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Abstract. Denote by {·} the fractional part. We establish several new
metrical results on the distribution properties of the sequence ({xn})n≥1.
Many of them are presented in a more general framework, in which the
sequence of functions (x 7→ xn)n≥1 is replaced by a sequence (fn)n≥1,
under some growth and regularity conditions on the functions fn.

1. Introduction

Let {·} denote the fractional part and ‖ · ‖ the distance to the nearest
integer. For a given real number x > 1, only few results are known on the
distribution of the sequence ({xn})n≥1. For example, we still do not know
whether 0 is a limit point of ({en})n≥1, nor of ({(3

2)n})n≥1; see [5] for a
survey of related results.

However, several metric statements have been established. The first one
was obtained in 1935 by Koksma [13], who proved that for almost every
x > 1 the sequence ({xn})n≥1 is uniformly distributed on the unit interval
[0, 1]. Here and below, almost every always refers to the Lebesgue measure.
In 1967, Mahler and Szekeres [15] studied the quantity

P (x) := lim inf ‖xn‖1/n (x > 1).

They proved that if P (x) = 0 then x is transcendental, and P (x) = 1 for
almost all x > 1. The function x 7→ P (x) was subsequently studied in 2008
by Bugeaud and Dubickas [6]. Among other results, it was shown in [6] that,
for all v > u > 1 and b > 1, we have

dimH{x ∈ (u, v) : P (x) ≤ 1/b} =
log v

log(bv)
,

where dimH denotes the Hausdorff dimension.
In a different direction, Pollington [16] showed in 1980 that there are

many real numbers x > 1 such that ({xn})n≥1 is very far from being well
distributed, namely he established that, for any ε > 0, we have

dimH

{
x > 1 : {xn} < ε for all n

}
= 1.

This result has been subsequently extended by Bugeaud and Moshchevitin
[8] and, independently, by Kahane [11], who proved that for any ε > 0, for
any sequence of real numbers (yn)n≥1, we have

dimH

{
x > 1 : ‖xn − yn‖ < ε for all n

}
= 1.
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In the present paper, we further investigate, from a metric point of view,
the Diophantine approximation properties of the sequence ({xn})n≥1, where
x > 1, and extend several known results to more general families of sequences
({fn(x)})n≥1, under some conditions on the sequence of functions (fn)n≥1.

As a consequence of our main theorem, we obtain an inhomogeneous
version of the result of Bugeaud and Dubickas [6] mentioned above.

Theorem 1. Let b > 1 be a real number and y = (yn)n≥1 an arbitrary
sequence of real numbers in [0, 1]. Set

E(b, y) := {x > 1 : ‖xn − yn‖ < b−n for infinitely many n}.

For every v > 1, we have

lim
ε→0

dimH([v − ε, v + ε] ∩ E(b, y)) =
log v

log(bv)
.

In the homogeneous case (that is, the case where yn = 0 for n ≥ 1),
Theorem 1 was proved in [6] by using a classical result of Koksma [14] and
the mass transference principle developed by Beresnevich and Velani [3].
The method of [6] still works when y is a constant sequence, but one then
needs to apply the inhomogeneous version of Koksma’s theorem in [14].
Here, for an arbitrary sequence (yn)n≥1, we use a direct construction.

Letting v tend to infinity in Theorem 1, we obtain the following immediate
corollary.

Corollary 2. For an arbitrary sequence y of real numbers in [0, 1] and any
real number b > 1, the set E(b, y) has full Hausdorff dimension.

Theorem 1 gives, for every v > 1, the value of the localized Hausdorff
dimension of E(b, y) at the point v. We stress that, in the present context,
the localized Hausdorff dimension varies with v, while this is not at all the
case for many classical results, including the Jarńık–Besicovitch Theorem
and its extensions. Taking this point of view allows us also to place Theorem
1 in a more general context, where the family of functions x 7→ xn is replaced
by an arbitrary family of functions fn satisfying some regularity and growth
conditions.

We consider a family of strictly positive increasing C1 functions f =
(fn)n≥1 defined on an open interval I ⊂ R and such that fn(x), f ′n(x) > 1
for all x ∈ I. For τ > 1, define

E(f, y, τ) := {x ∈ I : ‖fn(x)− yn‖ < fn(x)−τ for infinitely many n}.

For v ∈ I, put

u(v) := lim sup
n→∞

log fn(v)

log f ′n(v)
, `(v) := lim inf

n→∞

log fn(v)

log f ′n(v)
.

