Gluing cluster tilting objects on surfaces Recollement des objets amas-basculants sur une surface

Rencontre de l'ANR Charms, Strasbourg

Merlin Christ, IMJ-PRG

May 30, 2024

This work was funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 101034255.

1 E N 1 E N

Contents

2 Gluing cluster tilting subcategories

3 Examples: higher rank and perverse schobers

Disclaimer: we will skip a few technical points.

Higgs category

Let (Q, F, W) be an ice quiver $(F \subset Q \text{ frozen subquiver})$ with potential W. Let $A_{Q,F}$ be the corresponding cluster algebra with coefficients arising from F.

Theorem (Yilin Wu)

There is a Frobenius extriangulated category \mathfrak{H} , called the Higgs category, with the following properties:

- H has a canonical cluster-tilting object with endomorphism algebra kQ. The extriangulated category H thus categorifies A_{Q,F}.
- The 'usual' triangulated 2-CY cluster category is the stable category (=localization) of ${\cal H}_S.$

3

For marked surfaces

Let S be an oriented surface with nonempty boundary and markings $M \subset \partial S$. For each triangulation of S have an ice quiver with potential (Q, F, W). We denote the corresponding Higgs category by \mathcal{H}_S .

Theorem (C.)

• The Higgs category \mathcal{H}_S is equivalent as an extriangulated category to the 1-periodic topological Fukaya category of S, hence also

$$\mathcal{H}_{S} \simeq \mathcal{D}^{\mathsf{perf}}(\mathsf{gentle}) \otimes^{\mathsf{dg}} \underbrace{\mathcal{D}^{\mathsf{perf}}(\Pi_{2}(A_{1}))/\mathcal{D}^{\mathsf{fin}}(\Pi_{2}(A_{1}))}_{=:\mathbb{C}_{1}}$$

Here C_1 is the 1-CY cluster category of type A_1 and equivalent to the 1-periodic derived ∞ -category of A_1 .

• \mathcal{H}_{S} admits a relative right 2-Calabi–Yau structure which induces the extriangulated structure.

< □ > < 同 > < 回 > < 回 > < 回 >

More details on the relative Calabi-Yau structure

The restriction to boundary functor

$$F: \mathcal{H}_{\mathsf{S}} \longrightarrow \prod_{\pi_{\mathsf{O}}(\partial \mathsf{S} \setminus M)} \mathcal{C}_{1}$$

is right 2-Calabi–Yau.

We call an extension $\alpha \colon X \to Y[1]$ in \mathcal{H}_S exact if $F(\alpha) = 0$. This determines the exact/extriangulated structure.

The image of the right adjoint of F gives the subcategory of injective-projective objects. Geometrically, these correspond to boundary arcs.

Gluing properties of \mathcal{H}_{S}

Let S, S' be two marked surfaces, $B \subset \partial S \setminus M$, $\partial S' \setminus M'$ a common boundary component.

Corollary (C.)

There is a limit/pullback diagram of ∞ -categories:

This is further a composition of right Calabi-Yau spans.

Note: if $S \cup_B S'$ has sufficient marked points, then the functors $\mathcal{H}_{S \cup_B S'} \to \mathcal{H}_S, \mathcal{H}_{S'}$ have fully faithful right adjoints.

Let ${\mathcal D}$ be an extriangulated category (typically Hom-finite, 2-CY).

Definition

An additive subcategory $\mathfrak{T}\subset\mathfrak{D}$ is called cluster tilting if

- \mathfrak{T} is rigid: $\mathbb{E}(T, T') \simeq 0$ for all $T, T' \in \mathfrak{T}$.
- \mathfrak{T} has the 2-term resolution property: every object $X \in \mathfrak{D}$ is part of an exact sequence $X \to T_0 \to T_1$ with $T_0, T_1 \in \mathfrak{T}$.

Gluing context

Consider a pullback diagram

describing a composition of right 2-Calabi–Yau spans and with the right adjoints j_1, j_2, i_1, i_2 fully faithful.

