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Torsion pairs

Let A be an abelian category. A subcategory of A is always
assumed to be full and closed under isomorphisms.
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Torsion pairs

Let A be an abelian category. A subcategory of A is always
assumed to be full and closed under isomorphisms.

Definition (Dickson 1962)
A torsion pair for A is a pair (T, F) consisting of two
subcategories of A such that :

1. Homu(T,F) =0 forevery T € Aet F e F.

2. For every X € A, thereis t(X) e T and f(X) e F and a
short exact sequence

0— t(X) > X — f(X)—0.
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Torsion pairs

Let A be an abelian category. A subcategory of A is always
assumed to be full and closed under isomorphisms.

Definition (Dickson 1962)

A torsion pair for A is a pair (T, F) consisting of two
subcategories of A such that :

1. Homu(T,F) =0 forevery T € Aet F e F.

2. For every X € A, thereis t(X) e T and f(X) e F and a
short exact sequence

0— t(X) > X — f(X)—0.
Example : A = Ab, T is the class of torsion groups and F

the class of torsionfree groups. There are (a lot) more torsion
pairs on this category !
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Torsion pairs

If (7, F) is a torsion pair for A, it follows :
» F=T+={XeA| Homu(T,X)=0YT e T} and
T="1F.
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Torsion pairs

If (7, F) is a torsion pair for A, it follows :
» F=T+={XeA| Homu(T,X)=0YT e T} and
T="1F.
» T is closed under extensions and quotients. 7T is a
torsion class.
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Torsion pairs

If (7, F) is a torsion pair for A, it follows :
» F=T+={XeA| Homu(T,X)=0YT e T} and
T="1F.
» T is closed under extensions and quotients. 7T is a
torsion class.
» F is closed under extensions and subobjects. F is a
torsionfree class.
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Torsion pairs comdiobributive
lattices
If (7, F) is a torsion pair for A, it follows : Cogiie,
ogneru
» F=T+={XeA| Homu(T,X)=0YT e T} and
T="1F.
» T is closed under extensions and quotients. 7T is a et fri

torsion class.
» F is closed under extensions and subobjects. F is a
torsionfree class.
If (T,F) and (7', F') are two torsion pairs for A, we set
(T, F)< (T, F)if T<T and F' < F.
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Our first poset

We denote by (Torsp(.A), <) the poset of torsion pairs on the
abelian category A.
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TOfSIOn palrS semidistributive
lattices
If (7, F) is a torsion pair for A, it follows : Cogiie,
ogneru
» F=T+={XeA| Homu(T,X)=0YT e T} and
T="1F.
» T is closed under extensions and quotients. 7T is a Tt i

torsion class.
» F is closed under extensions and subobjects. F is a
torsionfree class.
If (T,F) and (77, F') are two torsion pairs for A, we set
(T, F)< (T, F)if T<T and F' < F.

Our first poset

We denote by (Torsp(.A), <) the poset of torsion pairs on the
abelian category A.

We also have :
» Tors(.A) the poset of torsion classes of A.
» Torsf(A) the poset of torsionfree classes of A.
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In representation theory

A be a finite dimensional algebra over a field.

Definition (BGP, APR,BB,H,...)

T € mod A is a tilting module if :

1. T has projective dimension at most 1.
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In representation theory

A be a finite dimensional algebra over a field.

Definition (BGP, APR,BB,H,...)

T € mod A is a tilting module if :
1. T has projective dimension at most 1.
2. Ext4(T,T) =0.
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In representation theory

A be a finite dimensional algebra over a field.

Definition (BGP, APR,BB,H,...)

T € mod A is a tilting module if :
1. T has projective dimension at most 1.
2. Ext4(T,T) =0.
3. |T|=A.
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In representation theory

A be a finite dimensional algebra over a field.

Definition (BGP, APR,BB,H,...)
T € mod A is a tilting module if :

1. T has projective dimension at most 1.
2. Ext4(T,T) =0.
3. |T|=A.

Let T be a tilting module :
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In representation theory
A be a finite dimensional algebra over a field.
Definition (BGP, APR,BB,H,...)

T € mod A is a tilting module if :

1. T has projective dimension at most 1.
2. Ext4(T,T) =0.
3. |T|=A.

Let T be a tilting module :

» Fac(T) category consisting of quotients of finite direct
sums of T. It is a torsion class.
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In representation theory
A be a finite dimensional algebra over a field.
Definition (BGP, APR,BB,H,...)

T € mod A is a tilting module if :

1. T has projective dimension at most 1.
2. Ext4(T,T) =0.
3. |T|=A.

Let T be a tilting module :

» Fac(T) category consisting of quotients of finite direct
sums of T. It is a torsion class.

