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Systèmes dynamiques

Un système dynamique est un couple (X , f ), où

X est un espace compact métrisable ;

f : X → X est un homéomorphisme.

Étant donné un système dynamique (X , f ), on s’intéresse à l’action de Z
engendrée par f :

Z× X → X

(n, x) 7→ f n(x).
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f : X → X est un homéomorphisme.
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Exemples de systèmes dynamiques

Exemple 1 (Le chat d’Arnold)

C’est le système dynamique (X , f ), où

X est le tore R2/Z2 = (R/Z)× (R/Z) ;
f : X → X est donné par

∀x = (x1, x2) ∈ X , f (x) := (x2, x1 + x2).

L’homéomorphisme f est induit par l’automorphisme linéaire f̃ de R2 de matrice

M :=

(
0 1
1 1

)
.
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L’homéomorphisme f est induit par l’automorphisme linéaire f̃ de R2 de matrice
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Décalages pleins

Exemple 2 (Les décalages)

Soit A un ensemble fini, appelé l’alphabet.
Le décalage plein sur l’alphabet A est le système dynamique (X , f ), où :

X := AZ = {x = (xi )i∈Z : ∀i ∈ Z, xi ∈ A}

est l’ensemble des suites bi-infinies d’éléments de A.
L’ensemble A est muni de la topologie discrète et X = AZ =

∏
Z A de la topologie

produit (topologie de la convergence ponctuelle).
L’homéomorphisme f : X → X est défini par

∀x ∈ X ,∀i ∈ Z, (f (x))i := xi+1.
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Décalages pleins

Exemple 2 (Les décalages)
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Sous-systèmes et sous-décalages

On dit qu’un système dynamique (Y , g) est un sous-système d’un système
dynamique (X , f ) si Y est un sous-ensemble fermé f -invariant de X et
g = f |Y : Y → Y est la restriction de f à Y . Souvent, f |Y est simplement noté f
par abus.
Soit A un ensemble fini. On appelle sous-décalage sur A un sous-système du
décalage plein sur l’alphabet A.
On dit qu’un sous-décalage (Y , f ) sur A est de type fini s’il existe un entier k ≥ 1
et un sous-ensemble (nécessairement fini) F ⊂ Ak tels que

Y = {x ∈ AZ : ∀i ∈ Z, (xi , xi+1, . . . , xi+k−1) ∈ F}.
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et un sous-ensemble (nécessairement fini) F ⊂ Ak tels que

Y = {x ∈ AZ : ∀i ∈ Z, (xi , xi+1, . . . , xi+k−1) ∈ F}.
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Le sous-décalage d’or et le sous-décalage pair

Exemple 3 (Le sous-décalage d’or)

C’est le sous-décalage (Y , f ) sur l’alphabet A := {0, 1}, où Y est formé des suites
de 0 et 1 qui ne comportent pas deux termes consécutifs égaux à 1.
C’est un sous-décalage de type fini (on peut prendre k := 2 et
F := {(0, 0), (0, 1), (1, 0)}).

Exemple 4 (Le sous-décalage pair)

C’est le sous-décalage (Y , f ) sur l’alphabet {0, 1}, où Y est formé des suites de 0
et 1 qui ont toujours un nombre pair de 0 entre deux 1.
Le sous-décalage pair n’est pas de type fini.
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Non-errance, irréductibilité, et mélange

Soit (X , f ) un système dynamique.
On dit que x ∈ X est non-errant si

∀U voisinage de x ,∃n ≥ 1 tel que U ∩ f n(U) ̸= ∅.

On note Ω(X , f ) l’ensemble des points non-errants de (X , f ). C’est un
sous-ensemble fermé et f -invariant de X . On dit que (X , f ) est non-errant si
Ω(X , f ) = X .
On dit que (X , f ) est irréductible si

∀U,V ouverts non vides de X ,∃n ≥ 1 tel que U ∩ f n(V ) ̸= ∅.

On dit que (X , f ) est mélangeant si

∀U,V ouverts non vides de X ,∃n ≥ 1 tel que ∀k ≥ n,U ∩ f k(V ) ̸= ∅.

mélangeant =⇒ irréductible =⇒ non-errant.
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mélangeant =⇒ irréductible =⇒ non-errant.
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sous-ensemble fermé et f -invariant de X . On dit que (X , f ) est non-errant si
Ω(X , f ) = X .
On dit que (X , f ) est irréductible si
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sous-ensemble fermé et f -invariant de X . On dit que (X , f ) est non-errant si
Ω(X , f ) = X .
On dit que (X , f ) est irréductible si
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∀U,V ouverts non vides de X ,∃n ≥ 1 tel que U ∩ f n(V ) ̸= ∅.

