Examples of semidistributive lattices

Baptiste Rognerud

IMJ-PRG

29 mai 2024

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let \mathcal{A} be an abelian category. A subcategory of \mathcal{A} is always assumed to be full and closed under isomorphisms.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Let \mathcal{A} be an abelian category. A subcategory of \mathcal{A} is always assumed to be full and closed under isomorphisms.

Definition (Dickson 1962)

A torsion pair for ${\cal A}$ is a pair $({\cal T},{\cal F})$ consisting of two subcategories of ${\cal A}$ such that :

- 1. $\operatorname{Hom}_{\mathcal{A}}(T,F) = 0$ for every $T \in \mathcal{A}$ et $F \in \mathcal{F}$.
- 2. For every $X \in A$, there is $t(X) \in T$ and $f(X) \in F$ and a short exact sequence

$$0 \to t(X) \to X \to f(X) \to 0.$$

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Let \mathcal{A} be an abelian category. A subcategory of \mathcal{A} is always assumed to be full and closed under isomorphisms.

Definition (Dickson 1962)

A torsion pair for ${\cal A}$ is a pair $({\cal T},{\cal F})$ consisting of two subcategories of ${\cal A}$ such that :

- 1. $\operatorname{Hom}_{\mathcal{A}}(T,F) = 0$ for every $T \in \mathcal{A}$ et $F \in \mathcal{F}$.
- 2. For every $X \in A$, there is $t(X) \in T$ and $f(X) \in F$ and a short exact sequence

$$0 \to t(X) \to X \to f(X) \to 0.$$

Example : A = Ab, T is the class of torsion groups and F the class of torsionfree groups. There are (a lot) more torsion pairs on this category !

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive attices

emidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

If $(\mathcal{T},\mathcal{F})$ is a torsion pair for \mathcal{A} , it follows :

• $\mathcal{F} = \mathcal{T}^{\perp} = \{X \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(\mathcal{T}, X) = 0 \ \forall \mathcal{T} \in \mathcal{T}\}$ and $\mathcal{T} = {}^{\perp}\mathcal{F}.$

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

If $(\mathcal{T},\mathcal{F})$ is a torsion pair for $\mathcal{A},$ it follows :

- $\mathcal{F} = \mathcal{T}^{\perp} = \{ X \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(\mathcal{T}, X) = 0 \ \forall \mathcal{T} \in \mathcal{T} \}$ and $\mathcal{T} = {}^{\perp}\mathcal{F}.$
- ➤ T is closed under extensions and quotients. T is a torsion class.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

If $(\mathcal{T},\mathcal{F})$ is a torsion pair for $\mathcal{A},$ it follows :

- ▶ $\mathcal{F} = \mathcal{T}^{\perp} = \{X \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(\mathcal{T}, X) = 0 \ \forall \mathcal{T} \in \mathcal{T}\}$ and $\mathcal{T} = {}^{\perp}\mathcal{F}.$
- ➤ T is closed under extensions and quotients. T is a torsion class.
- *F* is closed under extensions and subobjects. *F* is a torsionfree class.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

If $(\mathcal{T},\mathcal{F})$ is a torsion pair for $\mathcal{A},$ it follows :

- $\mathcal{F} = \mathcal{T}^{\perp} = \{ X \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(\mathcal{T}, X) = 0 \ \forall \mathcal{T} \in \mathcal{T} \}$ and $\mathcal{T} = {}^{\perp}\mathcal{F}.$
- ➤ T is closed under extensions and quotients. T is a torsion class.
- *F* is closed under extensions and subobjects. *F* is a torsionfree class.

If $(\mathcal{T}, \mathcal{F})$ and $(\mathcal{T}', \mathcal{F}')$ are two torsion pairs for \mathcal{A} , we set $(\mathcal{T}, \mathcal{F}) \leq (\mathcal{T}', \mathcal{F}')$ if $\mathcal{T} \subseteq \mathcal{T}'$ and $\mathcal{F}' \subseteq \mathcal{F}$.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

If $(\mathcal{T},\mathcal{F})$ is a torsion pair for $\mathcal{A},$ it follows :

- $\mathcal{F} = \mathcal{T}^{\perp} = \{ X \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(\mathcal{T}, X) = 0 \ \forall \mathcal{T} \in \mathcal{T} \}$ and $\mathcal{T} = {}^{\perp}\mathcal{F}.$
- ➤ T is closed under extensions and quotients. T is a torsion class.
- *F* is closed under extensions and subobjects. *F* is a torsionfree class.

If $(\mathcal{T}, \mathcal{F})$ and $(\mathcal{T}', \mathcal{F}')$ are two torsion pairs for \mathcal{A} , we set $(\mathcal{T}, \mathcal{F}) \leq (\mathcal{T}', \mathcal{F}')$ if $\mathcal{T} \subseteq \mathcal{T}'$ and $\mathcal{F}' \subseteq \mathcal{F}$.

Our first poset

We denote by $(\mathsf{Torsp}(\mathcal{A}), \leq)$ the poset of torsion pairs on the abelian category $\mathcal{A}.$

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

emidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

If $(\mathcal{T},\mathcal{F})$ is a torsion pair for $\mathcal{A},$ it follows :

- $\mathcal{F} = \mathcal{T}^{\perp} = \{ X \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(\mathcal{T}, X) = 0 \ \forall \mathcal{T} \in \mathcal{T} \}$ and $\mathcal{T} = {}^{\perp}\mathcal{F}.$
- ➤ T is closed under extensions and quotients. T is a torsion class.
- *F* is closed under extensions and subobjects. *F* is a torsionfree class.

If $(\mathcal{T}, \mathcal{F})$ and $(\mathcal{T}', \mathcal{F}')$ are two torsion pairs for \mathcal{A} , we set $(\mathcal{T}, \mathcal{F}) \leq (\mathcal{T}', \mathcal{F}')$ if $\mathcal{T} \subseteq \mathcal{T}'$ and $\mathcal{F}' \subseteq \mathcal{F}$.

Our first poset

We denote by $(\mathsf{Torsp}(\mathcal{A}), \leq)$ the poset of torsion pairs on the abelian category $\mathcal{A}.$

We also have :

- $\mathsf{Tors}(\mathcal{A})$ the poset of torsion classes of \mathcal{A} .
- Torsf(\mathcal{A}) the poset of torsionfree classes of \mathcal{A} .