Let $\mathfrak{T}_1 \subset \mathfrak{D}_1$, $\mathfrak{T}_2 \subset \mathfrak{D}_2$ additive subcategories such that $i_1(\mathfrak{C}_2) \subset \mathfrak{T}_1$ and $i_2(\mathfrak{C}_2) \subset \mathfrak{T}_2$. Define $\mathfrak{T} \coloneqq j_1(\mathfrak{T}_1) \cup j_2(\mathfrak{T}_2) \subset \mathfrak{D}$

◆ロ → ◆ □ → ◆ 三 → ◆ □ → ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

Gluing cluster tilting subcategories

Let $\mathfrak{T}_1 \subset \mathfrak{D}_1$, $\mathfrak{T}_2 \subset \mathfrak{D}_2$, $\mathfrak{T} \coloneqq j_1(\mathfrak{T}_1) \cup j_2(\mathfrak{T}_2) \subset \mathfrak{D}$ as before.

Proposition (In preparation, C.)

If $\mathfrak{T}_1 \subset \mathfrak{D}_1$, $\mathfrak{T}_2 \subset \mathfrak{D}_2$ have the 2-term resolution property, then so does $\mathfrak{T} \subset \mathfrak{D}$.

Can also show rigidity of T given rigidity of T_1, T_2 and further assumptions, thus showing T is cluster tilting.

Merlin Christ, IMJ-PRG

Proof idea

Abstract nonsense: for every $X \in \mathcal{D}$, there is a pullback diagram in \mathcal{D} :

We choose 2-term resolutions of $j_i^L(X)$ by \mathfrak{T}_i in \mathfrak{D}_i , i = 1, 2. Applying j_i , we obtain resolutions of $j_i j_i^L(X)$ by \mathfrak{T} in \mathfrak{D} . These combine to a 2-term resolution of X.

Examples from the theory of perverse schobers on surfaces

Perverse schobers are perverse sheaves of higher categories (due to Kapranov-Schechtman). Given a spanning ribbon graph G of marked surface S, can define a perverse schober by the assignment

trivalent vertex $v \mapsto Fun(A_2, \mathbb{C}_1) \simeq \mathbb{D}^{\mathsf{perf}}(A_2) \otimes^{\mathsf{dg}} \mathbb{C}_1$ edge $e \mapsto \mathbb{C}_1$ edge, vertex intersect $\mapsto (\mathbb{C}_1 \hookrightarrow Fun(A_2, \mathbb{C}_1))$

This produces gluing contexts for cluster tilting objects as above, reproving the existence of cluster tilting objects in the Higgs category \mathcal{H}_S .

Marked surfaces with punctures

Consider ribbon graph with 1-valent vertices at the punctures. Associate to 1-valent vertex of ribbon graph the 2-periodic derived category $\mathcal{D}^{\mathsf{perf}}(k[t_2^{\pm}])$, with $|t_2| = 2$ and $k[t_2^{\pm}]$ the graded Laurent algebra. There is a right 2-Calabi–Yau functor (right adjoint not fully faithful)

 $F: \mathcal{D}^{\mathsf{perf}}(k[t_2^{\pm}]) \longrightarrow \mathfrak{C}_1.$

To obtain a fully faithful right adjoint, can replace 1-valent vertex by 2-valent vertex with value $\mathcal{D}^{\text{perf}}(k[t_2^{\pm}]) \times_F^{\rightarrow} \mathcal{C}_1$ (recollement/gluing of dg-categories along functor).

Upshot: obtain cluster tilting objects on categories for punctures surfaces (conjecturally equivalent to Higgs categories).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Higher rank cluster categories of surfaces

We replace the 1-CY cluster category C_1 of type A_1 by the 1-CY cluster category of type ADE.

Miantao Liu (c.f. talk tomorrow): there exists a cluster tilting object if S is the marked triangle. By gluing, we can thus obtain cluster categories categorifying the higher rank cluster algebras of surface in the sense of Fock–Goncharov and Goncharov–Shen.

Interesting direction: describe rigid objects/cluster tilting objects in terms of webs in the surface. Relate this with higher rank Skein algebras.

Further question: do gluing techniques apply to study the cluster categories of closed surfaces? (In progress.)

13/14