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Un systeme dynamique est un couple (X, f), ol
@ X est un espace compact métrisable;

@ f: X — X est un homéomorphisme.
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Systemes dynamiques

Un systeme dynamique est un couple (X, f), ol
@ X est un espace compact métrisable;

@ f: X — X est un homéomorphisme.

Etant donné un systeme dynamique (X, f), on s'intéresse 2 I'action de Z
engendrée par f :

Zx X —X
(n, x) = £"(x).
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Exemples de systemes dynamiques

Exemple 1 (Le chat d'Arnold)

C'est le systéme dynamique (X, f), ou
@ X est le tore R?/Z? = (R/Z) x (R/Z);
e f: X = X est donné par

Vx = (x1,x2) € X, f(x) = (x2,x1 + x2).
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Exemples de systemes dynamiques

Exemple 1 (Le chat d'Arnold)

C'est le systéme dynamique (X, f), ou
@ X est le tore R?/Z? = (R/Z) x (R/Z);
e f: X = X est donné par

Vx = (x1,x2) € X, f(x) = (x2,x1 + x2).

L'homéomorphisme f est induit par I'automorphisme linéaire f de R? de matrice

l\/l:—<(1) i)

M. C. (IRMA Strasbourg) Un théoreme du jardin d'Eden 11 décembre 2025 4/30



|
Décalages pleins

JA Strasbourg) Un théorme du jardin d’Eden 11 décembre 2025 5/30



|
Décalages pleins

Exemple 2 (Les décalages)
Soit A un ensemble fini, appelé I'alphabet.
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Soit A un ensemble fini, appelé I'alphabet.
Le décalage plein sur I'alphabet A est le systéme dynamique (X, f), ol :

X =A% = {x=(x)iez : Vi € Z,x; € A}

est I'ensemble des suites bi-infinies d'éléments de A.

M. C. (IRMA Strasbourg) Un théoreme du jardin d'Eden 11 décembre 2025 5/30



|
Décalages pleins

Exemple 2 (Les décalages)
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Le décalage plein sur I'alphabet A est le systéme dynamique (X, f), ol :

X =A% = {x=(x)iez : Vi € Z,x; € A}

est I'ensemble des suites bi-infinies d’éléments de A.
L'ensemble A est muni de la topologie discrete et X = AZ =[], A de la topologie
produit (topologie de la convergence ponctuelle).
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Décalages pleins

Exemple 2 (Les décalages)

Soit A un ensemble fini, appelé I'alphabet.
Le décalage plein sur I'alphabet A est le systéme dynamique (X, f), ol :

X =A% = {x=(x)iez : Vi € Z,x; € A}

est I'ensemble des suites bi-infinies d’éléments de A.

L'ensemble A est muni de la topologie discrete et X = AZ =[], A de la topologie
produit (topologie de la convergence ponctuelle).

L'homéomorphisme f: X — X est défini par

Vx € X,Vi€Z, (f(x))i= X1
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Sous-systemes et sous-décalages

On dit qu'un systeme dynamique (Y, g) est un sous-systéme d'un systeme
dynamique (X, f) si Y est un sous-ensemble fermé f-invariant de X et
g="fly: Y — Y est la restriction de f a Y.
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On dit qu'un systeme dynamique (Y, g) est un sous-systéme d'un systeme
dynamique (X, f) si Y est un sous-ensemble fermé f-invariant de X et

g ="f|y: Y — Y est la restriction de f a Y. Souvent, f|y est simplement noté f
par abus.

Soit A un ensemble fini. On appelle sous-décalage sur A un sous-systeme du
décalage plein sur I'alphabet A.
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Sous-systemes et sous-décalages

On dit qu'un systeme dynamique (Y, g) est un sous-systéme d'un systeme
dynamique (X, f) si Y est un sous-ensemble fermé f-invariant de X et

g ="f|y: Y — Y est la restriction de f a Y. Souvent, f|y est simplement noté f
par abus.

Soit A un ensemble fini. On appelle sous-décalage sur A un sous-systeme du
décalage plein sur I'alphabet A.