We will assume the regularity condition

(1.1) lim
r→0

lim sup
n→∞

sup
|x−y|<r

log f ′n(x)

log f ′n(y)
= 1,

which guarantees the continuity of the functions u and `.
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For non-linear functions fn, i.e., when fn is not of the form fn(x) =
an · x+ bn, we also need the following condition:

(1.2) M := sup
n≥1

log f ′n+1(v)

log f ′n(v)
<∞ for all v ∈ I.

Theorem 1 is a particular case of the following general statement.

Theorem 3. Consider a family of strictly positive increasing C1 functions
f = (fn)n≥1 defined on an open interval I ⊂ R and such that fn(x), f ′n(x) >
1 for all x ∈ I. Assume (1.1) and (1.2). If for all x ∈ I,

∀ε > 0,
∞∑
n=1

f ′n(x)−ε <∞,(1.3)

then, for any v ∈ I and any τ > 1, we have

1

1 + τu(v)
≤ lim

ε→0
dimH([v − ε, v + ε] ∩ E(f, y, τ)) ≤ 1

1 + τ`(v)
.

If the functions fn are linear then we do not need to assume (1.2), and
the assertion gets strengthened to

lim
ε→0

dimH([v − ε, v + ε] ∩ E(f, y, τ)) =
1

1 + τ`(v)
.

We remark that the condition (1.3) is satisfied if

∀x ∈ I, lim
n→∞

log f ′n(x)

log n
=∞.(1.4)

We also observe that the condition (1.1) implies that `(v) ≥ 1 for v in I. In
many cases (in particular, for fn(x) = xn), we have u(v) = `(v) = 1 for v in
I.

It follows from the formulation of Theorem 3 that the real number τ can
be replaced by a continuous function τ : I → (0,∞), in which case the set
E(f, y, τ) is defined by

E(f, y, τ) := {x ∈ I : ‖fn(x)− yn‖ < fn(x)−τ(x) for infinitely many n}.

We get at once the following localized version of Theorem 3. For the classi-
cal Jarńık–Besicovitch Theorem, such a localized theorem was obtained by
Barral and Seuret [2], who were the first to consider localized Diophantine
approximation.

Corollary 4. With the above notation and under the hypotheses of Theorem
3, we have

1

1 + τ(v)u(v)
≤ lim

ε→0
dimH([v − ε, v + ε] ∩ E(f, y, τ)) ≤ 1

1 + τ(v)`(v)
.

We illustrate Theorem 3 and Corollary 4 by some examples. If the family
of functions f = (fn)n≥1 in Theorem 3 is such that, for every x in I, the
sequence (fn(x))n≥1 increases sufficiently rapidly, then

lim
ε→0

dimH([v − ε, v + ε] ∩ E(f, y, τ)) =
1

1 + τ
,
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independently of the family f . This applies, for example, to the families of

functions xn
2
, xn, 2nx and x

√
n.

The case fn(x) = anx, where (an)n≥1 is an increasing sequence of positive
integers, has been studied by Borosh and Fraenkel [4] (but only in the special
case of a constant sequence y equal to 0). Let I be an open, non-empty, real
interval. They proved that

dimH{x ∈ I : ‖anx‖ < a−τn } =
1 + s

1 + τ
,

where s (usually called the convergence exponent of the sequence (an)n≥1)
is the largest real number in [0, 1] such that∑

n≥1

a−s−εn converges for any ε > 0.

The case s = 0 of their result, which corresponds to rapidly growing se-
quences (an)n≥1, follows from Theorem 3. The case an = n for n ≥ 1 corre-
sponds to the Jarńık–Besicovitch Theorem. We stress that the assumption
(1.3) is satisfied only if (an)n≥1 increases sufficiently rapidly.

Questions of uniform Diophantine approximation were recently studied
by Bugeaud and Liao [7] for the b-ary and β-expansions and by Kim and
Liao [12] for the irrational rotations. In this paper, we consider the uniform
Diophantine approximation of the sequence ({xn})n≥1 with x > 1.

For a real number B > 1 and a sequence of real numbers y = (yn)n≥1 in
[0, 1], set

F (B, y) := {x > 1 : for all large integer N, ‖xn − yn‖ < B−N

has a solution 1 ≤ n ≤ N}.

Our next theorem gives a lower bound for the Hausdorff dimension of F (B, y)
intersected with a small interval.

Theorem 5. Let B > 1 be a real number and y an arbitrary sequence of
real numbers in [0, 1]. For any v > 1, we have

lim
ε→0

dimH([v − ε, v + ε] ∩ F (B, y)) ≥
(

log v − logB

log v + logB

)2

.