On dit que (X , f ) est mélangeant si

∀U,V ouverts non vides de X ,∃n ≥ 1 tel que ∀k ≥ n,U ∩ f k(V ) ̸= ∅.
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∀U,V ouverts non vides de X ,∃n ≥ 1 tel que U ∩ f n(V ) ̸= ∅.

On dit que (X , f ) est mélangeant si

∀U,V ouverts non vides de X ,∃n ≥ 1 tel que ∀k ≥ n,U ∩ f k(V ) ̸= ∅.
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mélangeant =⇒ irréductible =⇒ non-errant.
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Homoclinicité

Soit (X , f ) un système dynamique.
Soit d une métrique sur X compatible avec la topologie.
On dit que deux points x , y ∈ X sont homocliniques si

lim
|n|→∞

d(f n(x), f n(y)) = 0.

La définition ne dépend pas du choix de d par compacité de X .
L’homoclinicité définit une relation d’équivalence sur X .
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Homoclinicité
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Homoclinicité dans le chat d’Arnold

Exemple 5 (Homoclinicité dans le chat d’Arnold)

Soit (X , f ) le chat d’Arnold.
Équipons X = R2/Z2 de sa structure (localement) euclidienne.
La classe homoclinique d’un point x ∈ X est Du(x) ∩ Ds(x), où Du(x) ⊂ X est la
droite locale passant par x de pente le nombre d’or ϕ := (1 +

√
5)/2 = 1, 618 . . .

et Ds(x) ⊂ X est la droite locale passant par x perpendiculairement à Du(x). La
droite Du(x) (resp. Ds(x)) est la droite instable (resp. stable) passant par x . Ces
deux droites s’enroulent de manière dense sur le tore X .
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Homoclinicité dans le chat d’Arnold (suite)

Du(x)

Ds(x)

x
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Homoclinicité dans les sous-décalages

Exemple 6 (Homoclinicité dans les décalages)

Soit (X , f ) un sous-décalage sur un ensemble fini A.
Deux points x , y ∈ X sont homocliniques si et seulement si l’ensemble

{i ∈ Z : xi ̸= yi}

est fini.
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Endomorphismes pré-injectifs

Soit (X , f ) un système dynamique.
Un endomorphisme de (X , f ) est une application continue τ : X → X telle que
τ ◦ f = f ◦ τ .

Définition

On dit qu’un endomorphisme de (X , f ) est pré-injectif si sa restriction à toute
classe homoclinique est injective.

On a toujours
τ injectif =⇒ τpré-injectif

mais la réciproque est fausse.
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mais la réciproque est fausse.
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Exemples d’endomorphismes pré-injectifs non-injectifs

Exemple 7

Soit (X , f ) le chat d’Arnold.
Alors τ : X → X , x 7→ 2x , est un endomorphisme de (X , f ) qui est pré-injectif
mais pas injectif.

Exemple 8

Soit (X , f ) le décalage sur A := {0, 1} = Z/2Z.
Alors l’application τ : X → X definie par

∀x ∈ X ,∀i ∈ Z, (τ(x))i = xi + xi+1

est un endomorphisme pré-injectif de (X , f ) qui n’est pas injectif.
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Le théorème du jardin d’Éden de Moore-Myhill

En 1963, Moore et Myhill ont démontré le théorème suivant :

Théorème (Théorème du jardin d’Éden de Moore-Myhill)

Soit A un ensemble fini, (X , f ) le décalage plein sur A, et τ : X → X un
endomorphisme de (X , f ). Alors on a

τ surjectif ⇐⇒ τ pré-injectif.

Moore [Moo63] a démontré =⇒ .
Un peu après, Myhill [Myh63] a démontré ⇐= .
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Propriété de Moore et propriété de Myhill

Soit (X , f ) un système dynamique.

Définition

On dit que (X , f ) vérifie Moore si tout endomorphisme surjectif de (X , f ) est
pré-injectif.

Définition

On dit que (X , f ) vérifie Myhill si tout endomorphisme pré-injectif de (X , f ) est
surjectif.

Définition

On dit que (X , f ) vérifie Moore-Myhill, ou encore que (X , f ) vérifie le théorème
du jardin d’Éden, si (X , f ) vérifie à la fois Moore et Myhill.