» Tt = {XemodA| Hom(T,X) =0} is a torsionfree
class.
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In representation theory
A be a finite dimensional algebra over a field.
Definition (BGP, APR,BB,H,...)

T € mod A is a tilting module if :

1. T has projective dimension at most 1.
2. Ext4(T,T) =0.
3. |T|=A.

Let T be a tilting module :

» Fac(T) category consisting of quotients of finite direct
sums of T. It is a torsion class.

» TL = {XemodA | Hom(T,X) = 0} is a torsionfree
class.

» (Fac(T), T+) is a torsion pair.
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In representation theory
A be a finite dimensional algebra over a field.

Definition (Adachi lyama Reiten)

T € mod A is a 7-tilting module if :

1. T has projective dimension at most 1.
2. Ext4(T,T) =0.
3. |T|=A.

Let T be a tilting module :

» Fac(T) category consisting of quotients of finite direct
sums of T. It is a torsion class.

» TL = {XemodA | Hom(T,X) = 0} is a torsionfree
class.

» (Fac(T), T+) is a torsion pair.
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In representation theory
A be a finite dimensional algebra over a field.

Definition (Adachi lyama Reiten)

T € mod A is a 7-tilting module if :

1Ty ective di . _
2. Ext4(T,T) =0.

3. |T|=A.

Let T be a tilting module :

» Fac(T) category consisting of quotients of finite direct
sums of T. It is a torsion class.

» TL = {XemodA | Hom(T,X) = 0} is a torsionfree
class.

» (Fac(T), T+) is a torsion pair.
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In representation theory
A be a finite dimensional algebra over a field.

Definition (Adachi lyama Reiten)

T € mod A is a 7-tilting module if :

1Ty ective di . -
2. Exty(T,Fac(T)) = 0.

3. |T|=A.

Let T be a tilting module :

» Fac(T) category consisting of quotients of finite direct
sums of T. It is a torsion class.

» TL = {XemodA | Hom(T,X) = 0} is a torsionfree
class.

» (Fac(T), T+) is a torsion pair.
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In representation theory
A be a finite dimensional algebra over a field.

Definition (Adachi lyama Reiten)

T € mod A is a 7-tilting module if :
1Ty ective di . -
2. Exty(T,Fac(T)) = 0.
3. |T|=A.

T is a support 7-tilting module if there is an idempotent
e € A such that T is a 7-tilting module for A/<e>.
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In representation theory
A be a finite dimensional algebra over a field.

Definition (Adachi lyama Reiten)

T € mod A is a 7-tilting module if :

| S _
2. Exty(T,Fac(T)) = 0.
3. |T| = |A

T is a support 7-tilting module if there is an idempotent
e € A such that T is a 7-tilting module for A/<e>.

Theorem (AIR)

The map T — Fac(T) induces a bijection between T-tilting
modules and functorially finite torsion classes.
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In representation theory
A be a finite dimensional algebra over a field.

Definition (Adachi lyama Reiten)

T € mod A is a 7-tilting module if :

_— S _
2. Exty(T,Fac(T)) = 0.
3. |T| = |A

Theorem (AIR)

The map T — Fac(T) induces a bijection between 7-tilting
modules and functorially finite torsion classes.

Theorem (DIRRT 2017)

The poset of torsion classes of mod A is a semidistributive
lattice.
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Let (L, <) be a poset.
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Distributive lattices

Let (L, <) be a poset.A join of a, b is a least upper bound
denoted a v b.
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Distributive lattices

Let (L, <) be a poset.A join of a, b is a least upper bound
denoted a v b. A meet of a, b is a greatest lower bound,
denoted by a A b.
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Distributive lattices

Let (L, <) be a poset.A join of a, b is a least upper bound
denoted a v b. A meet of a, b is a greatest lower bound,
denoted by a A b. The poset L is a lattice if each a,be L
have a join and a meet in L.
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Distributive lattices

Let (L, <) be a poset.A join of a, b is a least upper bound
denoted a v b. A meet of a, b is a greatest lower bound,
denoted by a A b. The poset L is a lattice if each a,be L
have a join and a meet in L.

Definition

A lattice (L, <) is distributive if for every a, b, c € L
l.av(bac)=(avb)a(avc)and
2.an(bvc)=(anb)v(anc).
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Distributive lattices

Definition

A lattice (L, <) is distributive if for every a, b,c e L
l.av(bac)=(avb)a(avc)and
2.an(bvec)=(anb)v(anc).