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

A be a finite dimensional algebra over a field.

Definition (BGP, APR, BB, H,...)

 $T \in \text{mod } A$ is a tilting module if :

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A be a finite dimensional algebra over a field.

```
Definition (BGP, APR, BB, H,...)
```

- $T \in \text{mod } A$ is a tilting module if :
 - 1. T has projective dimension at most 1.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

A be a finite dimensional algebra over a field.

```
Definition (BGP, APR, BB, H,...)
```

 $T \in \text{mod } A$ is a tilting module if :

1. T has projective dimension at most 1.

2.
$$\operatorname{Ext}_{A}^{1}(T, T) = 0.$$

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

A be a finite dimensional algebra over a field.

```
Definition (BGP, APR, BB, H,...)
```

 $T \in \text{mod } A$ is a tilting module if :

1. T has projective dimension at most 1.

2.
$$\operatorname{Ext}_{A}^{1}(T, T) = 0.$$

$$3. |T| = |A|.$$

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A be a finite dimensional algebra over a field.

```
Definition (BGP, APR, BB, H,...)
```

 $T \in \text{mod } A$ is a tilting module if :

1. T has projective dimension at most 1.

2.
$$\operatorname{Ext}_{A}^{1}(T, T) = 0.$$

$$3. |T| = |A|.$$

Let T be a tilting module :

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

A be a finite dimensional algebra over a field.

```
Definition (BGP, APR, BB, H,...)
```

 $T \in \text{mod } A$ is a tilting module if :

1. T has projective dimension at most 1.

2.
$$\operatorname{Ext}^{1}_{A}(T, T) = 0.$$

3. |T| = |A|.

Let T be a tilting module :

 Fac(T) category consisting of quotients of finite direct sums of T. It is a torsion class. Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuitior

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

A be a finite dimensional algebra over a field.

```
Definition (BGP, APR, BB, H,...)
```

 $T \in \text{mod } A$ is a tilting module if :

1. T has projective dimension at most 1.

2.
$$\operatorname{Ext}_{A}^{1}(T, T) = 0.$$

3. |T| = |A|.

Let T be a tilting module :

- Fac(T) category consisting of quotients of finite direct sums of T. It is a torsion class.
- T[⊥] = {X ∈ mod A | Hom(T, X) = 0} is a torsionfree class.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuitior

Weak factorization systems

Faithfully balanced modules

・ロト・「「「・」」、 「」、 「」、 「」、 「」、 「」、

A be a finite dimensional algebra over a field.

```
Definition (BGP, APR, BB, H,...)
```

 $T \in \text{mod } A$ is a tilting module if :

1. T has projective dimension at most 1.

2.
$$\operatorname{Ext}_{A}^{1}(T, T) = 0.$$

3. |T| = |A|.

Let T be a tilting module :

- Fac(T) category consisting of quotients of finite direct sums of T. It is a torsion class.
- $T^{\perp} = \{X \in \text{mod } A \mid \text{Hom}(T, X) = 0\}$ is a torsionfree class.
- $(Fac(T), T^{\perp})$ is a torsion pair.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive attices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

A be a finite dimensional algebra over a field.

Definition (Adachi Iyama Reiten)

 $T \in \operatorname{mod} A$ is a τ -tilting module if :

1. T has projective dimension at most 1.

2.
$$\operatorname{Ext}_{A}^{1}(T, T) = 0.$$

3. |T| = |A|.

Let T be a tilting module :

- Fac(T) category consisting of quotients of finite direct sums of T. It is a torsion class.
- T[⊥] = {X ∈ mod A | Hom(T, X) = 0} is a torsionfree class.
- $(Fac(T), T^{\perp})$ is a torsion pair.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive

attices Semidistributive

attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

A be a finite dimensional algebra over a field.

Definition (Adachi Iyama Reiten)

 $T \in \text{mod } A$ is a τ -tilting module if :

1. T has projective dimension at most 1.

2.
$$\operatorname{Ext}^{1}_{A}(T, T) = 0.$$

3. |T| = |A|.

Let T be a tilting module :

- Fac(T) category consisting of quotients of finite direct sums of T. It is a torsion class.
- $T^{\perp} = \{X \in \text{mod } A \mid \text{Hom}(T, X) = 0\}$ is a torsionfree class.
- $(Fac(T), T^{\perp})$ is a torsion pair.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

A be a finite dimensional algebra over a field.

Definition (Adachi Iyama Reiten)

 $T \in \text{mod } A$ is a τ -tilting module if :

1. T has projective dimension at most 1.

2.
$$\operatorname{Ext}_{A}^{1}(T, \operatorname{Fac}(T)) = 0.$$

3. |T| = |A|.

Let T be a tilting module :

- Fac(T) category consisting of quotients of finite direct sums of T. It is a torsion class.
- $T^{\perp} = \{X \in \text{mod } A \mid \text{Hom}(T, X) = 0\}$ is a torsionfree class.
- $(Fac(T), T^{\perp})$ is a torsion pair.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

A be a finite dimensional algebra over a field.

Definition (Adachi Iyama Reiten)

 $T \in \text{mod } A$ is a τ -tilting module if :

1. *T* has projective dimension at most 1.

2.
$$\operatorname{Ext}_{A}^{1}(T, \operatorname{Fac}(T)) = 0.$$

3. |T| = |A|.

T is a support τ -tilting module if there is an idempotent $e \in A$ such that T is a τ -tilting module for $A/\langle e \rangle$.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

A be a finite dimensional algebra over a field.

Definition (Adachi Iyama Reiten)

 $T \in \text{mod } A$ is a τ -tilting module if :

1. *T* has projective dimension at most 1.

2.
$$\operatorname{Ext}_{A}^{1}(T, \operatorname{Fac}(T)) = 0.$$

3. |T| = |A|.

T is a support τ -tilting module if there is an idempotent $e \in A$ such that T is a τ -tilting module for $A/\langle e \rangle$.

Theorem (AIR)

The map $T \mapsto Fac(T)$ induces a bijection between τ -tilting modules and functorially finite torsion classes.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ りへぐ

A be a finite dimensional algebra over a field.