M. C. (IRMA Strasbourg) Un théorème du jardin d’Éden 11 décembre 2025 16 / 30



Propriété de Moore et propriété de Myhill
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surjectif.

Définition
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Propriété de Moore et propriété de Myhill
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Définition
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surjectif.

Définition

On dit que (X , f ) vérifie Moore-Myhill, ou encore que (X , f ) vérifie le théorème
du jardin d’Éden, si (X , f ) vérifie à la fois Moore et Myhill.
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Espaces de Smale

La classe des espaces de Smale a été introduite par David Ruelle [Rue78] (voir
aussi [Rue04], [Put14], [Put15]).

Définition

Soit X un espace compact métrisable équippé d’un homéomorphisme f : X → X .
On dit que (X , f ) est un espace de Smale s’il existe une métrique compatible d
sur X , des constantes ε, λ avec ε > 0 et 0 < λ < 1, et une application continue

[·, ·] : ∆ε := {(x , y) ∈ X × X : d(x , y) ≤ ε} → X

vérifiant les conditions suivantes :

(S1) [x , x ] = x pour tout x ∈ X ;

(S2) [[x , y ], z] = [x , z] si les deux membres sont définis ;

(S3) [x , [y , z]] = [x , z] si les deux membres sont définis ;

(S4) [f (x), f (y)] = f ([x , y ]) si les deux membres sont définis ;

(S5) d(f (y), f (z)) ≤ λd(y , z) si (x , y), (x , z) ∈ ∆ε et [y , x ] = [z , x ] = x ;

(S6) d(f −1(y), f −1(z)) ≤ λd(y , z) si (x , y), (x , z) ∈ ∆ε et [x , y ] = [x , z] = x .
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Exemples d’espaces de Smale

Exemple 9 (Chat d’Arnold)

Le chat d’Arnold est un espace de Smale.
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Exemples d’espaces de Smale (suite)

Du(y)

Ds(x)

[x , y ]

x

y

•

•

•
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Exemples d’espaces de Smale (suite)

Exemple 10 (Automorphisme hyperbolique du n-tore)

De manière plus générale, soit M ∈ GLn(Z) n’ayant aucune valeur propre
complexe de module 1. Alors M induit un homéomorphisme du tore X := Rn/Zn

et (X , f ) est un espace de Smale.
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Exemples d’espaces de Smale (suite)

Exemple 11 (Difféomorphisme d’Anosov)

De manière encore plus générale, soit X une variété différentielle compacte munie
d’un difféomorphisme d’Anosov f : X → X . Cela veut dire que X est hyperbolique
pour f , i.e., TX = Es ⊕ Eu, où Es et Eu sont des sous-fibrés df -invariants, et il
existe une métrique riemannienne sur X et une constante 0 < λ < 1 tels que

∀v ∈ Es ,∀w ∈ Eu, ∥df (v)∥ ≤ λ∥v∥ et ∥df −1(w)∥ ≤ λ∥w∥.

Alors (X , f ) est un espace de Smale.
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Exemples d’espaces de Smale (suite)

Exemple 12 (Ensemble non-errant d’un difféomorphisme axiome A)

Soit f un difféomorphisme d’une variété différentielle compacte X qui vérifie
l’axiome A de Smale [Sma67]. Cela veut dire que l’ensemble non-errant Ω(X , f )
est hyperbolique pour f et que l’ensemble des points périodiques de f est dense
dans Ω(X , f ). Alors (Ω(X , f ), f ) est un espace de Smale.

Exemple 13 (Sous-décalage de type fini)

Soit A un ensemble fini et (X , f ) un sous-décalage sur A. On a

(X , f ) est un espace de Smale ⇐⇒ X est de type fini.

Par exemple, le sous-décalage d’or est un espace de Smale mais le sous-décalage
pair n’en est pas un.
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pair n’en est pas un.

M. C. (IRMA Strasbourg) Un théorème du jardin d’Éden 11 décembre 2025 22 / 30
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Soit f un difféomorphisme d’une variété différentielle compacte X qui vérifie
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Théorème du jardin d’Éden pour les espaces de Smale
irréductibles

Théorème A ([CC25])

Tout espace de Smale irréductible vérifie Moore-Myhill.

Corollaire (Fiorenzi [Fio00])

Tout sous-décalage irréductible de type fini vérifie Moore-Myhill.