®

a

Examples of
semidistributive
lattices

Baptiste
Rognerud

Distributive lattices



Distributive lattices e
lattices
- Baptiste
Definition Regnerud

A lattice (L, <) is distributive if for every a, b,c € L
l.av(bac)=(avb)a(avc)and
2.an(bvec)=(anb)v(anc).

Distributive lattices

®

(P,<) is a poset. | < P is an
ideal of P if

/X xel, y<x=yel.

(Ideal(P),<) is a distributive
lattice.



. . . . Exampl f
Distributive lattices semidistributive
lattices
Bapti:
% Roagr;tesrtxed

(P,<) is a poset. | < P is an
ideal of P if

/X xel, y<x=yel.

(Ideal(P),<) is a distributive
lattice.

Theorem (Birkhoff 1947)

A finite lattice is distributive if and only if it is isomorphic to
Ideal(P) for a finite poset P.



Semidistributive lattices

Definition (Jonsson 1961)
A lattice (L, <) is semidistributive if for every a, b, c € L
l.av(barc)=(avb)nan(avc)ifavb=avec,

2.an(bve)=(anb)v(anc)ifanb=anc.
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lattices
Definition (Jonsson 1961) Rognersd

A lattice (L, <) is semidistributive if for every a, b, c € L
l.av(barc)=(avb)nan(avc)ifavb=avec,

2.an(bve)=(anb)v(anc)ifanb=anc.
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Semidistributive lattices

Definition (Jonsson 1961)

A lattice (L, <) is semidistributive if for every a, b, c € L
An(ave)ifavb=avc,

l.av(bac)=(avb)
2.an(bvec)=(anb)

@

\
V

vianc)ifanb=anc.

» Not distributive :
2v(Ia3)=2v0=2.
2v1)A@v3 =
4 A3 =3.
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Examples of

Semidistributive lattices semidisributive
lattices
Definition (Jonsson 1961) Rognersd
A lattice (L, <) is semidistributive if for every a, b, c € L
l.av(barc)=(avb)nan(avc)ifavb=avec,
2.an(bvec)=(anb)v(anc)ifanb=anc.
® » Not distributive :
2v(1A3)=2v0=2
2v1)A@v3 =
4 A3 =3
» Semidistributive : this is

Torsp(Az).



Examples of

Semidistributive lattices semidisributive
lattices
Definition (Jonsson 1961) Rognersd
A lattice (L, <) is semidistributive if for every a, b, c € L
l.av(barc)=(avb)nan(avc)ifavb=avec,
2.an(bvec)=(anb)v(anc)ifanb=anc.
® » Not distributive :
2v(Ia3)=2v0=2.
2v1)A(R2v3) = i
4 A3 =3
» Semidistributive : this is
Torsp(Az).

» What about Birkhoff
theorem ?



Fondamental thm of semidistributive lattices

Let IIT be a finite set with — a reflexive binary relation .

» X CIII, define Xt = {y e IIT | x = y}.
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Fondamental thm of semidistributive lattices e
lattices

Let IIT be a finite set with — a reflexive binary relation . Baptiste
Rognerud

» X CIII, define Xt = {y e IIT | x = y}.
> Pairs(I1) = {(X,Y) e P(II) | Y = X+, X = LY}
» (X, Y) < (X, Y)if XX and Y C Y.



Fondamental thm of semidistributive lattices

Let IIT be a finite set with — a reflexive binary relation .
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X C1II, define Xt = {y e IIT | x = y}.

Pairs(IIT) = {(X,Y) e P(III) | Y = X+, X = LY}
X, Y)<=X,Y)ifXcX and Y CY.

New relations — by x — y if Vy — z, we have x — z
and — dually. (—,—) = Fac(—) .
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Fondamental thm of semidistributive lattices e
lattices

Let III be a finite set with — a reflexive binary relation . Baptiste
Rognerud

» X CIII, define Xt = {y e IIT | x = y}.
> Pairs(I1) = {(X,Y) e P(II) | Y = X+, X = LY}
» (X, Y) < (X, Y)if XX and Y C Y.
» New relations — by x — y if Vy — z, we have x — z
and — dually. (—,—) = Fac(—) .
» Mult(—, <) is the relation R given by xRy if 3z with
X =z y. fevias
» Then (LI, —», —, <) is a factorization system if
— = Mult(—, <) and (—,—) = Fac(—).



Fondamental thm of semidistributive lattices

Let III be a finite set with — a reflexive binary relation .

» X CIII, define Xt = {y e IIT | x = y}.

> Pairs(I1) = {(X,Y) e P(II) | Y = X+, X = LY}

» (X, Y) < (XL YYifXe X and Y C Y.

» New relations — by x — y if Vy — z, we have x — z
and — dually. (—,—) = Fac(—) .