Definition (Adachi Iyama Reiten)

 $T \in \text{mod } A$ is a τ -tilting module if :

- 1. *T* has projective dimension at most 1.
- 2. $\operatorname{Ext}_{A}^{1}(T, \operatorname{Fac}(T)) = 0.$
- 3. |T| = |A|.

Theorem (AIR)

The map $T \mapsto Fac(T)$ induces a bijection between τ -tilting modules and functorially finite torsion classes.

Theorem (DIRRT 2017)

The poset of torsion classes of mod A is a semidistributive lattice.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Let (L, \leqslant) be a poset.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Let (L, \leq) be a poset. A join of a, b is a least upper bound denoted $a \lor b$.

・ロト・「「「・」」、 「」、 「」、 「」、 「」、 「」、

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Let (L, \leq) be a poset. A join of a, b is a least upper bound denoted $a \lor b$. A meet of a, b is a greatest lower bound, denoted by $a \land b$.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Let (L, \leq) be a poset. A join of a, b is a least upper bound denoted $a \lor b$. A meet of a, b is a greatest lower bound, denoted by $a \land b$. The poset L is a lattice if each $a, b \in L$ have a join and a meet in L.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let (L, \leq) be a poset. A join of a, b is a least upper bound denoted $a \lor b$. A meet of a, b is a greatest lower bound, denoted by $a \land b$. The poset L is a lattice if each $a, b \in L$ have a join and a meet in L.

Definition

A lattice (L, \leq) is distributive if for every $a, b, c \in L$

1.
$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$
 and

2.
$$a \land (b \lor c) = (a \land b) \lor (a \land c)$$
.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive attices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

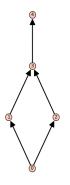
Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Definition

A lattice (L, \leq) is distributive if for every $a, b, c \in L$ 1. $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ and 2. $a \land (b \lor c) = (a \land b) \lor (a \land c)$.



Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

A lattice (L, \leq) is distributive if for every $a, b, c \in L$ 1. $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ and 2. $a \land (b \lor c) = (a \land b) \lor (a \land c)$.

 (P, \leqslant) is a poset. $I \subseteq P$ is an ideal of P if

 $x \in I, y \leq x \Rightarrow y \in I.$

 $(Ideal(P), \subseteq)$ is a distributive lattice.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive attices

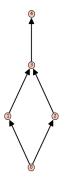
Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems



 (P, \leqslant) is a poset. $I \subseteq P$ is an ideal of P if

 $x \in I, y \leq x \Rightarrow y \in I.$

 $(Ideal(P), \subseteq)$ is a distributive lattice.

Theorem (Birkhoff 1947)

A finite lattice is distributive if and only if it is isomorphic to Ideal(P) for a finite poset P.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Forsion pairs

Distributive lattices

Semidistributive lattices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive attices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

Definition (Jonsson 1961)

A lattice (L,\leqslant) is semidistributive if for every $a,b,c\in L$

1.
$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$
 if $a \lor b = a \lor c$,

2.
$$a \land (b \lor c) = (a \land b) \lor (a \land c)$$
 if $a \land b = a \land c$.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs Distributive lattice

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Definition (Jonsson 1961)

A lattice (L, \leq) is semidistributive if for every $a, b, c \in L$ 1. $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ if $a \lor b = a \lor c$, 2. $a \land (b \lor c) = (a \land b) \lor (a \land c)$ if $a \land b = a \land c$.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattice

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

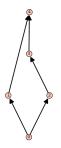
Weak factorization systems

Faithfully balanced modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Definition (Jonsson 1961)

A lattice (L, \leq) is semidistributive if for every $a, b, c \in L$ 1. $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ if $a \lor b = a \lor c$, 2. $a \land (b \lor c) = (a \land b) \lor (a \land c)$ if $a \land b = a \land c$.



 Not distributive : 2 ∨ (1 ∧ 3) = 2 ∨ 0 = 2. (2 ∨ 1) ∧ (2 ∨ 3) = 4 ∧ 3 = 3.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Definition (Jonsson 1961)

A lattice (L, \leq) is semidistributive if for every $a, b, c \in L$ 1. $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ if $a \lor b = a \lor c$, 2. $a \land (b \lor c) = (a \land b) \lor (a \land c)$ if $a \land b = a \land c$.

- Not distributive : $2 \lor (1 \land 3) = 2 \lor 0 = 2.$ $(2 \lor 1) \land (2 \lor 3) =$ $4 \land 3 = 3.$
- Semidistributive : this is Torsp(A₂).

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intertion

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Semidistributive lattices

Definition (Jonsson 1961)

A lattice (L, \leq) is semidistributive if for every $a, b, c \in L$ 1. $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ if $a \lor b = a \lor c$, 2. $a \land (b \lor c) = (a \land b) \lor (a \land c)$ if $a \land b = a \land c$.

- Not distributive :
 2 \lapha (1 \lapha 3) = 2 \lapha 0 = 2.
 (2 \lapha 1) \lapha (2 \lapha 3) =
 4 \lapha 3 = 3.
- Semidistributive : this is Torsp(A₂).
- What about Birkhoff theorem ?

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

・ロト ・雪ト ・雪ト ・雪ト ・日ト

Let III be a finite set with \rightarrow a reflexive binary relation .

• $X \subseteq III$, define $X^{\perp} = \{y \in III \mid x \not\rightarrow y\}$.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Let III be a finite set with \rightarrow a reflexive binary relation .

- $X \subseteq \coprod$, define $X^{\perp} = \{y \in \coprod | x \nrightarrow y\}.$
- ▶ $\mathsf{Pairs}(\mathsf{III}) = \{(X, Y) \in \mathcal{P}(\mathsf{III}) \mid Y = X^{\perp}, X = {}^{\perp}Y\}.$
- $(X, Y) \leq (X', Y')$ if $X \subseteq X'$ and $Y' \subseteq Y$.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ⊙へ⊙

Let III be a finite set with \rightarrow a reflexive binary relation .

