
1. Let £ > 0 and let C be one of the ;1 cubes building K(¢ + 1). With the previous
notation, there exists a unique pair (jo, %) with 1 < jo < ¢, and 1 < iy < ¢4, such that
C =K({+1,jo,40). Then, we set

F{Ce)
> FUK(E+1,50,9)))

ZGA(&JO)

p(C) = (K (£, jo))- (25)

The measure of each cube arising in the construction of K is well defined. Further, this
measure extends to each of the Borelian sets of K(0) (see e.g. [23], Proposition 1.7).
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Fact. The measure y defined as above has support in K and, for any Borelian set F
contained in K(0), it satisfies

u(F) = inf p(C),

where the infimum is taken over all the coverings J of F' by cubes C belonging to the union
of the K(¢), £ > 0.

Lemma 2. For any £ > 1 and any cube C belonging to K({), we have

u(C) < A F((C))-

In particular, the cube C satisfies (24).

Proof : Let £ >1,1<j<t;,and i€ A({, j). The cubes K(4,j) and K(¢+ 1, j, i) belong,
respectively, to the sets K(¢) and K(£+ 1), and they satisfy K(¢ + 1, j,7) C K(¢,j). The
definition (25) of v and (22) imply that

pK(+1,4,9) _ pKE )
FUK(E+1,5,4))) — F(K( )

Since u(K(0)) = 1 and, by Lemma 1, - (1) f((C)) > 1/, the definition of y implies
w(C) < Af({C)) for any cube C belonging to K(1). Combined with (26), this proves
Lemma 2, for ¢ < 1. O

(26)

Now, we have to prove (24) for an arbitrary cube C. Let 6 > 0 be sufficiently small in
order that any cube of sidelength § intersects at most one component of K(1).

Lemma 3. IfC is a cube included in K(0) of volume less than §, then

45\

u(€) < — f(C)).

Proof : We may assume that C intersects K, since otherwise we get x(C) = 0 and (24)
is trivially satisfied. Further, if C intersects, for any ¢, one and only one component of
K(¢), then p(C) = 0 since the volume of the components of K(¢) tends to 0 when ¢ tends
to infinity: (24) is also trivially satisfied. It only remains for us to consider the case
where there exists an integer ¢ such that C intersects exactly one cube from K(¢), which,
according to the preceeding notation, we denote by K(Z, ), and at least two cubes from
K (£ + 1), which we denote by K(¢+1,j,71),..., K({+1,7,%,), with a > 2. We assume
that, for 1 < h < a, the cube K(£+ 1, j,43) is centered at the vector of index igeﬂ’]) and
has volume 2°¥* (z',(fﬂ’] )). Our choice of § ensures that £ > 1. For convenience, we omit

the superscript (¢+1:9) in the sequel.

We may assume that o;, < ... < oy,. We denote by Fy; the function used above
to construct the compact sub-cubes of K (¢, j). We recall that the cubes C(a;, , Fi,;(ir)),
1 < h < a, are pairwise disjoint and that C intersects all the cubes K(¢ + 1, j,i), 1 < h <

17



a, which have volume 2°W¥?(3;). Then, for any 1 < h < a, the volume of the intersection
Clay,, Fpi(in)) N K(£+1,7,14,) is not less than

275 ((C(au,, Fr 5 (in))) — (K +1,4,in)))° = 275 (Fu,;(in) "/ — 20(ip))° > 272 Fy ;(3n),

by (20). Hence, we have
Vol(C N K (¢, 7)) Zz 25 By (in)
and, using the definition of F} ;, it follows that

VOl(CﬂK(f j > — ZFZ’] Zh

h=1
© VOUK(6.3) < o
2 5 F(Keg)) 2 f ¥ &)
¢ Vol(K(4,5)) <  ;
28 F(K( ) Ay (KA

Lemma 2 and (27) imply that

1(C) = u(C NK(L,5)) SZ K(¢+1,5,in))

| /\

Z K(¢+1,j,ir)))

e FUK(5) .
< ¢ VoI(K (K,J))VOI(CHK(E,J))
22 e K@),

<

since the function z — f(z)/z° is non-increasing on a neighbourhood of 0 and Vol(C N
K(4,7)) < Vol(C). As the function f increases, we get (24), as claimed. O

e Conclusion.

Proposition 2. Let m be a probability measure with support in a bounded set E C R?®.
Assume that there exist A > 0 and 6 > 0 such that

m(U) < Af(diamU),

for any set U with diamU < §. Then, we have

H(E) >

> =

18



Proof : We give a proof, although it can be found in [14] and in [17, page 55]. Let p < ¢
be positive. If {U;} denotes a finite or enumerable covering of E such that the diameter
of any set U; is at most p, then we have

1=m(E) = m<UU> < Zm(u,-) < /\Zf(diamui).

Therefore, we have h(f, p, E) > A\~! for any p < §. The lemma follows by letting § tend
to 0. |

The measure p constructed above is a probability measure with support in K. By
Lemma 3, it satisfies the hypotheses of the mass distribution principle. Indeed, if ¥/ is a
subset of [0, 1]%, there exists a constant £ > 1, depending only on s, such that ¢/ is contained
in a cube of sidelength at most kdiam#/. By Lemma 3, if diam{/ is small enough, we get
that

45\ 45 K

pU) < f(rdiam) <

f(diam/),

since, by assumption, the function  — f(z)/x is non-increasing in a neighbourhood of
the origin. Thus, Proposition 2 yields that

M (K) >

45\’

whence, by (23),
c

45 K’

Since A > 0 can be chosen arbitrarily small, we obtain

H/(E(T)) =

as asserted. O

Proof of Theorem 1:
It is enough to compute the H/ measure of the set K, (¥) N [0,1]°. To this end, we
apply Theorem 3 with the optimal regular system S, (which is optimal, by Theorem 2)

and the function ¥ defined, for any positive integer m, by

U (m)

\i/(ls+...+(m—1)s+1):...:\if(ls+...+(m—1)s+ms):T.

Thus, we have K, (¥) = E(¥). Further, if the denominator in the j-th point

(b )
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of the optimal regular system is denoted by w(j) = ¢, then we have ¥(j) = ¥(w(j))/w(j)
and, for any integer N > 1, we get

1°4...4+N?®

SRSICITIED SIS SFLETIES S TINED o

7=1 w(j)=q g=1 w(j)=q

This shows that the sum

diverges if, and only if, the sum

> ¢ f(2%(q)/9))

q>1

diverges. Hence, Theorem 3 yields Theorem 1. |
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