» Mult(—, <) is the relation R given by xRy if 3z with
X =z y.

» Then (LI, —, —, <) is a factorization system if
— = Mult(—, <) and (—,—) = Fac(—).

Theorem (Reading, Speyer, Thomas 2019)

A finite latice L is semidistributive if and only if it is
isomorphic to Pairs(ILl) for a 2-acyclic factorization system
(H_L —, <—>)
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Let IIT be a finite set with — a reflexive binary relation Baptiste
Rognerud
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» —» called onto, and — is called into.
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Theorem (Reading, Speyer, Thomas 2019)

A finite latice L is semidistributive if and only if it is

isomorphic to Pairs(ILl) for a 2-acyclic factorization system
(H_[, —, H)



Fondamental thm of semidistributive lattices

Let IIT be a finite set with — a reflexive binary relation
called "to".

» —» called onto, and — is called into.

» The relations should be roughly be thought of as
analogous to, ‘there is a nonzero map' or ‘a sujerctive
map’ or ‘an injective map’ in an abelian category

Theorem (Reading, Speyer, Thomas 2019)

A finite latice L is semidistributive if and only if it is
isomorphic to Pairs(ILl) for a 2-acyclic factorization system
(I_H, —, —», <—>)
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semidistributive
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» Problem 1 : there are abelian categories A such that iy
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Intuition or mathematical statement ?

» Problem 1 : there are abelian categories A such that
Torsp(A) is not semidistributive.

» Example [IK 2021] Torsp(.A) where A is the category of
fg modules over a noetherian algebra.
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Intuition or mathematical statement ?

» Problem 1 : there are abelian categories A such that
Torsp(A) is not semidistributive.

» Example [IK 2021] Torsp(.A) where A is the category of

fg modules over a noetherian algebra.

» Tors(A) : wants to be
meet-semidistributive
lattice
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Intuition or mathematical statement ? semdhetinurive
lattices
» Problem 1 : there are abelian categories A such that et

Torsp(A) is not semidistributive.

» Example [IK 2021] Torsp(.A) where A is the category of

fg modules over a noetherian algebra.
» Tors(A) : wants to be

47@\‘ meet-semidistributive
"3 lattice
(D)

> Torsf(A) wants to be

,f\‘ A/\f join-semidistributive Intuition
\f lattice.



Intuition or mathematical statement ? semdhetinurive
lattices
» Problem 1 : there are abelian categories A such that et

Torsp(.A) is not semidistributive.
» Example [IK 2021] Torsp(.A) where A is the category of
fg modules over a noetherian algebra.
» Tors(A) : wants to be

47@\‘ meet-semidistributive
'? lattice
(D)

g » Torsf(A) wants to be
A/\ f JOIn-SemidIStrlbUtlve Intuition
\f lattice.
» If Ais an abelian
length category, then
pa—2 Tors(A) = Torsp(A) =

Torsf(A).



Intuition or mathematical statement ?

» Question : L finite semidistributive lattice. Does there
exist A abelian length such that L = Torsp(.A) ?
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Intuition or mathematical statement ?

» Question : L finite semidistributive lattice. Does there
exist A abelian length such that L = Torsp(.A) ?

» Problem 2 : There are easy counter-examples.
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Intuition or mathematical statement ?

» Question : L finite semidistributive lattice. Does there
exist A abelian length such that L = Torsp(.A) ?

» Problem 2 : There are easy counter-examples.

» A distributive lattice is isomorphic to Torsp(.A) for an
abelian length category if and only if it is boolean.
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Intuition or mathematical statement ?

» Question : L finite semidistributive lattice. Does there
exist A abelian length such that L = Torsp(.A) ?

» Problem 2 : There are easy counter-examples.

» A distributive lattice is isomorphic to Torsp(.A) for an
abelian length category if and only if it is boolean.

» Idea : a non-split extension between two simple objects
generates a pentagon in the lattice of torsion pairs.
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Solution 1 : inspired by Adachi, Enomoto and
Tsukamoto
Definition

A torsion pair (7, F) of A is an w-torsion pair if
Ext!(T,F) =0.
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Solution 1 : inspired by Adachi, Enomoto and comdiobributive
lattices
TSU ka m OtO Baptiste
— Rognerud
Definition
A torsion pair (7, F) of A is an w-torsion pair if
Ext!(T,F) =0.

Theorem (AET 2021, R-)
Let A be an artin algebra and (T, F) be a torsion pair of
mod A. The following are equivalent :

1. (T,F) is an w-torsion pair.