- $X \subseteq \coprod$, define $X^{\perp} = \{y \in \coprod | x \nrightarrow y\}.$
- ▶ $\mathsf{Pairs}(\mathsf{III}) = \{(X, Y) \in \mathcal{P}(\mathsf{III}) \mid Y = X^{\perp}, X = {}^{\perp}Y\}.$
- $(X, Y) \leq (X', Y')$ if $X \subseteq X'$ and $Y' \subseteq Y$.
- ▶ New relations \rightarrow by $x \rightarrow y$ if $\forall y \rightarrow z$, we have $x \rightarrow z$ and \hookrightarrow dually. $(\neg, \hookrightarrow) = Fac(\rightarrow)$.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive

emidistributive

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへで

Let III be a finite set with \rightarrow a reflexive binary relation .

- $X \subseteq III$, define $X^{\perp} = \{y \in III \mid x \nrightarrow y\}.$
- ▶ $\mathsf{Pairs}(\mathsf{III}) = \{(X, Y) \in \mathcal{P}(\mathsf{III}) \mid Y = X^{\perp}, X = {}^{\perp}Y\}.$
- $(X, Y) \leq (X', Y')$ if $X \subseteq X'$ and $Y' \subseteq Y$.
- ▶ New relations → by $x \rightarrow y$ if $\forall y \rightarrow z$, we have $x \rightarrow z$ and \hookrightarrow dually. $(\neg, \hookrightarrow) = Fac(\rightarrow)$.
- $Mult(\rightarrow, \hookrightarrow)$ is the relation R given by xRy if $\exists z$ with $x \rightarrow z \hookrightarrow y$.
- ▶ Then $(III, \rightarrow, \neg \Rightarrow, \hookrightarrow)$ is a factorization system if $\rightarrow = Mult(\neg \Rightarrow, \hookrightarrow) \text{ and } (\neg \Rightarrow, \hookrightarrow) = Fac(\rightarrow).$

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Distributive lattices Semidistributive lattices Semidistributive lattices Semidistributive

lattices Semidistributive

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Let III be a finite set with \rightarrow a reflexive binary relation .

- $X \subseteq \coprod$, define $X^{\perp} = \{y \in \coprod | x \nrightarrow y\}.$
- ▶ $\mathsf{Pairs}(\mathsf{III}) = \{(X, Y) \in \mathcal{P}(\mathsf{III}) \mid Y = X^{\perp}, X = {}^{\perp}Y\}.$
- $(X, Y) \leq (X', Y')$ if $X \subseteq X'$ and $Y' \subseteq Y$.
- ▶ New relations → by $x \rightarrow y$ if $\forall y \rightarrow z$, we have $x \rightarrow z$ and \hookrightarrow dually. $(\neg, \hookrightarrow) = Fac(\rightarrow)$.
- $Mult(\rightarrow, \hookrightarrow)$ is the relation R given by xRy if $\exists z$ with $x \rightarrow z \hookrightarrow y$.
- ▶ Then $(III, \rightarrow, \neg \Rightarrow, \hookrightarrow)$ is a factorization system if $\rightarrow = Mult(\neg \Rightarrow, \hookrightarrow) \text{ and } (\neg \Rightarrow, \hookrightarrow) = Fac(\rightarrow).$

Theorem (Reading, Speyer, Thomas 2019)

A finite latice L is semidistributive if and only if it is isomorphic to Pairs(III) for a 2-acyclic factorization system $(III, \rightarrow, \rightarrow, \hookrightarrow)$.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Distributive lattices Semidistributive lattices Semidistributive lattices Semidistributive lattices Semidistributive lattices Intuition Weak factorization

systems

Let III be a finite set with \rightarrow a reflexive binary relation called "to".

```
▶ \rightarrow called onto, and \hookrightarrow is called into.
```

Theorem (Reading, Speyer, Thomas 2019)

A finite latice L is semidistributive if and only if it is isomorphic to Pairs(III) for a 2-acyclic factorization system $(III, \rightarrow, \rightarrow, \hookrightarrow)$.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

Let III be a finite set with \rightarrow a reflexive binary relation called "to".

- \blacktriangleright \rightarrow called onto, and \hookrightarrow is called into.
- The relations should be roughly be thought of as analogous to, 'there is a nonzero map' or 'a sujerctive map' or 'an injective map' in an abelian category

Theorem (Reading, Speyer, Thomas 2019)

A finite latice L is semidistributive if and only if it is isomorphic to Pairs(III) for a 2-acyclic factorization system $(III, \rightarrow, \rightarrow, \hookrightarrow)$.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

THE RABBIT HOLE

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive attices

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

 Problem 1 : there are abelian categories A such that Torsp(A) is not semidistributive.

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattice

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

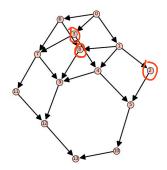
Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

- Problem 1 : there are abelian categories A such that Torsp(A) is not semidistributive.
- Example [IK 2021] Torsp(A) where A is the category of fg modules over a noetherian algebra.



Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive

iemidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

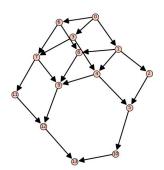
Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Problem 1 : there are abelian categories A such that Torsp(A) is not semidistributive.
- Example [IK 2021] Torsp(A) where A is the category of fg modules over a noetherian algebra.



 Tors(A) : wants to be meet-semidistributive lattice

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattice

attices

emidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

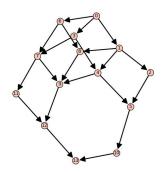
Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Problem 1 : there are abelian categories A such that Torsp(A) is not semidistributive.
- Example [IK 2021] Torsp(A) where A is the category of fg modules over a noetherian algebra.



- Tors(A) : wants to be meet-semidistributive lattice
- Torsf(A) wants to be join-semidistributive lattice.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

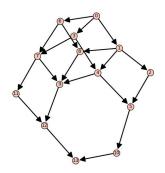
Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Problem 1 : there are abelian categories A such that Torsp(A) is not semidistributive.
- Example [IK 2021] Torsp(A) where A is the category of fg modules over a noetherian algebra.



- Tors(A) : wants to be meet-semidistributive lattice
- Torsf(A) wants to be join-semidistributive lattice.
- If A is an abelian length category, then Tors(A) ≅ Torsp(A) ≅ Torsf(A).

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

emidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

► Question : L finite semidistributive lattice. Does there exist A abelian length such that L ≅ Torsp(A)?

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

- Question : L finite semidistributive lattice. Does there exist A abelian length such that L ≃ Torsp(A)?
- Problem 2 : There are easy counter-examples.

