
Stable finiteness of group algebras of surjunctive groups
and model theory

Michel Coornaert
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Directly finite rings

All rings are associative with 1.

Definition

A ring R is called directly finite if

∀a, b ∈ R, ab = 1 =⇒ ba = 1.

For a ring R, the following conditions are equivalent:

(DF1) R is directly finite;

(DF2) every left-invertible element in R is invertible;

(DF3) every right-invertible element in R is invertible;

(DF4) R is Hopfian as a left R-module;

(DF5) R is Hopfian as a right-module.

(A module M is called Hopfian if every surjective endomorphism of M is an
automorphism.)
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Stably finite rings

Definition

A ring R is called stably finite if the ring Matd(R) (ring of d × d matrices with
entries in R) is directly finite for any d ≥ 1.

For a ring R, the following conditions are equivalent:

(SF1) R is stably finite;

(SF2) ∀d ≥ 1,∀A,B ∈ Matd(R), AB = Id =⇒ BA = Id ,

(SF3) ∀d ≥ 1, the left R-module Rd is Hopfian;

(SF4) ∀d ≥ 1, the right R-module Rd is Hopfian;

(SF5) every finitely generated free left R-module is Hopfian;

(SF6) every finitely generated free right R-module is Hopfian.
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Examples of stably finite rings

Any finite ring is stably finite.

Any commutative ring is stably finite.

Any field is stably finite.

Any division ring is stably finite.

Any left (or right) Noetherian ring is stably finite.

If V is a vector space over a field K then EndK (V ) is stably finite iff
dimK (V ) <∞.

Any unit-regular ring is stably finite.
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Stable finiteness vs direct finiteness

R stably finite =⇒ R directly finite (since Mat1(R) = R).
There exist directly finite rings that are not stably finite [Coh66], [Lam07,
Exercise 1.18].
For any d ≥ 1, there exist rings R such that Matd(R) is directly finite but
Matd+1(R) is not [Coh66].
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Group algebras

Let G be a group and let K be a field.
The group algebra of G with coefficients in K is the K -algebra K [G ] constructed
as follows:

K [G ] is the K -vector space with base G ;

the multiplication on K [G ] is obtained by extending K -linearly the group
operation on G .

Thus, every α ∈ K [G ] can be uniquely written in the form

α =
∑
g∈G

αgg

with αg ∈ K for all g ∈ G and αg = 0 for all but finitely many g ∈ G .
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Group algebras (continued)

The operations on K [G ] are given by the formulae:

α+ β =
∑
g∈G

(αg + βg )g ,

λα =
∑
g∈G

(λαg )g ,

αβ =
∑
g∈G

 ∑
h1,h2∈G :h1h2=g

αh1βh2

 g

for all α, β ∈ K [G ] and λ ∈ K .
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Kaplansky’s stable finiteness conjecture

Theorem (Kaplansky [Kap69])

Let G be a group and let K be a field of characteristic 0. Then the group algebra
K [G ] is stably finite.

The proof is analytical after reducing to the case K = C.
Kaplansky’s stable finiteness conjecture: The group algebra K [G ] is stably finite
for every group G and every field K .
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Symbolic dynamics

Let G be a group and let A be a finite set.

The set

AG := {x : G → A}

is equipped with the G -shift and the prodiscrete topology defined as follows. The
G -shift is the left action of G on AG given by

G × AG → AG

(g , x) 7→ gx := x ◦ Lg−1

where Lg−1 : G → G is the left multiplication by g−1.
The prodiscrete topology on AG is the product topology obtained by taking the
discrete topology on every factor A of AG =

∏
g∈G A. The G -shift on AG is

continuous. The space AG is homeomorphic to the Cantor space for |A| ≥ 2 and
G countably infinite.
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Surjunctive groups

The notion of surjunctivity goes back to Gottschalk [Got73].

Definition

A group G is called surjunctive if, for any finite set A and every continuous
G -equivariant map τ : AG → AG , one has

τ injective =⇒ τ surjective.