Unfortunately, we are unable to decide whether the inequality in Theorem
5 is an equality. Observe that the lower bound we obtain is the same as the
one established in [7] for a question of uniform Diophantine approximation
related to b-ary and β-expansions.

Letting v tend to infinity, we have the following corollary.

Corollary 6. For an arbitrary sequence y of real numbers in [0, 1] and any
real number B > 1, the set F (B, y) has full Hausdorff dimension.

We end this paper with results on sequences ({xn})n≥1, with x > 1,
which are badly distributed, in the sense that all of their points lie in a
small interval. As above, we take a more general point of view. Consider
a family of C1 strictly positive increasing functions f = (fn)n≥1 defined on
an open interval I ⊂ R and such that fn(x), f ′n(x) > 1 for all x ∈ I and for
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all n ≥ 1. Let δ = (δn)n≥1 be a sequence of positive real numbers such that
δn < 1/4 for n ≥ 1. Set

G(f, y, δ) := {x ∈ I : ‖fn(x)− yn‖ ≤ δn, ∀n ≥ 1}.
We need the following hypotheses:

∀ε > 0,∀n ≥ 1,
infx∈(v−ε,v+ε) f

′
n+1(x)

supx∈(v−ε,v+ε) f
′
n(x)

· δn ≥ 2,(1.5)

∀x ∈ I, lim
n→∞

log f ′n+1(x)

log f ′n(x)
=∞.(1.6)

Our last main theorem is as follows.

Theorem 7. Keep the above notation. Under the hypotheses (1.1), (1.5),
and (1.6), for all v ∈ I, we have

(1.7) lim
ε→0

dimH([v − ε, v + ε] ∩G(f, y, δ)) = lim inf
n→∞

log f ′n(v) +
n−1∑
j=1

log δj

log f ′n(v)− log δn
.

We remark that our result extends a recent result of Baker [1]. In fact,
in [1], the author studied the special case fn(x) = xqn with (qn)n≥1 being a
strictly increasing sequence of real numbers such that

lim
n→∞

(qn+1 − qn) = +∞.

Our result also gives the following corollary.

Corollary 8. Let (an)n≥1 be a sequence of positive real numbers such that

lim
n→∞

an+1

an
= +∞.

Then, for any sequence (yn)n≥1 of real numbers, we have

dimH{x ∈ R : lim
n→+∞

‖anx− yn‖ = 0} = 1.

2. Basic tools

We present two lemmas which serve as important tools for estimating the
Hausdorff dimension of the sets studied in this paper.

Let [0, 1] = E0 ⊃ E1 ⊃ E2 ⊃ · · · be a decreasing sequence of sets, with
each Ek a finite union of disjoint closed intervals. The components of Ek are
called k-th level basic intervals. Set F = ∩∞k=0Ek. We do not assume that
each basic interval in Ek−1 contains the same number of next level basic
intervals, nor that they are of the same length, nor that the gaps between
two consecutive basic intervals are equal. Instead, for x ∈ Ek−1, we denote
by mk(x) the number of k-th level basic intervals contained in the (k−1)-th
level basic interval containing x, and by ε̃k(x) the minimal distance between
two of them. Set

εk(x) = min
i≤k

ε̃i(x).

In the following, we generalize a lemma in Falconer’s book [9, Example 4.6].
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Lemma 9. For any open interval I ⊂ [0, 1] intersecting F , we have

dimH(I ∩ F ) ≥ inf
x∈I∩F

lim inf
k→∞

log(m1(x) · · ·mk−1(x))

− log(mk(x)εk(x))
.

Proof. The proof is similar to that in the book of Falconer. We define a
probability measure µ on F by assigning the mass evenly. Precisely, for
k ≥ 1, let Ik(x) be the k-th level interval containing x. For x ∈ F and
k ≥ 1, we put a mass (m1(x) · · ·mk(x))−1 to the interval Ik(x). Note that
any two k-th basic intervals contained in the same (k − 1)-th interval have
the same measure. One can check that the measure µ is well defined.

Now let us calculate the local dimension at the point x. Let B(x, r) be
the ball of radius r centered at x. Suppose that εk(x) ≤ 2r < εk−1(x). The
number of k-th level intervals intersecting B(x, r) is at most

min

{
mk(x),

2r

εk(x)
+ 1

}
≤ min

{
mk(x),

4r

εk(x)

}
≤ mk(x)1−s

(
4r

εk(x)

)s
,

for any s ∈ [0, 1]. Thus

µ(B(x, r)) ≤ mk(x)1−s
(

4r

εk(x)

)s
· (m1(x) · · ·mk(x))−1.

