R	MA
Institut de Recherche Mathématique Avancée	

de Strasbourg

Université

PERSISTENT HOMOLOGY ON MUSICAL BARS

Victoria Callet

IRMA, CNRS, Université de Strasbourg, France

victoria.callet@math.unistra.fr

Mathematics and Computation in Music, Atlanta, Georgia, 21-24 June 2022

PERSISTENT HOMOLOGY

Filtration and Persistence

- Filtered simplicial complex (figure 1): $\emptyset = K^{-1} \subset K^0 \subset \ldots \subset K^N = K$.
- **Persistent Homology**: computing simplicial homology $H_*(K^i)$ over \mathbb{F}_2 for each time *i*.
- **Barcodes** (figure 6): graph where the horizontal axis is progress in the filtration and a bar that starts at time *s* and ends at time *t* is a generator of $H_*(K^s)$ that is still one for $H_*(K^{t-1})$ but not at time *t*.

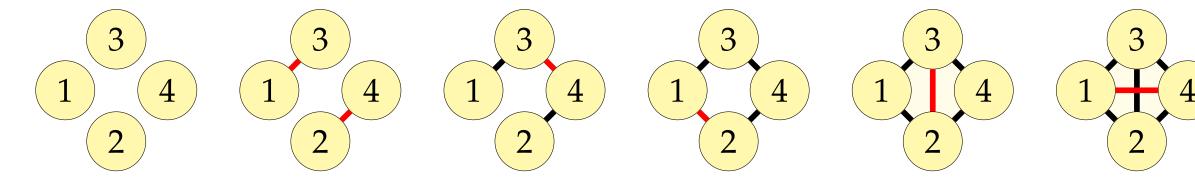


Figure 1 – A filtered complex with 6 times of filtration.

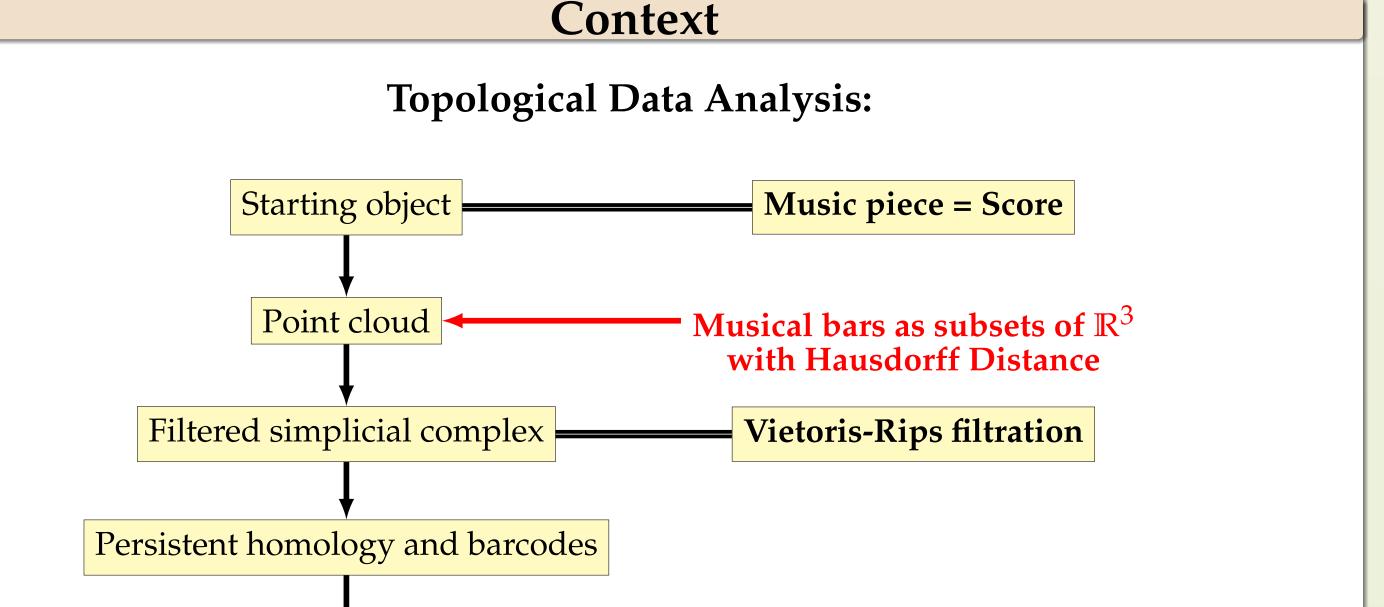


Figure 2 – Barcodes for filtration of figure 1 in degree 0 (left) and degree 1 (right).