On ne sait pas si tout difféomorphisme d’Anosov est irréductible. Les seuls
exemples connus de variétés compactes admettant des difféomorphismes d’Anosov
sont les infra-nilvariétés (i.e., les quotients compacts d’un groupe de Lie nilpotent
simplement connexe par un groupe discret sans torsion d’isométries).
Manning [Man74] a démontré que tout difféomorphsme d’Anosov d’une
infra-nilvariété est irréductible. On en déduit le résultat suivant obtenu
dans [CC16] dans le cas particulier des tores.

Corollaire ([CC25])

Tout difféomorphisme d’Anosov d’une infra-nilvariété vérifie Moore-Myhill.
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Corollaire (Fiorenzi [Fio00])
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irréductibles
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sont les infra-nilvariétés (i.e., les quotients compacts d’un groupe de Lie nilpotent
simplement connexe par un groupe discret sans torsion d’isométries).
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Propriétés des espaces de Smale non-errants

On dit qu’un système dynamique (X , f ) est surjonctif si tout endomorphisme
injectif de (X , f ) est surjectif.
On a trivialement

((X , f ) vérifie Myhill) =⇒ ((X , f ) est surjonctif).

Théorème B ([CC25])

Tout espace de Smale non-errant est surjonctif et vérifie Moore.
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((X , f ) vérifie Myhill) =⇒ ((X , f ) est surjonctif).

Théorème B ([CC25])

Tout espace de Smale non-errant est surjonctif et vérifie Moore.
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M. C. (IRMA Strasbourg) Un théorème du jardin d’Éden 11 décembre 2025 24 / 30
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Quelques contre-exemples

Exemple 14

Si X est un espace discret réduit à deux points et f est l’application identique de
X , alors (X , f ) est un espace de Smale non-errant mais pas irréductible. On peut
vérifier directement que (X , f ) est surjonctif et que (X , f ) vérifie Moore mais pas
Myhill.

Exemple 15

Considérons le sous-décalage de type fini sur l’alphabet A := {0, 1, 2} défini par

X := {x ∈ AZ : ∀i ∈ Z, (xi , xi+1) /∈ {(2, 0), (2, 1)}}.

L’endomorphisme τ de X qui remplace (0, 2) par (0, 0) est injectif mais pas
surjectif. L’endomorphisme τ ′ de X qui remplace (0, 2) par (2, 2) est surjectif mais
pas pré-injectif. Donc (X , f ) est un système dynamique qui n’est pas surjonctif (et
donc ne vérifie pas Myhill) et qui ne vérifie pas Moore. C’est un espace de Smale
mais il contient des points errants.
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Si X est un espace discret réduit à deux points et f est l’application identique de
X , alors (X , f ) est un espace de Smale non-errant mais pas irréductible. On peut
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Quelques contre-exemples (suite)

Exemple 16

Fiorenzi [Fio00] a démontré que le sous-décalage pair vérifie Myhill mais pas
Moore. Rappelons que ce n’est pas un espace de Smale puisque ce sous-décalage
n’est pas de type fini.
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n’est pas de type fini.

M. C. (IRMA Strasbourg) Un théorème du jardin d’Éden 11 décembre 2025 26 / 30



Quelques contre-exemples (suite)

Exemple 16
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Esquisse de démonstration du théorème A

Soit (X , f ) un espace de Smale irréductible.
D’après le théorème de décomposition spectrale de Smale-Bowen-Ruelle, il existe
un entier s ≥ 1 et une famille (Xi )i∈Z/sZ de sous-ensembles fermés disjoints de X
telle que

X = ⊔i∈Z/sZXi ,

f (Xi ) = Xi+1 et telle que le système dynamique (Xi , f
s) est un espace de Smale

mélangeant pour tout i ∈ Z/sZ.
En utilisant des partitions de Markov, on construit, pour tout i ∈ Z/sZ, un
sous-décalage mélangeant de type fini (Yi , gi ) dont (Xi , f

s) est un facteur. Cela
veut dire qu’il existe une application continue surjective πi : Yi → Xi telle que
πi (gi (y)) = f s(πi (y)) pour tout y ∈ Yi .
Un théorème du jardin d’Éden dû à Li [Li19] et Doucha [Dou23] montre alors que
(Xi , f

s) vérifie Moore-Myhill. On en déduit alors que (X , f s) et donc (X , f )
vérifient Moore-Myhill.
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vérifient Moore-Myhill.
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