Tullio Ceccherini-Silberstein
Michel Coornaert
Cellular Automata and Groups - Errata, Additions, and Updates
T. Ceccherini-Silberstein, M. Coornaert,
"Cellular
automata and groups", Second edition, Springer Monographs in Mathematics,
Springer, Cham, 2024, XXI + 556 pp.,
Hardcover ISBN
978-3-031-43327-6
Published: 14 January 2024,
Softcover ISBN
978-3-031-43330-6
Due: 28 January 2025,
eBook ISBN
978-3-031-43328-3
Published: 13 January 2024.
-
page 244, in the proof of Lemma 6.12.3: replace
"$I - M^{(2)}_{S \cup \{1_G\}} = (1 - \alpha)(I - M^{(2)}_S)$"
by
"$I - M^{(2)}_{S \cup \{1_G\}} = \alpha(I - M^{(2)}_S)$".
-
page 248, in the proof of Lemma 6.12.8:
"we have $(A_i \setminus A_ig^{-1}) \cap (A_j \setminus A_jg^{-1}) =\varnothing$"
by
"we have $(A_i \setminus A_ig^{-1}) \cap (A_jg^{-1} \setminus A_j) = \varnothing$".
-
page 249, in the proof of Theorem 6.12.9:
replace
\[
\begin{split}
\|(I- M_S^{(2)})x\|_2 & = \|x - \frac{1}{|S|} \sum_{s \in S} T_s^{(2)} x\|_2\\
& = \frac{1}{|S|} \|\sum_{s \in S}(x - T_s^{(2)} x)\|_2\\
& \leq \frac{1}{|S|} \sum_{s \in S}\|x - T_s^{(2)} x\|_2\\
& = \frac{1}{|S| \cdot \sqrt{|F|}} \sum_{s \in S}\|\chi_{F} -
T_s^{(2)} \chi_{F}\|_2\\
\text{(by Lemma 6.12.6(iii))} \ & = \frac{1}{|S| \cdot
\sqrt{|F|}} \sum_{s \in S} 2 |F \setminus F s|^{\frac{1}{2}}\\
& = \frac{1}{|S|} \sum_{s \in S} 2 \left(\frac{|F \setminus F
s|}{|F|}\right)^{\frac{1}{2}}\\
& = \frac{2}{|F|^{\frac{1}{2}}} \varepsilon^{\frac{1}{2}}\\
& < \varepsilon.
\end{split}
\]
by
\[
\begin{split}
\|(I- M_S^{(2)})x\|_2 & = \|x - \frac{1}{|S|} \sum_{s \in S} T_s^{(2)} x\|_2\\
& = \frac{1}{|S|} \|\sum_{s \in S}(x - T_s^{(2)} x)\|_2\\
& \leq \frac{1}{|S|} \sum_{s \in S}\|x - T_s^{(2)} x\|_2\\
& = \frac{1}{|S| \cdot \sqrt{|F|}} \sum_{s \in S}\|\chi_{F} -
T_s^{(2)} \chi_{F}\|_2\\
\text{(by Lemma 6.12.6(iii))} \ & = \frac{1}{|S| \cdot
\sqrt{|F|}} \sum_{s \in S} \left(2|F \setminus F
s|\right)^{\frac{1}{2}}\\
& = \frac{1}{|S|} \sum_{s \in S} \left(\frac{2|F \setminus F
s|}{|F|}\right)^{\frac{1}{2}}\\
& < \varepsilon.
\end{split}
\]
-
page 251, in the proof of Theorem 6.12.9:
replace
"Thus, by virtue of the implication (e) $\Rightarrow$ (c) in Proposition 6.12.2"
by
"Thus, by virtue of the implication (e) $\Rightarrow$ (d) in Proposition 6.12.2".
-
page 250, in the proof of Theorem 6.12.9:
replace
\[
\mu(\Omega_s) < \frac{1}{\vert S \vert} \quad \text{ for all } s \in S,
\]
by
\[
\mu(\Omega_s) \leq \frac{1}{2\vert S \vert} < \frac{1}{\vert S \vert}
\quad \text{ for all } s \in S,
\]
-
page 533, reference update:
[CCL2] T. Ceccherini-Silberstein, M. Coornaert, and H. Li, Expansive
actions with specification of sofic groups, strong topological Markov property, and surjunctivity,
J. Funct. Anal. 286 (2024), no. 9, Paper No. 110376, 26 pp.
-
page 533, reference update:
[CCP4] T. Ceccherini-Silberstein, M. Coornaert, and X. K. Phung,
Invariant sets and nilpotency of endomorphisms of algebraic sofic
shifts, Ergodic Theory Dynam. Systems 44 (2024), no. 10, 2859-2900.
-
page 533, reference update:
[CCP5] T. Ceccherini-Silberstein, M. Coornaert, and X.K. Phung,
First-order model theory and Kaplansky's stable finiteness conjecture,
Groups, Geom. Dyn. (to appear), arXiv:2310.09451.
-
page 538, reference update:
[Phu5] X.K. Phung, Symbolic group varieties and dual surjunctivity,
Groups Geom. Dyn. 18 (2024), no. 1, 213-234.
-
page 538, reference update:
[Phu10] X.K. Phung, On linear non-uniform cellular automata: duality
and dynamics, Linear Algebra Appl. 688 (2024), 78-103.
Many thanks to Dov Mostovicz for corrections and comments.
If you have any additional corrections or comments,
please send them to us by e-mail.
Last Update: October 8, 2024