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ⊙へ⊙

- Question : L finite semidistributive lattice. Does there exist A abelian length such that L ≃ Torsp(A)?
- Problem 2 : There are easy counter-examples.
- ► A distributive lattice is isomorphic to Torsp(A) for an abelian length category if and only if it is boolean.

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

emidistributive attices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ⊙へ⊙

- Question : L finite semidistributive lattice. Does there exist A abelian length such that L ≃ Torsp(A)?
- Problem 2 : There are easy counter-examples.
- ► A distributive lattice is isomorphic to Torsp(A) for an abelian length category if and only if it is boolean.
- Idea : a non-split extension between two simple objects generates a pentagon in the lattice of torsion pairs.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

- Torsion pairs
- Distributive lattice
- Semidistributive attices
- Semidistributive attices
- Semidistributive lattices
- Semidistributive lattices
- Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへで

Solution 1 : inspired by Adachi, Enomoto and Tsukamoto

Definition

A torsion pair $(\mathcal{T}, \mathcal{F})$ of \mathcal{A} is an ω -torsion pair if $\operatorname{Ext}^1(\mathcal{T}, \mathcal{F}) = 0.$

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Solution 1 : inspired by Adachi, Enomoto and Tsukamoto

Definition

A torsion pair $(\mathcal{T}, \mathcal{F})$ of \mathcal{A} is an ω -torsion pair if $\mathsf{Ext}^1(\mathcal{T}, \mathcal{F}) = 0.$

Theorem (AET 2021, R-)

Let A be an artin algebra and $(\mathcal{T}, \mathcal{F})$ be a torsion pair of mod A. The following are equivalent :

- 1. $(\mathcal{T}, \mathcal{F})$ is an ω -torsion pair.
- 2. \mathcal{T} and \mathcal{F} are two Serre subcategories.
- 3. \mathcal{T} is closed under first syzygies : if $X \in \mathcal{T}$, then $\Omega_X \in \mathcal{T}$.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

・ロト ・ 聞 ・ ・ 聞 ・ ・ 同 ・ うらぐ

Solution 1 : inspired by Adachi, Enomoto and Tsukamoto

Theorem (AET 2021, R-)

Let A be an artin algebra and (T, F) be a torsion pair of mod A. The following are equivalent :

- 1. $(\mathcal{T}, \mathcal{F})$ is an ω -torsion pair.
- 2. T and F are two Serre subcategories.
- 3. \mathcal{T} is closed under first syzygies : if $X \in \mathcal{T}$, then $\Omega_X \in \mathcal{T}$.

Corollary

- The set of all ω-torsion pairs of mod A is a distributive sublattice of Torsp(A);
- Let L ≃ Ideal(P) be a finite distributive lattice. Then L is isomorphic to the lattice of ω-torsion pairs of the incidence algebra of P.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Question

Let L be a finite semidistributive lattice. Is L isomorphic to a sublattice of Torsp(A) for an abelian length category A?

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Question

Let L be a finite semidistributive lattice. Is L isomorphic to a sublattice of Torsp(A) for an abelian length category A?

Theorem (Birkhoff 1947)

A finite lattice is distributive if and only if it is isomorphic to Ideal(P) for a finite poset P.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Question

Let L be a finite semidistributive lattice. Is L isomorphic to a sublattice of Torsp(A) for an abelian length category A?

Theorem (Birkhoff 1947)

A finite lattice is distributive if and only if it is isomorphic to Ideal(P) for a finite poset P.

Corollary

A finite distributive lattice $L \cong \text{Ideal}(P)$ is isomorphic to a sublattice of $\mathcal{P}(P)$

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs Distributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Question

Let L be a finite semidistributive lattice. Is L isomorphic to a sublattice of Torsp(A) for an abelian length category A?

Theorem (Birkhoff 1947)

A finite lattice is distributive if and only if it is isomorphic to Ideal(P) for a finite poset P.

Corollary

A finite distributive lattice $L \cong \text{Ideal}(P)$ is isomorphic to a sublattice of $\mathcal{P}(P)\cong \text{Torsp}(k \times k \times \cdots \times k)$.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs Distributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Last problem...

When \mathcal{A} is abelian length, the poset $\text{Torsp}(\mathcal{A})$ is completely congruence uniform.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattice

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Last problem...

When \mathcal{A} is abelian length, the poset $\text{Torsp}(\mathcal{A})$ is completely congruence uniform.

Lemma (Day for finite case, R-)

Let \mathcal{A} be an abelian length category. A finite sublatice of $\text{Torsp}(\mathcal{A})$ is congruence uniform.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Last problem...

When \mathcal{A} is abelian length, the poset $\text{Torsp}(\mathcal{A})$ is completely congruence uniform.

Lemma (Day for finite case, R-)

Let \mathcal{A} be an abelian length category. A finite sublatice of $\text{Torsp}(\mathcal{A})$ is congruence uniform.

So there are finite semidistributive lattices which are not sublattice of Torsp(A) for A abelian length category !

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattice

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let L be a finite congruence uniform lattice. Is L isomorphic to a sublattice of Torsp(A) for an abelian length category A?

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Let L be a finite congruence uniform lattice. Is L isomorphic to a sublattice of Torsp(A) for an abelian length category A?

Conjecture (Greyer 1992)

Let L be a finite congruence uniform lattice. Then L is isomorphic to a sublattice of $Tam_n \cong Torsp(A_n)$.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへで

Let L be a finite congruence uniform lattice. Is L isomorphic to a sublattice of Torsp(A) for an abelian length category A?

Conjecture (Greyer 1992)

Let L be a finite congruence uniform lattice. Then L is isomorphic to a sublattice of $Tam_n \cong Torsp(A_n)$.

Theorem (Santocanale Wehrung 2013)

The conjecture is false !

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへで

Let L be a finite congruence uniform lattice. Is L isomorphic to a sublattice of Torsp(A) for an abelian length category A?

Conjecture (Greyer 1992)

Let L be a finite congruence uniform lattice. Then L is isomorphic to a sublattice of $Tam_n \cong Torsp(A_n)$.

Theorem (Santocanale Wehrung 2013)

The conjecture is false!

 Construction of B(n, m) a congruence uniform lattice for n, m ∈ N. Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Let L be a finite congruence uniform lattice. Is L isomorphic to a sublattice of Torsp(A) for an abelian length category A?