No example of a non-surjunctive group has been found up to now.
Gottschalk’s surjunctivity conjecture: Every group is surjunctive.
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Sofic groups

Sofic groups were introduced by Gromov [Gro99] and Weiss [Wei00].
Roughly speaking, a group is sofic if it can be“well approximated”by finite
symmetric groups.
All finite groups, all residually finite groups, all abelian groups, all nilpotent
groups, all solvable groups, all amenable groups, all residually amenable groups, all
linear groups are sofic.
No example of a non-sofic group has been found up to now.

Theorem (Gromov [Gro99] and Weiss [Wei00])

Every sofic group is surjunctive.
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Definition of sofic groups

Given a non-empty finite set X , let Sym(X ) denote the symmetric group of X .
Define the Hamming distance dX on Sym(X ) by

∀σ, η ∈ Sym(X ), dX (σ, η) :=
|{x ∈ X : σ(x) ̸= η(x)}|

|X |
.

Definition

A group G is called sofic if for every ε > 0 and for every finite subset F ⊂ G ,
there exist a non-empty finite set X and a map ϕ : F → Sym(X ) such that

Sof-1 ∀g , h ∈ F , gh ∈ F =⇒ dX (ϕ(gh), ϕ(g)ϕ(h)) ≤ ε;

Sof-2 ∀g , h ∈ F , g ̸= h =⇒ dX (ϕ(g), ϕ(h)) ≥ 1− ε.

M. C. (IRMA) Stable finiteness of group algebras June 3, 2024 13 / 27



Definition of sofic groups

Given a non-empty finite set X , let Sym(X ) denote the symmetric group of X .

Define the Hamming distance dX on Sym(X ) by

∀σ, η ∈ Sym(X ), dX (σ, η) :=
|{x ∈ X : σ(x) ̸= η(x)}|

|X |
.

Definition

A group G is called sofic if for every ε > 0 and for every finite subset F ⊂ G ,
there exist a non-empty finite set X and a map ϕ : F → Sym(X ) such that

Sof-1 ∀g , h ∈ F , gh ∈ F =⇒ dX (ϕ(gh), ϕ(g)ϕ(h)) ≤ ε;

Sof-2 ∀g , h ∈ F , g ̸= h =⇒ dX (ϕ(g), ϕ(h)) ≥ 1− ε.

M. C. (IRMA) Stable finiteness of group algebras June 3, 2024 13 / 27



Definition of sofic groups

Given a non-empty finite set X , let Sym(X ) denote the symmetric group of X .
Define the Hamming distance dX on Sym(X ) by

∀σ, η ∈ Sym(X ), dX (σ, η) :=
|{x ∈ X : σ(x) ̸= η(x)}|

|X |
.

Definition

A group G is called sofic if for every ε > 0 and for every finite subset F ⊂ G ,
there exist a non-empty finite set X and a map ϕ : F → Sym(X ) such that

Sof-1 ∀g , h ∈ F , gh ∈ F =⇒ dX (ϕ(gh), ϕ(g)ϕ(h)) ≤ ε;

Sof-2 ∀g , h ∈ F , g ̸= h =⇒ dX (ϕ(g), ϕ(h)) ≥ 1− ε.

M. C. (IRMA) Stable finiteness of group algebras June 3, 2024 13 / 27



Definition of sofic groups

Given a non-empty finite set X , let Sym(X ) denote the symmetric group of X .
Define the Hamming distance dX on Sym(X ) by

∀σ, η ∈ Sym(X ), dX (σ, η) :=
|{x ∈ X : σ(x) ̸= η(x)}|

|X |
.

Definition

A group G is called sofic if for every ε > 0 and for every finite subset F ⊂ G ,
there exist a non-empty finite set X and a map ϕ : F → Sym(X ) such that

Sof-1 ∀g , h ∈ F , gh ∈ F =⇒ dX (ϕ(gh), ϕ(g)ϕ(h)) ≤ ε;

Sof-2 ∀g , h ∈ F , g ̸= h =⇒ dX (ϕ(g), ϕ(h)) ≥ 1− ε.

M. C. (IRMA) Stable finiteness of group algebras June 3, 2024 13 / 27



Stable finiteness of group algebras of surjunctive groups

The following result was obtained by Xuan Kien Phung using algebraic geometry.

Theorem A (Phung [Phu23a])

Every surjunctive group satisfies Kaplansky’s stable finiteness conjecture.

As sofic =⇒ surjunctive by the Gromov-Weiss theorem, we get.