2. T and F are two Serre subcategories.

3. T is closed under first syzygies : if X € T, then Qx € T.



Solution 1 : inspired by Adachi, Enomoto and comdiobributive
Tsukamoto

lattices
Theorem (AET 2021, R-)

Baptiste
Rognerud

Let A be an artin algebra and (T, F) be a torsion pair of
mod A. The following are equivalent :

1. (T, F) is an w-torsion pair.
2. T and F are two Serre subcategories.
3. T is closed under first syzygies : if X € T, then Qx € T.

Corollary

> The set of all w-torsion pairs of mod A is a distributive
sublattice of Torsp(A) ;

» Let L ~ Ideal(P) be a finite distributive lattice. Then L
is isomorphic to the lattice of w-torsion pairs of the
incidence algebra of P.



Solution 2 : Birkhoff's theorem

Question

Let L be a finite semidistributive lattice. Is L isomorphic to a
sublattice of Torsp(.A) for an abelian length category A 7
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Solution 2 : Birkhoff's theorem

Question

Let L be a finite semidistributive lattice. Is L isomorphic to a
sublattice of Torsp(.A) for an abelian length category A 7

Theorem (Birkhoff 1947)

A finite lattice is distributive if and only if it is isomorphic to
Ideal(P) for a finite poset P.
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Solution 2 : Birkhoff's theorem

Question

Let L be a finite semidistributive lattice. Is L isomorphic to a
sublattice of Torsp(.A) for an abelian length category A 7

Theorem (Birkhoff 1947)

A finite lattice is distributive if and only if it is isomorphic to
Ideal(P) for a finite poset P.

Corollary

A finite distributive lattice L = |deal(P) is isomorphic to a
sublattice of P(P)
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Solution 2 : Birkhoff's theorem

Question

Let L be a finite semidistributive lattice. Is L isomorphic to a
sublattice of Torsp(.A) for an abelian length category A 7

Theorem (Birkhoff 1947)

A finite lattice is distributive if and only if it is isomorphic to
Ideal(P) for a finite poset P.

Corollary

A finite distributive lattice L = |deal(P) is isomorphic to a
sublattice of P(P)= Torsp(k x k x -+ x k).
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Last problem...

When A is abelian length, the poset Torsp(A) is completely
congruence uniform.
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Last problem...

When A is abelian length, the poset Torsp(A) is completely
congruence uniform.

Lemma (Day for finite case,R-)

Let A be an abelian length category. A finite sublatice of
Torsp(A) is congruence uniform.
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Last problem...

When A is abelian length, the poset Torsp(.A) is completely
congruence uniform.

Lemma (Day for finite case,R-)

Let A be an abelian length category. A finite sublatice of
Torsp(A) is congruence uniform.

So there are finite semidistributive lattices which are not
sublattice of Torsp(.A) for A abelian length category !
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Question

Let L be a finite congruence uniform lattice. Is L isomorphic
to a sublattice of Torsp(.A) for an abelian length category A ?

Examples of
semidistributive
lattices

Baptiste
Rognerud

Intuition



Question

Let L be a finite congruence uniform lattice. Is L isomorphic
to a sublattice of Torsp(.A) for an abelian length category A ?

Conjecture (Greyer 1992)

Let L be a finite congruence uniform lattice. Then L is
isomorphic to a sublattice of Tam, = Torsp(A,).
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Question

Let L be a finite congruence uniform lattice. Is L isomorphic
to a sublattice of Torsp(.A) for an abelian length category A ?

Conjecture (Greyer 1992)

Let L be a finite congruence uniform lattice. Then L is
isomorphic to a sublattice of Tam, = Torsp(A,).

Theorem (Santocanale Wehrung 2013)

The conjecture is false !

Examples of
semidistributive
lattices

Baptiste
Rognerud

Intuition



Question

Let L be a finite congruence uniform lattice. Is L isomorphic
to a sublattice of Torsp(.A) for an abelian length category A ?

Conjecture (Greyer 1992)

Let L be a finite congruence uniform lattice. Then L is
isomorphic to a sublattice of Tam, = Torsp(A,).

Theorem (Santocanale Wehrung 2013)

The conjecture is false !

» Construction of B(n, m) a congruence uniform lattice
for n,me N.
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Question

Let L be a finite congruence uniform lattice. Is L isomorphic
to a sublattice of Torsp(.A) for an abelian length category A ?

Conjecture (Greyer 1992)

Let L be a finite congruence uniform lattice. Then L is
isomorphic to a sublattice of Tam, = Torsp(A,).

Theorem (Santocanale Wehrung 2013)

The conjecture is false !

» Construction of B(n, m) a congruence uniform lattice
for n,me N.

