Tullio Ceccherini-Silberstein
Michel Coornaert
Exercises in Cellular Automata and Groups - Errata, Additions, and Updates
T. Ceccherini-Silberstein, M. Coornaert,
"Exercises in Cellular
automata and groups",
Springer Monographs in Mathematics, Springer, Cham, 2023, XVII + 627 pp.,
eBook ISBN 978-3-031-10391-9,
DOI 10.1007/978-3-031-10391-9,
Hardcover ISBN 978-3-031-10390-2,
Softcover ISBN 978-3-031-10393-3.
-
page 289, lines 12-15: replace
"
\[
T_j \subset \eta_{F_j \Delta}(Y) \times \pi_{F_j\Delta^2 \setminus F_j}(X)
\subset \eta_{F_j }(Y) \times A^{F_j\Delta \setminus F_j} \times A^{F_j\Delta^2 \setminus F_j},
\]
so that
\[
\log |T_j| \leq \log |\eta_{F_j}(Y) \times A^{F_j\Delta \setminus F_j} \times A^{F_j\Delta^2 \setminus F_j}|
= \log|\eta_{F_j }(Y)| + (|F_j\Delta \setminus F_j| + |F_j\Delta^2 \setminus F_j|) \log|A|
\]
for all $j \in J$."
by
"
\[
T_j \subset \eta_{F_j \Delta}(Y) \times \pi_{F_j\Delta^2 \setminus F_j}(X)
\subset \eta_{F_j }(Y) \times B^{F_j\Delta \setminus F_j} \times A^{F_j\Delta^2 \setminus F_j},
\]
so that
\[
\log |T_j| \leq \log |\eta_{F_j}(Y) \times B^{F_j\Delta \setminus F_j} \times A^{F_j\Delta^2 \setminus F_j}|
= \log|\eta_{F_j }(Y)| + |F_j\Delta \setminus F_j| \log|B| + |F_j\Delta^2 \setminus F_j| \log|A|
\]
for all $j \in J$.
"
-
page 289, line -1: replace
"
\[
\frac{\log |T_{j_0}|}{|F_{j_0}|} < \frac{\log |Z_{j_0}|}{F_{j_0}|}
\]
"
by
"
\[
\frac{\log |T_{j_0}|}{|F_{j_0}|} < \frac{\log |Z_{j_0}|}{|F_{j_0}|}
\]
"
-
page 514, line 4:
replace "$a^n = 1_R$" by "$a^n = 0_R$".
If you have any additional corrections or comments,
please send them to us by e-mail.
Last Update: April 9, 2025