Corollary (Elek et Szabó [ES04])

Every sofic group satisfies Kaplansky’s stable finiteness conjecture.
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Elementary equivalent fields

Two fields are called elementary equivalent if they satisfy the same first-order
sentences in the language of rings L = {+,−,×, 0, 1}.

Examples

The sentence ∀x ,∃y , x = y3 is satisfied by R but not by Q. Thus, the fields
R and Q are not elementary equivalent.

Two isomorphic fields are always elementary equivalent.

If two fields are elementary equivalent then they have the same characteristic.
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The Lefschetz principles

The two following results may be found in the monograph of Marker [Mar02].

Theorem (First Lefschetz principle)

Two algebraically closed fields of the same characteristic are always elementary
equivalent.

Example

Let Q denote the algebraic closure of Q. The fields Q and C are elementary
equivalent.
Observe that the fields Q and C are not isomorphic since Q is countable while C
is uncountable.

Theorem (Second Lefschetz principle)

Let ψ be a first-order sentence in the language of rings which is satisfied by some
(and hence any) algebraically closed field of characteristic 0. Then there exists an
integer N such that ψ is satisfied by every algebraically closed field of
characteristic p ≥ N.
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Proof of Theorem A

Lemma 1

Let G be a group, let d ≥ 1 be an integer, and let S be a finite subset of G. Then
there exists a first-order sentence ψ in the language of rings such that a field K
satisfies ψ if and only if there exist matrices A,B ∈ Matd(K [G ]) such that

(1) the support of each entry of A and of each entry of B is contained in S;

(2) AB = Id and BA ̸= Id .

Lemma 2

Let G be a group and suppose that K and L are elementary equivalent fields.
Then K [G ] is stably finite if and only if L[G ] is stably finite.
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Proof of Theorem A (continued)

Let G be a surjunctive group and let K be a field. We want to show that K [G ] is
stably finite.

Case 1: the field K is finite Let d ≥ 1. Set A := K d . A result in [CC07] (see
also [CC10, Corollary 8.15.6]) says that Matd(K [G ]) is directly finite if and only if
every injective, K -linear, G -equivariant and continuous map τ : AG → AG is
surjective. As A is finite (with cardinality |A| = |K |d), every injective,
G -equivariant and continuous map τ : AG → AG is surjective since the group G is
surjunctive. Therefore, Matd(K [G ]) is directly finite. This shows that K [G ] is
stably finite whenever K is finite.
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Proof of Theorem A (continued)

Case 2: the field K is the algebraic closure of Z/pZ for some prime p Consider the
Frobenius automorphism ϕ : K → K defined by

∀λ ∈ K , ϕ(λ) := λp

For n ≥ 1, define Kn ⊂ K by

Kn := Fix(ϕ ◦ ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
n times

).
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Proof of theorem A (continued)

Kn is the set of roots of the polynomial X pn − X .

Kn is a subfield of K with finite cardinality |Kn| = pn.

Kn ⊂ Km if n divides m.

K =
⋃

n≥1 Kn.

It follows that K is the increasing union of the finite subfields Ln := Kn!, n ≥ 1.
Let A,B ∈ Matd(K [G ]) such that AB = Id . There exists n0 ≥ 1 such that
A,B ∈ Matd(Ln0 [G ]). Then BA = Id by Case 1.
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Proof of Theorem A (continued)

Case 3: the field K is algebraically closed with characteristic p > 0

Apply
Lemma 2, Case 2, and the first Lefschetz principle.

Case 4: the field K is algebraically closed with characteristic 0 Suppose by
contradiction that K [G ] is not stably finite. Then apply Lemma 1, the second
Lefchetz principle, and Case 3.

Case 5: K is an arbitrary field Consider the algebraic closure L of K . The group
algebra L[G ] is stably finite by Case 3 and Case 4. As K [G ] ⊂ L[G ], we deduce
that K [G ] is itself stably finite.
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[ES04] G. Elek and E. Szabó, “Sofic groups and direct finiteness”, in: J.
Algebra 280.2 (2004), pp. 426–434, ISSN: 0021-8693, DOI:
10.1016/j.jalgebra.2004.06.023, URL:
http://dx.doi.org/10.1016/j.jalgebra.2004.06.023.