Conjecture (Greyer 1992)

Let L be a finite congruence uniform lattice. Then L is isomorphic to a sublattice of $Tam_n \cong Torsp(A_n)$.

Theorem (Santocanale Wehrung 2013)

The conjecture is false!

- Construction of B(n, m) a congruence uniform lattice for n, m ∈ N.
- B(n, m) is a sublattice of the Tamari lattice if and only if $\min(m, n) \leq 1$.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Let L be a finite congruence uniform lattice. Is L isomorphic to a sublattice of Torsp(A) for an abelian length category A?

Conjecture (Greyer 1992)

Let L be a finite congruence uniform lattice. Then L is isomorphic to a sublattice of $Tam_n \cong Torsp(A_n)$.

Theorem (Santocanale Wehrung 2013)

The conjecture is false!

- Construction of B(n, m) a congruence uniform lattice for n, m ∈ N.
- B(n, m) is a sublattice of the Tamari lattice if and only if min(m, n) ≤ 1.
- ▶ B(n,m) is a sublattice of the weak Bruhat order if and only if min $(m,n) \leq 2$.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Theorem (Folkore?)

There are 9 model structures on the category of sets.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Theorem (Folkore?)

There are 9 model structures on the category of sets.

Let C be a category. A morphism f of C is said to lift on the left a morphism g of C if for every commutative square

there exists a lift $h : B \to X \in C$ making the resulting diagram commute.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattice

emidistributive attices

emidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem (Folkore?)

There are 9 model structures on the category of sets.

Let C be a category. A morphism f of C is said to lift on the left a morphism g of C if for every commutative square

$$\begin{array}{c} A \longrightarrow X \\ f \\ g \\ B \longrightarrow Y \end{array}$$

there exists a lift $h: B \to X \in C$ making the resulting diagram commute. In this case we write $f \boxtimes g$. For $S \subseteq Mor(C)$ we let

$$\mathcal{S}^{\boxtimes} = \{ g \in \mathsf{Mor}(\mathcal{C}) \mid f \boxtimes g \ \forall f \in \mathcal{S} \},\$$

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattice

Semidistributive attices

emidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへで

Theorem (Folkore?)

There are 9 model structures on the category of sets.

Let C be a category. A morphism f of C is said to lift on the left a morphism g of C if for every commutative square

there exists a lift $h : B \to X \in C$ making the resulting diagram commute. In this case we write $f \boxtimes g$. For $S \subseteq Mor(C)$ we let

 $\mathcal{S}^{\square} = \{ g \in \mathsf{Mor}(\mathcal{C}) \mid f \square g \ \forall f \in \mathcal{S} \},\$

A weak factorization system on C is a pair $(\mathcal{L}, \mathcal{R})$ of subclasses of the morphisms of C such that :

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive

emidistributive

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Let C be a category. A morphism f of C is said to lift on the left a morphism g of C if for every commutative square

there exists a lift $h: B \to X \in C$ making the resulting diagram commute. In this case we write $f \square g$. For $S \subseteq Mor(C)$ we let

$$\mathcal{S}^{\square} = \{ g \in \mathsf{Mor}(\mathcal{C}) \mid f \square g \ \forall f \in \mathcal{S} \},\$$

A weak factorization system on C is a pair $(\mathcal{L}, \mathcal{R})$ of subclasses of the morphisms of C such that :

1. Every morphism $f \in C$ can be factored as f = pi where $i \in \mathcal{L}$ and $p \in \mathcal{R}$.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

In this case we write $f \boxtimes g$. For $S \subseteq Mor(\mathcal{C})$ we let

$$\mathcal{S}^{\square} = \{ g \in \mathsf{Mor}(\mathcal{C}) \mid f \square g \ \forall f \in \mathcal{S} \},\$$

A weak factorization system on C is a pair $(\mathcal{L}, \mathcal{R})$ of subclasses of the morphisms of C such that :

- 1. Every morphism $f \in C$ can be factored as f = pi where $i \in \mathcal{L}$ and $p \in \mathcal{R}$.
- 2. $\mathcal{L} = \Box R$

3.
$$\mathcal{R} = \mathcal{L}^{\square}$$

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs Distributive lattices Semidistributive lattices Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

In this case we write $f \boxtimes g$. For $S \subseteq Mor(\mathcal{C})$ we let

$$\mathcal{S}^{\square} = \{ g \in \mathsf{Mor}(\mathcal{C}) \mid f \square g \ \forall f \in \mathcal{S} \},\$$

A weak factorization system on C is a pair $(\mathcal{L}, \mathcal{R})$ of subclasses of the morphisms of C such that :

1. Every morphism $f \in C$ can be factored as f = pi where $i \in \mathcal{L}$ and $p \in \mathcal{R}$.

2.
$$\mathcal{L} = \Box R$$

3.
$$\mathcal{R} = \mathcal{L}^{\square}$$
.

This is a poset for $(\mathcal{L}, \mathcal{R}) \leq (\mathcal{L}', \mathcal{R}')$ if $\mathcal{R} \subseteq \mathcal{R}'$ and $\mathcal{L}' \subseteq \mathcal{L}$.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs Distributive lattices Semidistributive

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

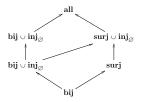
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

1. Every morphism $f \in C$ can be factored as f = pi where $i \in \mathcal{L}$ and $p \in \mathcal{R}$.

2.
$$\mathcal{L} = \Box R$$

3.
$$\mathcal{R} = \mathcal{L}^{\square}$$

This is a poset for $(\mathcal{L}, \mathcal{R}) \leq (\mathcal{L}', \mathcal{R}')$ if $\mathcal{R} \subseteq \mathcal{R}'$ and $\mathcal{L}' \subseteq \mathcal{L}$.



Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive attices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ● ● ●

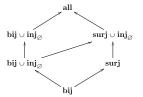
1. Every morphism $f \in C$ can be factored as f = pi where $i \in \mathcal{L}$ and $p \in \mathcal{R}$.

2.
$$\mathcal{L} = \Box R$$

3. $\mathcal{R} = \mathcal{L}^{\boxtimes}$.