Hence

logµ(B(x, r))

log r
≥ s logmk(x)εk(x)− s log(4r) + log(m1(x) · · ·mk−1(x))

− log r
.

Let s be in (0, 1) such that

s < inf
z∈I∩F

lim inf
k→∞

log(m1(z) · · ·mk−1(z))

− logmk(z)εk(z)
≤ lim inf

k→∞

log(m1(x) · · ·mk−1(x))

− logmk(x)εk(x)
.

Then
s logmk(x)εk(x)− s log 4 + log(m1(x) · · ·mk−1(x)) ≥ 0,

for k large enough. Therefore

lim inf
r→0

logµ(B(x, r))

log r
≥ s.

The proof is completed by applying the mass distribution principle (see [10],
Proposition 2.3). �

We also have an upper bound for the dimension of the set I ∩ F . Denote
by |Ik(x)| the length of the k-th basic interval Ik(x) containing x.

Lemma 10. For any open interval I ⊂ [0, 1] intersecting F , we have

dimH(I ∩ F ) ≤ sup
x∈I∩F

lim inf
k→∞

log(m1(x) · · ·mk(x))

− log |Ik(x)|
.

Proof. We define the same probability measure µ as in Lemma 9, i.e., the
interval Ik(x) has measure (m1(x) · · ·mk(x))−1. Then

lim inf
r→0

logµ(B(x, r))

log r
≤ lim inf

k→∞

logµ(Ik(x))

− log |Ik(x)|
= lim inf

k→∞

log(m1(x) · · ·mk(x))

− log |Ik(x)|
.

We finish the proof by applying again the mass distribution principle (see
[10], Proposition 2.3). �
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3. Asymptotic approximation

In this section, we prove Theorem 3. To see that Theorem 1 is a special
case of it, take the family of functions f defined by

fn(x) = xn, ∀n ≥ 1,

we have u(v) = `(v) = 1 and

[v − ε, v + ε] ∩ E
(
f, y,

log b

log(v + ε)

)
⊂ [v − ε, v + ε] ∩ E(b, y)

⊂ [v − ε, v + ε] ∩ E
(
f, y,

log b

log(v − ε)

)
.

Then, Theorem 1 follows directly from Theorem 3.
Now we prove Theorem 3.

Proof of Theorem 3. Lower bound: We can assume that u(v) is finite,
since otherwise there is nothing to prove. Let us start by the simple obser-
vation about the condition (1.1). Given an integer n ≥ 1, set
(3.1)

η(n) = sup

{
log f ′n(w)

log f ′n(z)
− 1;w, z ∈ [v − ε, v + ε], |fn(w)− fn(z)| ≤ 1

}
.

Lemma 11. If (1.1) and (1.3) hold, then

lim
n→∞

η(n) = 0.

Proof. Assume this is not true. Then there exists a sequence of integers (ni)
and a sequence of pairs of points (wi, zi) such that |fni(wi) − fni(zi)| ≤ 1
and

log f ′ni(wi)

log f ′ni(zi)
> Z > 1.

By compactness of [v − ε, v + ε], taking a subsequence if necessary, we can
assume that (wi)i≥1 converges to some point w0.

By (1.3), f ′n(v)→∞. Hence, (1.1) gives us

lim
n→∞

inf
x∈[v−ε,v+ε]

f ′n(x) =∞.

This implies that

|wi − zi| ≤
1

infx∈[v−ε,v+ε] f ′ni(x)
→ 0

as i → ∞, and hence any neighborhood of w0 contains all except finitely
many points wi, zi. Thus, in any neighbourhood U of w0 we have

lim sup
n→∞

sup
w,z∈U

log f ′n(w)

log f ′n(z)
> Z,

which is a contradiction with (1.1). �

Now we construct a nested Cantor set which is the intersection of unions
of subintervals at level ni, where (ni)i≥1 is an increasing sequence of positive
integers which will be defined precisely later. Suppose we have already well
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chosen this subsequence. Let us describe the nested family of subintervals.
For each level i, we need to consider the set of points x such that

‖fni(x)− yni‖ ≤ fni(x)−τ .

By the property ‖fn1(x)− yn1‖ ≤ fn1(x)−τ , we take the intervals at level 1
as

I1(k, v, f, y, τ) := [f−1
n1

(k+ yn1 − fn1(v+ ε)−τ ), f−1
n1

(k+ yn1 + fn1(v+ ε)−τ )],

with k being an integer in [fn1(v − ε) + 1, fn1(v + ε)− 1].
Suppose we have constructed the intervals at level i − 1. Let [ci−1, di−1]

be an interval at such level. A subinterval of [ci−1, di−1] at level i is such
that

[f−1
ni (k + yni − fni(di−1)−τ ), f−1

ni (k + yni + fni(di−1)−τ )],

with k being an integer in [fni(ci−1) + 1, fni(di−1)− 1]. By continuing this
construction, we obtain intervals Ii(·) for all levels.