How should we associate a filtered complex with a given musical piece?

APPLICATION TO THE MUSICAL BARS OF A SCORE

Musical Bars of a Score

Definition. A **musical bar** is a finite subset \mathcal{B} of \mathbb{R}^3 where an element of \mathcal{B} is called a **note** characterized by three coordinates:

- the **position**, which refers to its place in the bar
- the **duration**, expressed in beats
- the **pitch**, which is the value of the note in term of its fundamental frequency

Definition. A **score** S is a finite set of **distinct bars**.

Example. A score $S = \{B_1, B_2, B_3, B_4, B_5\}$ with 5 distinct bars and its description:

 $\mathcal{B}_{1} = \{(3, 1/2, C_{5}), (7/2, 1/2, D_{5})\}$ $\mathcal{B}_{2} = \{(0, 3/2, E_{5}\flat), (3/2, 1/2, D_{5}), (2, 1, E_{5}\flat), (3, 1, G_{5})\}$ **Filtration: the Vietoris-Rips Complex**

Definition. Let $X = \{x_1, ..., x_n\}$ be a **point cloud** and $\epsilon \ge 0$ be a fixed **parameter**. The **Vietoris-Rips complex** $\mathcal{R}_{\epsilon}(X)$ is the simplicial complex where

- the set of vertices is $X = \{x_1, \dots, x_n\}$
- $\sigma = \{x_1, \ldots, x_k\}$ is a *k*-simplex *iff* $d(x_i, x_j) \le \epsilon \quad \forall (x_i, x_j) \in \sigma^2$.

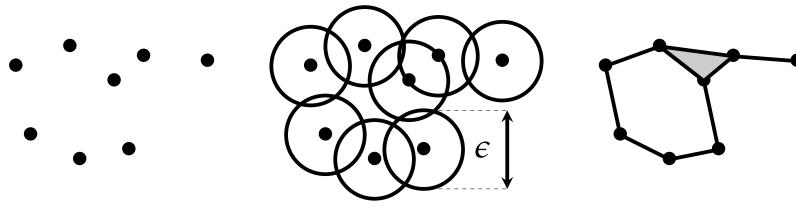


Figure 3 – The Vietoris-Rips complex $R_{\epsilon}(X)$.

 \rightarrow For two given parameters ϵ and ϵ' with $\epsilon \leq \epsilon'$, there is an inclusion

 $R_{\epsilon}(X) \hookrightarrow R_{\epsilon'}(X)$

and we get a filtered complex by **increasing** the paramater ϵ .

The Score as a Point Cloud

Definition. Let \mathcal{B}_i and \mathcal{B}_j be two musical bars. The Hausdorff distance d_H between \mathcal{B}_i and \mathcal{B}_j is defined by

 $d_H(\mathcal{B}_i, \mathcal{B}_j) = \max\left\{\max_{n_i \in \mathcal{B}_i} \min_{n_j \in \mathcal{B}_j} d_1(n_i, n_j); \max_{n_j \in \mathcal{B}_j} \min_{n_i \in \mathcal{B}_i} d_1(n_i, n_j)\right\}$ where $d_1(x, y) = \|x - y\|_1 = \sum_i |x_i - y_j|.$

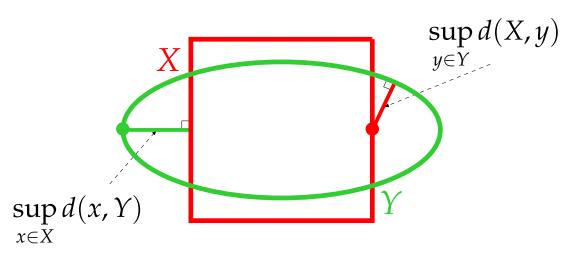


Figure 4 – Hausdorff distance for two metric spaces (X, d) and (Y, d).

$\mathcal{B}_{3} = \{(0,4,D_{5})\}$ $\mathcal{B}_{4} = \{(0,3/2,C_{5}), (3/2,1/2,B_{4}\flat), (2,1,C_{5}), (3,1,E_{5}\flat)\}$ $\mathcal{B}_{5} = \{(0,4,B_{4}\flat)\}$

→ The time is **discretized** by setting $\epsilon = t\rho$, with $t \in \{0, 1, ..., 100\}$ and ρ is a fixed constant. We call ϵ the **error margin (e.m.)**.

Figure 5 – The score associated with the filtration and barcodes of figures 1 and 6.