» B(n, m) is a sublattice of the Tamari lattice if and only
if min(m, n) < 1.
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Question

Let L be a finite congruence uniform lattice. Is L isomorphic
to a sublattice of Torsp(.A) for an abelian length category A ?

Conjecture (Greyer 1992)

Let L be a finite congruence uniform lattice. Then L is
isomorphic to a sublattice of Tam, = Torsp(A,).

Theorem (Santocanale Wehrung 2013)

The conjecture is false !

» Construction of B(n, m) a congruence uniform lattice
for n,me N.

» B(n, m) is a sublattice of the Tamari lattice if and only
if min(m, n) < 1.

» B(n, m) is a sublattice of the weak Bruhat order if and
only if min(m, n) < 2.
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Theorem (Folkore 7)

There are 9 model structures on the category of sets.
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Theorem (Folkore 7)

There are 9 model structures on the category of sets.

Let C be a category. A morphism f of C is said to lift on the
left a morphism g of C if for every commutative square

A——sX

e

B——Y

there exists a lift h: B — X € C making the resulting
diagram commute.
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Theorem (Folkore 7)

There are 9 model structures on the category of sets.

Let C be a category. A morphism f of C is said to lift on the
left a morphism g of C if for every commutative square

A——sX

L

B——Y

there exists a lift h: B — X € C making the resulting
diagram commute. In this case we write f [1g. For
S < Mor(C) we let

SY = {geMor(C) | fng Vf e S},
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Theorem (Folkore 7)
There are 9 model structures on the category of sets.

Let C be a category. A morphism f of C is said to lift on the
left a morphism g of C if for every commutative square

A——sX
T
B——=Y

there exists a lift h: B — X € C making the resulting
diagram commute. In this case we write f [11g. For
S < Mor(C) we let

SY ={geMor(C) | fng Vf e S},

A weak factorization system on C is a pair (£, R) of
subclasses of the morphisms of C such that :
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Let C be a category. A morphism f of C is said to lift on the
left a morphism g of C if for every commutative square

A——sX

e

B——Y

there exists a lift h: B — X € C making the resulting
diagram commute. In this case we write f [1g. For
S < Mor(C) we let

SP = {geMor(C) | fNg Vf e S},

A weak factorization system on C is a pair (£, R) of
subclasses of the morphisms of C such that :

1. Every morphism f € C can be factored as f = pi where
ie L and peR.
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In this case we write f [1g. For S € Mor(C) we let
S9 = {geMor(C) | fng Vf e S},

A weak factorization system on C is a pair (£, R) of
subclasses of the morphisms of C such that :

1. Every morphism f € C can be factored as f = pi where
ieL and peR.

2. L=VR

3. R =LK
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In this case we write f [1g. For S € Mor(C) we let
S9 = {geMor(C) | fng Vf e S},

A weak factorization system on C is a pair (£, R) of
subclasses of the morphisms of C such that :

1. Every morphism f € C can be factored as f = pi where
ieL and peR.
2. L=VR
3. R =LK
This is a poset for (L,R) < (L,R)if R< R and L' < L.
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A weak factorization system on C is a pair (£, R) of
subclasses of the morphisms of C such that :

1. Every morphism f € C can be factored as f = pi where
ieLand peR.

2. L=YR
3. R=/[Y.

This is a poset for (£, R) < (L', R') if RS R and L' < L.

/all\

bij U injy surj U injg
bij U injy surj

/

bij

Examples of
semidistributive
lattices

Baptiste
Rognerud

Weak
factorization
systems



A weak factorization system on C is a pair (£, R) of
subclasses of the morphisms of C such that :

1. Every morphism f € C can be factored as f = pi where
ieLand peR.

2. L=YR
3. R=/[Y.

This is a poset for (£, R) < (L',R') if RS R and L' < L.

» Premodel : (£,R) <

/all\ £ R).

bij U injy surj U injg
bij U injy surj

/

bij
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A weak factorization system on C is a pair (£, R) of
subclasses of the morphisms of C such that :

1. Every morphism f € C can be factored as f = pi where
ieLand peR.

2. L=YR
3. R=/[Y.

This is a poset for (£, R) < (L',R') if RS R and L' < L.

» Premodel : (£,R) <

/all\ £ R).

bij U injy surj U injg > W — R o E{
bij U injy surj

/

bij
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A weak factorization system on C is a pair (£, R) of
subclasses of the morphisms of C such that :

1. Every morphism f € C can be factored as f = pi where
ieLand peR.

2. L=YR
3. R=/[Y.

This is a poset for (£, R) < (L',R') if RS R and L' < L.