Finally, the intersection F of these nested intervals is obviously a subset
of [v − ε, v + ε] ∩ E(f, y, τ).

Let z ∈ F and [ci(z), di(z)] be the i-th level interval containing z. Then
we have

(3.2) mi+1(z) ≥ f ′ni+1
(wi) · (di − ci)− 2 ≥ f ′ni+1

(wi) ·
2fni(di)

−τ

f ′ni(zi)
− 2,

where wi, zi ∈ [ci(z), di(z)]. Furthermore,

(3.3) εi+1(z) ≥
1− 2fni+1(ci(z))

−τ

f ′ni+1
(ui)

≥ 1

2f ′ni+1
(ui)

,

where ui ∈ [ci(z), di(z)].
Now we are going to define the subsequence (ni)i≥1.

Lemma 12. Assume (1.1) and (1.2). For any γ > 0, we can find a subse-
quence (ni)i≥1 such that

(3.4)
f ′ni+1

(w)

f ′ni+1
(u)
≤ f ′ni(z)

γ ∀w, u ∈ [ci(z), di(z)],

and for any small ε > 0, we have

∀x ∈ (v − ε, v + ε), lim
i→∞

log f ′ni(x)

log f ′ni−1
(x)

= lim
i→∞

log f ′ni(x)

log fni−1(x)
=∞,(3.5)

and

infx∈(v−ε,v+ε) f
′
ni+1

(x)

supx∈(v−ε,v+ε) f
′
ni(x) · fni(x)τ

≥ 2.(3.6)

If fn are linear then we do not need to assume (1.2), moreover we can
choose (ni) in such a way that we have (in addition to the other parts of the
assertion)

(3.7) lim
i→∞

log fni(v)

log f ′ni(v)
= `(v).
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Proof. In the linear case (3.4) is automatically true, and to have (3.5) and
(3.6) we just need that (ni)i≥1 increases sufficiently fast (as will be clear
from the proof for the general case). Hence, we will be free to choose (ni)
satisfying in addition (3.7).

Let us proceed with the general case. For any γ > 0, by Lemma 11, there
exists n0 ∈ N such that

∀n ≥ n0, η(n) <
γ

2M
,

where M is the constant in assumption (1.2).
Starting with this n0, by the assumption (1.2), we can then construct a

subsequence (ni)i≥1 satisfying

(3.8)
γ

2η(ni) ·M
≤

log f ′ni+1
(v)

log f ′ni(v)
≤ γ

2η(ni)
.

Observe that, as η(ni) → 0 by Lemma 11, the lefthand side of (3.8)
implies the first part of (3.5). As u < ∞, the second part of (3.5) follows.
The condition (3.6) will also follow, provided that n0 was selected large
enough.

We need now to prove (3.4). By (3.1), for any w, u in the interval
[ci(z), di(z)],

(3.9)
f ′ni+1

(w)

f ′ni+1
(u)
≤
f ′ni+1

(z)1+η(ni)

f ′ni+1
(z)1−η(ni)

= f ′ni+1
(z)2η(ni).

Combining (3.8) and (3.9), we get (3.4).
�

We continue the proof of the lower bound of Theorem 3. By (3.2) and
(3.6),

mi+1(z) ≥ f ′ni+1
(wi) ·

2fni(di)
−τ

f ′ni(zi)
− 2 ≥ 2,

which then implies that F is non-empty. Further, by (3.4), for any γ > 0,

mi+1(z) ≥ f ′ni+1
(z) · f ′ni(z)

−γ · fni(di)
−τ

f ′ni(zi)
.(3.10)

By (3.2), (3.3) and (3.4),

mi+1(z)εi+1(z) ≥ f ′ni(z)
−γ · fni(di)

−τ

2f ′ni(zi)
.(3.11)

Thus, (1.3) and (3.5) imply that − logmi+1(z)εi+1(z) is unbounded. So by
(3.10), (3.11) and (3.5)

lim inf
i→∞

log(m2(z) · · ·mi(z))

− logmi+1(z)εi+1(z)

≥ lim inf
i→∞

∑i
j=2(log f ′nj (z)− γ log f ′nj−1

(z)− τ log fnj−1(dj)− log f ′nj−1
(zj))

log 2 + log f ′ni(zi) + γ log f ′ni(z) + τ log fni(di)

= lim inf
i→∞

log f ′ni(z)

log f ′ni(zi) + γ log f ′ni(z) + τ log fni(di)
.
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Hence, by the definition of η(ni), we have

lim inf
i→∞

log(m2(z) · · ·mi(z))

− logmi+1(z)εi+1(z)

≥ 1

lim sup
i→∞

(
1 + η(ni) + γ + τ(1 + η(ni)) ·

log fni (di)

log f ′ni (di)

) .
In the linear case, log fni(di)/ log f ′ni(di) converges to `( lim

i→∞
di). In the gen-

eral situation, we have

lim sup
i→∞

log fni(di)

log f ′ni(di)
≤ u( lim

i→∞
di).