ANALYSIS OF A MUSICAL PIECE

The Piece

- → The musical piece that is analysed is taken from the soundtrack of the French movie *Le Fabuleux Destin d'Amélie Poulain*, directed by Jean-Pierre Jeunet (2001).
- → The music is *Comptine d'un autre été: l'Après-midi* for piano, composed and played by the minimalist composer Yann Tiersen (2001).

Structure of the Score

The score has 53 musical bars but it only contains 39 **distinct bars**, and it is split in two parts. It is constructed in the following way:

- 3 different themes in the first part that are played again one octave higher in the second one.
- all the melody is constructed over 4 musical bars that are repeated and which constitute the musical accompaniment
- the piece ends with an *Em* chord played with whole notes.

Figure 6 – Barcodes for *Comptine d'un autre été: L'Après-midi* in degree 0 (left) and degree 1 (right).

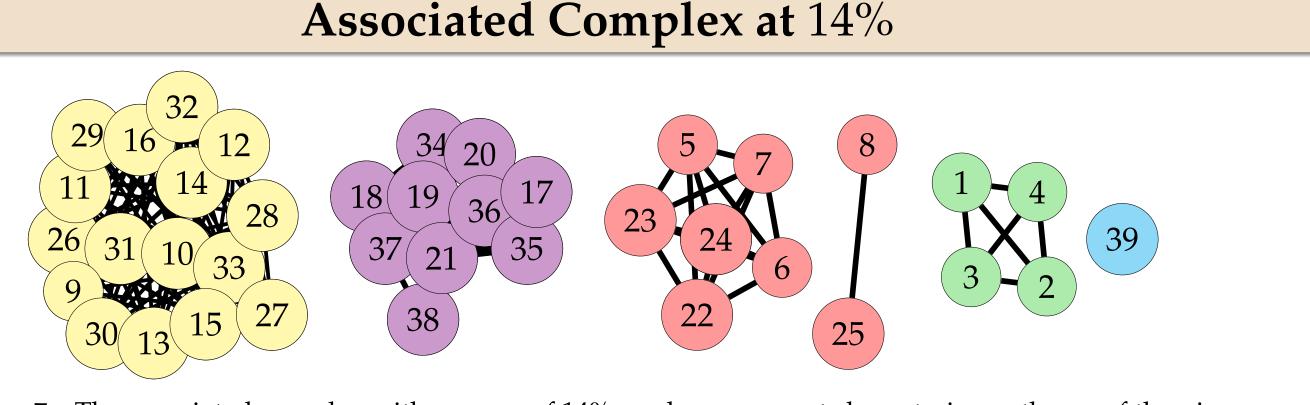


Figure 7 – The associated complex with an **e.m.** of 14%: each component characterizes a theme of the piece.

Barcodes in degrees 0 and 1

One-dimensional cycles

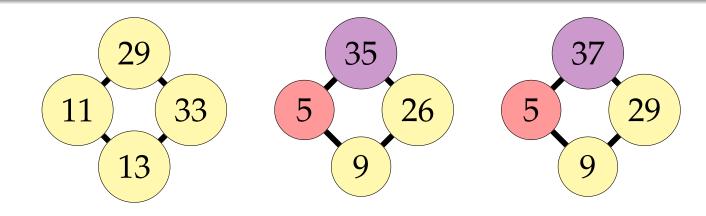


Figure 8 – One-dimensional cycles from that appear with an **e.m.** of 8% (left) and 26% (middle and right).

Analysis, interpretation and future work

General idea for reading barcodes:

- Several level of analysis depending of the error margin we choose to take.
- Focus on the largest bars which *persist* while the smallest ones are considered as *noise*.

Barcodes in degree 0:

- For $t \ge 21\%$: only 2 connected components, one corresponds to the last musical bar \mathcal{B}_{39} and the other is a large dimensional complex where all musical bars are connected together.
- For $t \le 8\%$: only small bars that we ignore as noise.
- For 8% ≤ t ≤ 21%: there are 5, 6 or 7 classes. For t = 14%, the associated complex from figure 7: 6 connected components where each one corresponds to a theme of the song.

Barcodes in degree 1:

 3 different one-dimensional cycles: some edges linked musical bars of one given theme to the same one octave higher, but not systematically → not an obvious musical interpretation.

Conclusion and prospect:

- This approach can capture the global structure of the piece using barcode in degree 0.
- Highlight repeating patterns or musical loops in the score using degree 1.
- Apply this method to a more general and diverse corpus of music data to compare and see in which way it can capture the global structure of a music piece.
- Try new distances to analyze other characteristics of the score.