[Gar21] G. Gardam,“A counterexample to the unit conjecture for group rings”,
in: Ann. of Math. (2) 194.3 (2021), pp. 967–979, ISSN: 0003-486X,
DOI: 10.4007/annals.2021.194.3.9, URL: https://doi-
org.scd-rproxy.u-strasbg.fr/10.4007/annals.2021.194.3.9.

[Got73] W. Gottschalk, “Some general dynamical notions”, in: Recent advances
in topological dynamics (Proc. Conf. Topological Dynamics, Yale
Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund),
Berlin: Springer, 1973, 120–125. Lecture Notes in Math., Vol. 318.

M. C. (IRMA) Stable finiteness of group algebras June 3, 2024 24 / 27

https://doi.org/10.1016/j.jalgebra.2004.06.023
http://dx.doi.org/10.1016/j.jalgebra.2004.06.023
https://doi.org/10.4007/annals.2021.194.3.9
https://doi-org.scd-rproxy.u-strasbg.fr/10.4007/annals.2021.194.3.9
https://doi-org.scd-rproxy.u-strasbg.fr/10.4007/annals.2021.194.3.9


References IV

[Gro99] M. Gromov,“Endomorphisms of symbolic algebraic varieties”, in: J.
Eur. Math. Soc. (JEMS) 1.2 (1999), pp. 109–197, ISSN: 1435-9855,
DOI: 10.1007/PL00011162, URL:
http://dx.doi.org/10.1007/PL00011162.

[Kap57] Irving Kaplansky, “Problems in the theory of rings”, in: Report of a
conference on linear algebras, June, 1956, Publ. 502, Nat. Acad. Sci.,
Washington, DC, 1957, pp. 1–3.

[Kap69] Irving Kaplansky, Fields and rings, University of Chicago Press,
Chicago, Ill.-London, 1969, pp. ix+198.

[Lam07] T. Y. Lam, Exercises in modules and rings, Problem Books in
Mathematics, Springer, New York, 2007, pp. xviii+412, ISBN:
978-0-387-98850-4; 0-387-98850-5, DOI:
10.1007/978-0-387-48899-8, URL:
https://doi.org/10.1007/978-0-387-48899-8.

M. C. (IRMA) Stable finiteness of group algebras June 3, 2024 25 / 27

https://doi.org/10.1007/PL00011162
http://dx.doi.org/10.1007/PL00011162
https://doi.org/10.1007/978-0-387-48899-8
https://doi.org/10.1007/978-0-387-48899-8


References V

[Lam99] T. Y. Lam, Lectures on modules and rings, vol. 189, Graduate Texts in
Mathematics, Springer-Verlag, New York, 1999, pp. xxiv+557, ISBN:
0-387-98428-3, DOI: 10.1007/978-1-4612-0525-8, URL:
https://doi.org/10.1007/978-1-4612-0525-8.

[Mar02] David Marker, Model theory, vol. 217, Graduate Texts in Mathematics,
An introduction, Springer-Verlag, New York, 2002, pp. viii+342, ISBN:
0-387-98760-6.

[Pas77] D. S. Passman, The algebraic structure of group rings, Pure and
Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New
York-London-Sydney, 1977, pp. xiv+720, ISBN: 0-471-02272-1.

[Phu23a] Xuan Kien Phung,“A geometric generalization of Kaplansky’s direct
finiteness conjecture”, in: Proc. Amer. Math. Soc. 151.7 (2023),
pp. 2863–2871, ISSN: 0002-9939,1088-6826, DOI:
10.1090/proc/16333, URL:
https://doi.org/10.1090/proc/16333.

M. C. (IRMA) Stable finiteness of group algebras June 3, 2024 26 / 27

https://doi.org/10.1007/978-1-4612-0525-8
https://doi.org/10.1007/978-1-4612-0525-8
https://doi.org/10.1090/proc/16333
https://doi.org/10.1090/proc/16333


References VI

[Phu23b] Xuan Kien Phung,“Weakly surjunctive groups and symbolic group
varieties”, in: arXiv:2111.13607 (2023).

[Wei00] B. Weiss, “Sofic groups and dynamical systems”, in: Sankhyā Ser. A
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