As γ can be chosen arbitrarily small, η(ni)→ 0 by Lemma 11, and

lim
i→∞

di ∈ [v − ε, v + ε],

the lower bound is obtained by applying Lemma 9.

Upper bound: Since for all x ∈ [v − ε, v + ε] ∩ E(f, y, τ), we have

‖fn(x)− yn‖ < fn(x)−τ

for infinitely many n ≥ 1. Then the set [v − ε, v + ε] ∩ E(f, y, τ) is covered
by the union of the family of intervals

In(k) := [f−1
n (k + yn − fn(v − ε)−τ ), f−1

n (k + yn + fn(v − ε)−τ )],

where k ∈ [fn(v − ε), fn(v + ε)] is an integer. Note that the length of the
interval In(k) satisfies

|In(k)| ≤ 2fn(v − ε)−τ

f ′n(z)
for some z ∈ (v − ε, v + ε).

The number of the intervals at level n is less than

fn(v + ε)− fn(v − ε) ≤ 2εf ′n(w) for some w ∈ (v − ε, v + ε).

Thus for s > 0
∞∑
n=1

∑
k∈[fn(v−ε),fn(v+ε)]

|In(k)|s ≤
∞∑
n=1

2εf ′n(w) ·
(

2fn(v − ε)−τ

f ′n(z)

)s
.(3.12)

By the definition of `(v), for any η > 0, there exists n0 = n0(η) ∈ N such
that for any n ≥ n0

fn(v − ε) > f ′n(v − ε)`(v−ε)−η.

Thus by ignoring the first n0 terms, we have (3.12) is bounded by

21+sε
∞∑

n=n0

f ′n(w) · f ′n(z)−s ·
(
f ′n(v − ε)

)−τs(`(v−ε)−η)
.(3.13)

Hence by the assumption (1.3) if

s > lim sup
n→∞

log f ′n(w)

log f ′n(z) + τ(`(v − ε)− η) log f ′n(v − ε)
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the sum in (3.12) converges. By (1.1),

lim
n→∞

log f ′n(w)

log f ′n(z)
= 1, lim

n→∞

log f ′n(w)

log f ′n(v − ε)
= 1.

Therefore

lim
ε→0

dimH [v − ε, v + ε] ∩ E(f, y, τ) ≤ 1

1 + τ`(v)
.

�

4. Uniform Diophantine approximation

In this section, we study the uniform Diophantine approximation of the
sequence ({xn})n≥1 with x > 1.

Recall that for any sequence of real numbers y = (yn)n≥1 in [0, 1], we are
interested in the set

F (B, y) := {x > 1 : for all large integer N, ‖xn − yn‖ < B−N

has a solution 1 ≤ n ≤ N}.

For any v ∈ F (B, y), for any ε > 0, we will give a lower bound for the
Hausdorff dimension of [v−ε, v+ε]∩F (B, y). To this end, we investigate the
uniform Diophantine approximation and asymptotic Diophantine approxi-
mation together. We consider the following subset of [v− ε, v+ ε]∩F (B, y)

F (v, ε, b, B, y) := {z ∈ [v − ε, v + ε] : ‖zn − yn‖ < b−n for infinitely many n

and ∀N � 1, ‖zn − yn‖ < B−N has a solution 1 ≤ n ≤ N}.
The proof of Theorem 5 will be completed by maximizing the lower bounds
of F (v, ε, b, B, y) with respect to b > B.

Proof of Theorem 5. We first construct a subset F ⊂ F (v, ε, b, B, y). Sup-
pose that b = Bθ with θ > 1. Let nk = bθkc. Consider the points z such
that

‖znk − ynk‖ < b−nk .

Then one can check that

z ∈ F (v, ε, b, B, y) = F (v, ε,Bθ, B, y) = F (v, ε, b, b
1
θ , y).