» Premodel : (£,R) <

/all\ £ R).

bij U injy surj U injg > W — R o El'
bij jinjz/ sllj » Model = if 2 of
/ f,g,fogin )V, then

b the three are.
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A weak factorization system on C is a pair (£, R) of
subclasses of the morphisms of C such that :

1. Every morphism f € C can be factored as f = pi where
ieLand peR.

2. L=YR
3. R=/[Y.

This is a poset for (£, R) < (L',R') if RS R and L' < L.

> Premodel : (L, R) <
(L' R).

»W=Ro/L.

» Model = if 2 of
f,g,foginWW, then
the three are.
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Let ne N and [n] = {1,2,--- , n} with the usual total
ordering viewed as a category.
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Let ne N and [n] = {1,2,--- , n} with the usual total Examples of

semidistributive

ordering viewed as a category. lattices
Baptiste
Theorem (Balchin, Ormsby, Osorno, Roitzheim 2021) R

The poset of weak factorization systems on [n] is isomorphic
to the Tamari lattice Tam,.
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Let ne N and [n] = {1,2,--- , n} with the usual total Examples of

semidistributive

ordering viewed as a category. lattices
Baptiste
Theorem (Balchin, Ormsby, Osorno, Roitzheim 2021) R

The poset of weak factorization systems on [n] is isomorphic
to the Tamari lattice Tam,,.

Démonstration.

Easy consequence of the ‘poset characterization’ of binary
trees. n
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Let ne N and [n] = {1,2,--- , n} with the usual total Examples of

semidistributive

ordering viewed as a category. lattices
Baptiste
Theorem (Balchin, Ormsby, Osorno, Roitzheim 2021) R

The poset of weak factorization systems on [n] is isomorphic
to the Tamari lattice Tam,,.

Démonstration.

Easy consequence of the ‘poset characterization’ of binary
trees. n

{0, 1), «u 3).( 1 (0.2), (1, 3)}

Weak
{0, 1), (0, xououm .30, (2,3} factorization
systems

{(o, l) [{ 1 (0.3)}

Example of the boolean lattice
,P([2:|). {00, 24 3)) ((01 2)) {(0,

(( )} {( )}

%



Definition
Let (L, <) be a lattice. A transfer system < for L is a relation
of partial ordering on L such that :

1.7 < jimplies i <.

2.0 < kandj < kimplies (i A j) < J.
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Definition
Let (L, <) be a lattice. A transfer system < for L is a relation
of partial ordering on L such that :

1.7 < jimplies i <.

2.0 < kandj < kimplies (i A j) < J.

Theorem (Quadrelli 2019)

The map sending a transfer system R to (YR, R) is an
isomorphism between the poset of transfer systems and the
poset of weak factorization systems.
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Joint work with Yongle Luo

Let L be a finite lattice viewed as a category.
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Joint work with Yongle Luo

Let L be a finite lattice viewed as a category. The poset of
weak factorization systems is a finite lattice.

Proposition (Luo-R 2024)

The poset of weak factorization systems on L is a
semidistributive lattice
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Joint work with Yongle Luo

Let L be a finite lattice viewed as a category. The poset of
weak factorization systems is a finite lattice.

Proposition (Luo-R 2024)

The poset of weak factorization systems on L is a
semidistributive lattice and a trim lattice.

The poset of torsion pairs of a representation finite hereditary
algebra is also trim.
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Joint work with Yongle Luo comdiobributive
lattices
Let L be a finite lattice viewed as a category. The poset of Baptiste
weak factorization systems is a finite lattice. cener
Proposition (Luo-R 2024)
The poset of weak factorization systems on L is a
semidistributive lattice and a trim lattice.
The poset of torsion pairs of a representation finite hereditary
algebra is also trim.
Conjecture
Weak

It is a congruence uniform lattice. factorization

systems



Joint work with Yongle Luo comdiobributive

lattices

Let L be a finite lattice viewed as a category. The poset of Baptiste

weak factorization systems is a finite lattice. cener

Proposition (Luo-R 2024)

The poset of weak factorization systems on L is a

semidistributive lattice and a trim lattice.

The poset of torsion pairs of a representation finite hereditary

algebra is also trim.

Conjecture

) ) ) Weak
It is a congruence uniform lattice. factorization

systems

» Results about join-irreducibles, covers, conjectural
description of the lattice of congruences.
> Related to the homotopy category of G — Ny-operads.



Joint work with Yongle Luo

Conjecture

It is a congruence uniform lattice.

» Results about join-irreducibles, covers, conjectural
description of the lattice of congruences.

» Related to the homotopy category of G — Ny,-operads.

» Open question : number of transfer systems on finite
boolean lattices. Starts with 1,2, 10,450 next is larger
than 10°.
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Joint work with Yongle Luo comdiobributive
lattices
Conjecture R

It is a congruence uniform lattice.