This is a poset for $(\mathcal{L}, \mathcal{R}) \leq (\mathcal{L}', \mathcal{R}')$ if $\mathcal{R} \subseteq \mathcal{R}'$ and $\mathcal{L}' \subseteq \mathcal{L}$. \blacktriangleright Premodel : $(\mathcal{L}, \mathcal{R}) \leq$

 $(\mathcal{L}', \mathcal{R}').$



Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

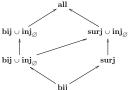
◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへの

1. Every morphism $f \in C$ can be factored as f = pi where $i \in \mathcal{L}$ and $p \in \mathcal{R}$.

2.
$$\mathcal{L} = \Box R$$

3. $\mathcal{R} = \mathcal{L}^{\boxtimes}$.

This is a poset for $(\mathcal{L}, \mathcal{R}) \leq (\mathcal{L}', \mathcal{R}')$ if $\mathcal{R} \subseteq \mathcal{R}'$ and $\mathcal{L}' \subseteq \mathcal{L}$. \blacktriangleright Premodel : $(\mathcal{L}, \mathcal{R}) \leq$



• Premodel :
$$(\mathcal{L}, \mathcal{R})$$

 $(\mathcal{L}', \mathcal{R}')$.

$$\blacktriangleright \mathcal{W} = \mathcal{R} \circ \mathcal{L}'.$$

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

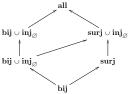
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

1. Every morphism $f \in C$ can be factored as f = pi where $i \in \mathcal{L}$ and $p \in \mathcal{R}$.

2.
$$\mathcal{L} = \Box R$$

3. $\mathcal{R} = \mathcal{L}^{\square}$.

This is a poset for $(\mathcal{L}, \mathcal{R}) \leq (\mathcal{L}', \mathcal{R}')$ if $\mathcal{R} \subseteq \mathcal{R}'$ and $\mathcal{L}' \subseteq \mathcal{L}$. Premodel : $(\mathcal{L}, \mathcal{R}) \leq \mathcal{R}'$



- ▶ Premodel : $(\mathcal{L}, \mathcal{R}) \leq (\mathcal{L}', \mathcal{R}')$.
- $\blacktriangleright \mathcal{W} = \mathcal{R} \circ \mathcal{L}'.$
- Model = if 2 of f,g,f ∘ g in W, then the three are.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

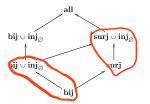
Weak factorization systems

1. Every morphism $f \in C$ can be factored as f = pi where $i \in \mathcal{L}$ and $p \in \mathcal{R}$.

2.
$$\mathcal{L} = \Box R$$

3. $\mathcal{R} = \mathcal{L}^{\square}$.

This is a poset for $(\mathcal{L}, \mathcal{R}) \leq (\mathcal{L}', \mathcal{R}')$ if $\mathcal{R} \subseteq \mathcal{R}'$ and $\mathcal{L}' \subseteq \mathcal{L}$.



Premodel : $(\mathcal{L}, \mathcal{R}) \leq (\mathcal{L}', \mathcal{R}').$

$$\bullet \mathcal{W} = \mathcal{R} \circ \mathcal{L}'.$$

Model = if 2 of f,g,f ∘ g in W, then the three are. Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Theorem (Balchin, Ormsby, Osorno, Roitzheim 2021)

The poset of weak factorization systems on [n] is isomorphic to the Tamari lattice Tam_n.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem (Balchin, Ormsby, Osorno, Roitzheim 2021)

The poset of weak factorization systems on [n] is isomorphic to the Tamari lattice Tam_n.

Démonstration.

Easy consequence of the 'poset characterization' of binary trees.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

- Torsion pairs
- Semidistributive lattices
- Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへで

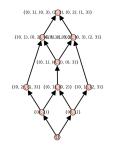
Theorem (Balchin, Ormsby, Osorno, Roitzheim 2021)

The poset of weak factorization systems on [n] is isomorphic to the Tamari lattice Tam_n.

Démonstration.

Easy consequence of the 'poset characterization' of binary trees.

Example of the boolean lattice $\mathcal{P}([2])$.



Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity /s torsion

Torsion pairs Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Definition

Let (L, \leq) be a lattice. A transfer system \lhd for L is a relation of partial ordering on L such that :

- 1. $i \triangleleft j$ implies $i \leq j$.
- 2. $i \triangleleft k$ and $j \leq k$ implies $(i \land j) \triangleleft j$.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲回▶

Definition

Let (L, \leq) be a lattice. A transfer system \lhd for L is a relation of partial ordering on L such that :

- 1. $i \triangleleft j$ implies $i \leqslant j$.
- 2. $i \triangleleft k$ and $j \leq k$ implies $(i \land j) \triangleleft j$.

Theorem (Quadrelli 2019)

The map sending a transfer system \mathcal{R} to $(\boxtimes \mathcal{R}, \mathcal{R})$ is an isomorphism between the poset of transfer systems and the poset of weak factorization systems.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

・ロト ・西ト ・ヨト ・ヨト ・ ウタマ

Let L be a finite lattice viewed as a category.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattice

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Let L be a finite lattice viewed as a category. The poset of weak factorization systems is a finite lattice.

Proposition (Luo-R 2024)

The poset of weak factorization systems on L is a semidistributive lattice

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Let L be a finite lattice viewed as a category. The poset of weak factorization systems is a finite lattice.

Proposition (Luo-R 2024)

The poset of weak factorization systems on L is a semidistributive lattice and a trim lattice.

The poset of torsion pairs of a representation finite hereditary algebra is also trim.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへで

Let L be a finite lattice viewed as a category. The poset of weak factorization systems is a finite lattice.

Proposition (Luo-R 2024)

The poset of weak factorization systems on L is a semidistributive lattice and a trim lattice.

The poset of torsion pairs of a representation finite hereditary algebra is also trim.

Conjecture

It is a congruence uniform lattice.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

・ロト ・西ト ・ヨト ・ヨト ・ ウタマ

Let L be a finite lattice viewed as a category. The poset of weak factorization systems is a finite lattice.

Proposition (Luo-R 2024)

The poset of weak factorization systems on L is a semidistributive lattice and a trim lattice.

The poset of torsion pairs of a representation finite hereditary algebra is also trim.

Conjecture

It is a congruence uniform lattice.