We do the same construction as in Section 3. We will obtain a Cantor set
F ⊂ F (v, ε, b, b

1
θ , y), which is the intersection of a nested family of intervals

with

mk(z) =
2nk+1ck(z)

nk+1−1

nkbnkdk(z)nk−1

and

εk(z) =

(
1− 2

bnk+1

)
1

nk+1dk(z)nk+1−1
,

where [ck(z), dk(z)] is the k-th level interval containing z.
By the choice of nk, we will have the following estimations:

mk(z) ≥
2(θk+1 − 1)ck(z)

θk+1−1

θkbθkdk(z)θ
k−1

≥ θ · b−θk ·
(
ck(z)

dk(z)

)θk
· ck(z)θ

k(θ−1).
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and

εk(z) ≥
1

2θk+1
· dk(z)−θ

k+1
.

Since

dk(z)− ck(z) ≤
b−nk

nkck(z)nk−1
≤ b−θk

is much more smaller than 1/θk,(
ck(z)

dk(z)

)θk
=

(
1− dk(z)− ck(z)

dk(z)

)θk
≥ 1

2
.

Then

mk(z) ≥
θ

2
·
(
ck(z)

θ−1

b

)θk
≥ θ

2θ+1

(
zθ−1

b

)θk
,

and

mk(z)εk(z) ≥
1

4θk
·
(
ck(z)

θ−1

b · dk(z)θ

)θk
≥ 1

2θ+3θk

(
1

bz

)θk
.

Thus by Lemma 9, for any z ∈ F , we have

lim inf
k→∞

log(m1(z) · · ·mk−1(z))

− logmk(z)εk(z)

≥ lim inf
k→∞

(
(θ − 1) log z − log b

)∑k−1
j=1 θ

j

θk log bz

= lim inf
k→∞

(θ − 1) log z − log b

(θ − 1) log bz
· θ

k−1 − 1

θk−1

=
(θ − 1) log z − log b

(θ − 1) log bz
.

Hence, by the relation b = Bθ, we deduce that the Hausdorff dimension
of the set F (v, ε, b, B, y) = F (v, ε,Bθ, B, y) is at least equal to

(θ − 1) log(v − ε)− log b

(θ − 1) log(b(v − ε))
=

log(v − ε)− θ
θ−1 logB

log(v − ε) + θ logB
.

Taking θ → ∞ in the left side of the equality, we get the lower bound
log(v − ε)/ log(b(v − ε)) for the Hausdorff dimension of the set considered
in Theorem 1:

[v − ε, v + ε] ∩ E(b, y)

={v − ε ≤ x ≤ v + ε : ‖xn − yn‖ < b−n for infinitely many n}.
By maximizing the right side of the equality with respect to θ > 1, we

obtain the lower bound (
log(v − ε)− logB

log(v − ε) + logB

)2

for the Hausdorff dimension of the set

[v − ε, v + ε] ∩ F (B, y)

={v − ε ≤ x ≤ v + ε : ∀N � 1, ||xn − y|| < B−N has a solution 1 ≤ n ≤ N}.
By letting ε tend to 0, this completes the proof of Theorem 5. �
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5. Bad approximation

In this section, we study the bad approximation properties of the sequence
({xn})n≥1, where x > 1.

Let q = (qn)n≥1 be a sequence of positive real numbers and y = (yn)n≥1

be an arbitrary sequence of real numbers in [0, 1]. Define

G(q, y) = {x > 1 : lim
n→∞

‖xqn − yn‖ = 0},

and, for v > 1, define

G(v, q, y) = {1 < x < v : lim
n→∞

‖xqn − yn‖ = 0}.

Recently Baker [1] showed that if q = (qn)n≥1 is strictly increasing and

lim
n→∞

(qn+1 − qn) =∞,

then the set G(q, y) has Hausdorff dimension 1.
We want to generalize Baker’s result. Consider a family of C1 functions

f = (fn)n≥1 from an interval I ⊂ R to R such that f ′n(x) ≥ 1 for all x ∈ I
and for all n ≥ 1. Let δ = (δn)n≥1 be a sequence of positive real numbers
tending to 0. For ε > 0, set

G(ε, v, f, y, δ) := {v − ε < x < v + ε : ‖fn(x)− yn‖ ≤ δn, ∀n ≥ 1}.

To prove Theorem 7, we need to estimate dimH G(ε, v, f, y, δ).

Sketch proof of Theorem 7. Lower bound: We do the same construction
as in the proof of the lower bound in Theorem 3. If the right-hand side
inequality in (3.8) is satisfied, that is, if

(5.1)
log f ′n+1(v)

log f ′n(v)
≤ γ

2η(n)
,

for some γ > 0, for large enough n, and for η defined in (3.1), then the
distortion estimation (3.4) holds and we estimate the dimension in exactly
the same way as in Theorem 3.