» Results about join-irreducibles, covers, conjectural
description of the lattice of congruences.

» Related to the homotopy category of G — Ny,-operads.

» Open question : number of transfer systems on finite
boolean lattices. Starts with 1,2, 10,450 next is larger
than 10°.

» New interesting intervals in the Tamari lattice.
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Joint work with Yongle Luo comdiobributive
lattices
Conjecture R

It is a congruence uniform lattice.

» Results about join-irreducibles, covers, conjectural
description of the lattice of congruences.

» Related to the homotopy category of G — Ny,-operads.

» Open question : number of transfer systems on finite
boolean lattices. Starts with 1,2, 10,450 next is larger
than 10°.
Weak
factorization

» New interesting intervals in the Tamari lattice. ayetome

» What about torsion pairs? Link to cotorsion pairs?



Faithfully balanced modules

An A-module M is said to be faithfully balanced if the natural
map A — Endg(M) is bijective, where E = Endp(M).
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Faithfully balanced modules

An A-module M is said to be faithfully balanced if the natural
map A — Endg(M) is bijective, where E = Endp(M).

» Schur-Weyl duality, Thrall's QF-1 algebra...
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Faithfully balanced modules
An A-module M is said to be faithfully balanced if the natural
map A — Endg(M) is bijective, where E = Endp(M).

» Schur-Weyl duality, Thrall's QF-1 algebra...

» Generators, Tilting modules,
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Faithfully balanced modules
An A-module M is said to be faithfully balanced if the natural
map A — Endg(M) is bijective, where E = Endp(M).

» Schur-Weyl duality, Thrall's QF-1 algebra...

» Generators, Tilting modules,

» Many more...
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Faithfully balanced modules

An A-module M is said to be faithfully balanced if the natural
map A — Endg(M) is bijective, where E = Endp(M).

» Schur-Weyl duality, Thrall's QF-1 algebra...

» Generators, Tilting modules,

» Many more...
Let A, be the path algebra of an equioriented quiver of type
A.

Theorem (Crawley-Boevey, Ma, R-,Sauter 2020)

> There are [n]o! := [1_,(2" — 1) basic faithfully
balanced modules for \,,.
» A fb-module has at least n indecomposable summands.

» The number of minimal fb-modules is n!.
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A poset of fb-modules

If M and N are two minimal fb-modules over A, we define

M < N <= (Fac(M),Sub(M)) < (Fac(N), Sub(N)).
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A poset of fb-modules

If M and N are two minimal fb-modules over A, we define

M < N <= (Fac(M),Sub(M)) < (Fac(N), Sub(N)).

Theorem (CB,M,R,S)
Let (fb(n), <) be the poset of minimal fb-modules over N\,,.
Then

» fb(n) is a lattice.

» The lattice of tilting modules (isomorphic to the Tamari
lattice) is a sublattice of fb(n).
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A poset of fb-modules

If M and N are two minimal fb-modules over A, we define

M < N <= (Fac(M),Sub(M)) < (Fac(N), Sub(N)).

Theorem (CB,M,R,S)
Let (fb(n), <) be the poset of minimal fb-modules over N\,,.
Then

» fb(n) is a lattice.

» The lattice of tilting modules (isomorphic to the Tamari
lattice) is a sublattice of fb(n).
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Joint work with Corteel and Jang

Theorem
The lattice (fb(n), <) is semidistributive
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Joint work with Corteel and Jang

Theorem
The lattice (fb(n), <) is semidistributive and trim.
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Joint work with Corteel and Jang

Theorem
The lattice (fb(n), <) is semidistributive and trim.

good knowledge of join-irreducibles, covers, spine etc.
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Joint work with Corteel and Jang
Theorem
The lattice (fb(n), <) is semidistributive and trim.
good knowledge of join-irreducibles, covers, spine etc.

Conjecture

The lattice (fb(n), <) is congruence uniform.
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Joint work with Corteel and Jang
Theorem
The lattice (fb(n), <) is semidistributive and trim.

good knowledge of join-irreducibles, covers, spine etc.
Conjecture

The lattice (fb(n), <) is congruence uniform.

fb(3) is the poset of torsion pairs of a hereditary algebra of
type B,
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Joint work with Corteel and Jang
Theorem
The lattice (fb(n), <) is semidistributive and trim.

good knowledge of join-irreducibles, covers, spine etc.
Conjecture

The lattice (fb(n), <) is congruence uniform.

fb(3) is the poset of torsion pairs of a hereditary algebra of
type B, but what about 7b(4) 7
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