- Results about join-irreducibles, covers, conjectural description of the lattice of congruences.
- Related to the homotopy category of $G N_{\infty}$ -operads.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs Distributive lattices

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Conjecture

It is a congruence uniform lattice.

- Results about join-irreducibles, covers, conjectural description of the lattice of congruences.
- Related to the homotopy category of $G N_{\infty}$ -operads.
- Open question : number of transfer systems on finite boolean lattices. Starts with 1, 2, 10, 450 next is larger than 10⁶.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive attices

emidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

・ロト ・西ト ・ヨト ・ヨト ・ ウタマ

Conjecture

It is a congruence uniform lattice.

- Results about join-irreducibles, covers, conjectural description of the lattice of congruences.
- Related to the homotopy category of $G N_{\infty}$ -operads.
- Open question : number of transfer systems on finite boolean lattices. Starts with 1, 2, 10, 450 next is larger than 10⁶.
- New interesting intervals in the Tamari lattice.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive attices

emidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

・ロト ・ 聞 ・ ・ 聞 ・ ・ 同 ・ うらぐ

Conjecture

It is a congruence uniform lattice.

- Results about join-irreducibles, covers, conjectural description of the lattice of congruences.
- Related to the homotopy category of $G N_{\infty}$ -operads.
- Open question : number of transfer systems on finite boolean lattices. Starts with 1, 2, 10, 450 next is larger than 10⁶.
- New interesting intervals in the Tamari lattice.
- What about torsion pairs? Link to cotorsion pairs?

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive

attices Semidistributive

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

An A-module M is said to be faithfully balanced if the natural map $\Lambda \rightarrow \text{End}_E(M)$ is bijective, where $E = \text{End}_{\Lambda}(M)$.

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattice

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

An A-module M is said to be faithfully balanced if the natural map $\Lambda \rightarrow \text{End}_E(M)$ is bijective, where $E = \text{End}_{\Lambda}(M)$.

Schur-Weyl duality, Thrall's QF-1 algebra...

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An A-module M is said to be faithfully balanced if the natural map $\Lambda \rightarrow \text{End}_E(M)$ is bijective, where $E = \text{End}_{\Lambda}(M)$.

- Schur-Weyl duality, Thrall's QF-1 algebra...
- Generators, Tilting modules,

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattice

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲回▶

An A-module M is said to be faithfully balanced if the natural map $\Lambda \rightarrow \text{End}_E(M)$ is bijective, where $E = \text{End}_{\Lambda}(M)$.

- Schur-Weyl duality, Thrall's QF-1 algebra...
- Generators, Tilting modules,
- Many more...

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive

lattices Semidistributive

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲回▶

An A-module M is said to be faithfully balanced if the natural map $\Lambda \rightarrow \text{End}_E(M)$ is bijective, where $E = \text{End}_{\Lambda}(M)$.

- Schur-Weyl duality, Thrall's QF-1 algebra...
- Generators, Tilting modules,
- Many more...

Let Λ_n be the path algebra of an equioriented quiver of type A.

Theorem (Crawley-Boevey, Ma, R-, Sauter 2020)

- There are [n]₂! := ∏ⁿ_{i=1}(2ⁱ − 1) basic faithfully balanced modules for Λ_n.
- A fb-module has at least n indecomposable summands.
- The number of minimal fb-modules is n!.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

A poset of fb-modules

If *M* and *N* are two minimal fb-modules over Λ_n we define

 $M \leq N \iff (Fac(M), Sub(M)) \leq (Fac(N), Sub(N)).$

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

A poset of fb-modules

If *M* and *N* are two minimal fb-modules over Λ_n we define

 $M \leq N \iff (\operatorname{Fac}(M), \operatorname{Sub}(M)) \leq (\operatorname{Fac}(N), \operatorname{Sub}(N)).$

Theorem (CB,M,R,S)

Let $(fb(n), \leq)$ be the poset of minimal fb-modules over Λ_n . Then

- fb(n) is a lattice.
- The lattice of tilting modules (isomorphic to the Tamari lattice) is a sublattice of fb(n).

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattice

Semidistributive attices

emidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuitior

Weak factorization systems

A poset of fb-modules

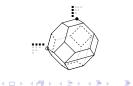
If *M* and *N* are two minimal fb-modules over Λ_n we define

 $M \leq N \iff (\operatorname{Fac}(M), \operatorname{Sub}(M)) \le (\operatorname{Fac}(N), \operatorname{Sub}(N)).$

Theorem (CB,M,R,S)

Let $(fb(n), \leq)$ be the poset of minimal fb-modules over Λ_n . Then

- fb(n) is a lattice.
- The lattice of tilting modules (isomorphic to the Tamari lattice) is a sublattice of fb(n).



Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive

attices

iemidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuitior

Weak factorization systems

Theorem

The lattice $(fb(n), \leq)$ is semidistributive

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

Theorem

The lattice $(fb(n), \leq)$ is semidistributive and trim.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへぐ

Theorem

The lattice $(fb(n), \leq)$ is semidistributive and trim.

good knowledge of join-irreducibles, covers, spine etc.

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Theorem

The lattice $(fb(n), \leq)$ is semidistributive and trim.

good knowledge of join-irreducibles, covers, spine etc.

Conjecture

The lattice $(fb(n), \leq)$ is congruence uniform.

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Distributive lattices

Semidistributive lattices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Theorem

The lattice $(fb(n), \leq)$ is semidistributive and trim.

good knowledge of join-irreducibles, covers, spine etc.

Conjecture

The lattice $(fb(n), \leq)$ is congruence uniform.

 $\mathit{fb}(3)$ is the poset of torsion pairs of a hereditary algebra of type B_2

Examples of semidistributive lattices

> Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive lattices

Semidistributive attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem

The lattice $(fb(n), \leq)$ is semidistributive and trim.

good knowledge of join-irreducibles, covers, spine etc.

Conjecture

The lattice $(fb(n), \leq)$ is congruence uniform.

fb(3) is the poset of torsion pairs of a hereditary algebra of type B_2 but what about fb(4)?

Examples of semidistributive lattices

Baptiste Rognerud

Semidistributivity vs torsion

Torsion pairs

Semidistributive

attices

Semidistributive attices

Semidistributive lattices

Semidistributive lattices

Semidistributive lattices

Intuition

Weak factorization systems

Faithfully balanced modules

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●