If, however, (5.1) is not satisfied, that is, at some place f ′n is too sparse,
with log f ′n+1(v)� log f ′n(v) then we can apply the idea of Baker ([1], page

69): we add some new functions f̃m between fn and fn+1, in such a way that
the resulting, expanded, sequence of their logarithms of derivatives is not
too sparse anymore. We also add some δ̃m = 1 for each added f̃m. Observe
that the right-hand side of (1.7) does not change. Naturally, the resulting

set G(ε, v, f̃ , y, δ̃) is exactly the same as G(ε, v, f, y, δ). So, for the lower

bound, we need only to estimate the lower bound of dimH G(ε, v, f̃ , y, δ̃).
This means that we can freely assume that (5.1) holds.
We will construct a subset of G(ε, v, f, y, δ) which is the intersection of a

nested family of subintervals In(·).
For n = 1, by the property ‖f1(x) − y1‖ ≤ δ1, we take the intervals at

level 1 as

I1(k, v, f, y, δ) := [f−1
1 (k + y1 − δ1), f−1

1 (k + y1 + δ1)],

with k being an integer in [f1(v − ε) + 1, f1(v + ε)− 1].
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Suppose we have constructed the intervals at level n− 1. Let [cn−1, dn−1]
be an interval at this level. A subinterval of [cn−1, dn−1] at level n is

[f−1
n (k + yn − δn), f−1

n (k + yn + δn)],

with k being an integer in [fn(cn−1) + 1, fn(dn−1)− 1]. By continuing this
construction, we obtain intervals In(·) for all levels. Finally, the intersection
F of these nested intervals is obviously a subset of G(ε, v, f, y, δ).

Let z ∈ F and [cn(z), dn(z)] be the n-th level interval containing z. Then
by (1.5)

mn+1(z) ≥ f ′n+1(wn) · (dn − cn)− 2 ≥ f ′n+1(wn) · 2δn
f ′n(zn)

− 2 ≥ 2,

and

εn+1(z) ≥ 1− 2δn+1

f ′n+1(un)
≥ 1

2f ′n+1(un)
.

with wn, zn, un ∈ [cn(z), dn(z)]. As we are assuming (5.1), we have (3.4) and
then for any γ > 0

mn+1(z) ≥ f ′n+1(z) · f ′n(z)−γ · δn
f ′n(zn)

.

and

mn+1(z)εn+1(z) ≥ f ′n(z)−γ · δn
2f ′n(zn)

Thus,

log(m2(z) · · ·mn(z))

− logmn+1(z)εn+1(z)

≥
log f ′n(z)− log f ′1(z) +

n−1∑
j=1

log δj +
n−1∑
j=1

log
f ′j(z)

−γ

f ′j(zj)

log 2 + log f ′n(zn) + γ log f ′n(z)− log δn
.

By (1.6), we have

lim inf
n→∞

log(m2(z) · · ·mn(z))

− logmn+1(z)εn+1(z)

≥ lim inf
n→∞

log f ′n(z) +
n−1∑
j=1

log δj

log f ′n(zn) + γ log f ′n(z)− log δn
.

Since γ can be chosen arbitrary small and zn tends to z, by (1.1) we have

lim inf
n→∞

log(m2(z) · · ·mn(z))

− logmn+1(z)εn+1(z)
≥ lim inf

n→∞

log f ′n(z) +
n−1∑
j=1

log δj

log f ′n(z)− log δn
.

Hence the lower bound of Theorem 7 is obtained by Lemma 9.

Upper bound: We will apply Lemma 10. For each basic interval In(z),
by (1.1), we have for any γ, for n large enough

δn
f ′n(z)f ′n−1(z)γ

≤ |In(z)| ≤
δnf

′
n−1(z)γ

f ′n(z)
.
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Thus,

mn(z) ≤ |In−1(z)| · f ′n(z)f ′n−1(z)γ ≤
δn−1f

′
n−2(z)γ

f ′n−1(z)
f ′n(z)f ′n−1(z)γ .

Hence,

n∏
j=2

mj(z) ≤ f ′n(z) ·
n−1∏
j=1

δj ·

n−1∏
j=1

f ′j(z)
2γ

f ′1(z)
.

Therefore, by (1.6),

lim inf
n→∞

log(m1(z) · · ·mn(z))

− log |In(z)|
≤ lim inf

n→∞

log f ′n(z) +
n−1∑
j=1

log δj

log f ′n(z)− log δn
.

By Lemma 10, we conclude the proof. �
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