On dit qu'un sous-décalage (Y, f) sur A est de type fini s'il existe un entier k > 1
et un sous-ensemble (nécessairement fini) F C A tels que

Y={xcAl:VicZ (xi,Xii1,---,Xi1k-1) € F}.
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Exemple 3 (Le sous-décalage d'or)

C'est le sous-décalage (Y, f) sur I'alphabet A := {0,1}, ou Y est formé des suites
de 0 et 1 qui ne comportent pas deux termes consécutifs égaux a 1.
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de 0 et 1 qui ne comportent pas deux termes consécutifs égaux a 1.
C'est un sous-décalage de type fini (on peut prendre k =2 et

F = {(07 0)7 (07 1)7 (17 0)})

Exemple 4 (Le sous-décalage pair)

C'est le sous-décalage (Y, f) sur I'alphabet {0,1}, ou Y est formé des suites de 0
et 1 qui ont toujours un nombre pair de 0 entre deux 1.
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Le sous-décalage d'or et le sous-décalage pair

Exemple 3 (Le sous-décalage d'or)

C'est le sous-décalage (Y, f) sur I'alphabet A := {0,1}, ou Y est formé des suites
de 0 et 1 qui ne comportent pas deux termes consécutifs égaux a 1.
C'est un sous-décalage de type fini (on peut prendre k =2 et

F = {(07 0)7 (07 1)7 (17 0)})

Exemple 4 (Le sous-décalage pair)

C'est le sous-décalage (Y, f) sur I'alphabet {0,1}, ou Y est formé des suites de 0
et 1 qui ont toujours un nombre pair de 0 entre deux 1.
Le sous-décalage pair n'est pas de type fini.
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Soit (X, f) un systeme dynamique.
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Soit (X, f) un systeme dynamique.
On dit que x € X est non-errant si

VU voisinage de x,3n > 1 tel que UN (V) # 2.
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Soit (X, f) un systeme dynamique.
On dit que x € X est non-errant si

VU voisinage de x,3n > 1 tel que UN (V) # 2.

On note Q(X, f) I'ensemble des points non-errants de (X, f).
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Soit (X, f) un systeme dynamique.
On dit que x € X est non-errant si
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Non-errance, irréductibilité, et mélange

Soit (X, f) un systeme dynamique.
On dit que x € X est non-errant si

VU voisinage de x,3n > 1 tel que UN (V) # 2.

On note Q(X, f) I'ensemble des points non-errants de (X, f). C'est un
sous-ensemble fermé et f-invariant de X. On dit que (X, f) est non-errant si
Q(X,f)=X.
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Soit (X, f) un systeme dynamique.
On dit que x € X est non-errant si

VU voisinage de x,3n > 1 tel que UN (V) # 2.

On note Q(X, f) I'ensemble des points non-errants de (X, f). C'est un
sous-ensemble fermé et f-invariant de X. On dit que (X, f) est non-errant si

Q(X, f) = X.
On dit que (X, f) est irréductible si

VU, Vouverts non vides de X,3n > 1 tel que UN (V) # @.
On dit que (X, f) est mélangeant si

YU, Vouverts non vides de X,3n > 1 tel que Yk > n, UN FX(V) # @.
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Soit (X, f) un systeme dynamique.
On dit que x € X est non-errant si

VU voisinage de x,3n > 1 tel que UN (V) # 2.

On note Q(X, f) I'ensemble des points non-errants de (X, f). C'est un
sous-ensemble fermé et f-invariant de X. On dit que (X, f) est non-errant si

Q(X, f) = X.
On dit que (X, f) est irréductible si

VU, Vouverts non vides de X,3n > 1 tel que UN (V) # @.
On dit que (X, f) est mélangeant si

YU, Vouverts non vides de X,3n > 1 tel que Yk > n, UN FX(V) # @.

mélangeant = irréductible == non-errant.

M. C. (IRMA Strasbourg) Un théoreme du jardin d'Eden 11 décembre 2025 8/30



N
Homoclinicité

M. C. (IR - Un théoreme du jardin d'Eden 11 décembre 2025 9/30



N
Homoclinicité

Soit (X, f) un systeme dynamique.

JA Strasbourg) Un théorme du jardin d’Eden 11 décembre 2025 9/30



N
Homoclinicité

Soit (X, f) un systeme dynamique.
Soit d une métrique sur X compatible avec la topologie.
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Homoclinicité

Soit (X, f) un systeme dynamique.
Soit d une métrique sur X compatible avec la topologie.
On dit que deux points x, y € X sont homocliniques si

lim d(f"(x),f"(y)) = 0.

|n|—o0
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Soit (X, f) un systeme dynamique.
Soit d une métrique sur X compatible avec la topologie.
On dit que deux points x, y € X sont homocliniques si

lim d(f"(x),f"(y)) = 0.

|n|—o0

La définition ne dépend pas du choix de d par compacité de X.
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Homoclinicité

Soit (X, f) un systeme dynamique.
Soit d une métrique sur X compatible avec la topologie.
On dit que deux points x, y € X sont homocliniques si

lim d(f"(x),f"(y)) = 0.

|n|—o0

La définition ne dépend pas du choix de d par compacité de X.
L'homoclinicité définit une relation d'équivalence sur X.
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Exemple 5 (Homoclinicité dans le chat d'Arnold)
Soit (X, f) le chat d’Arnold.

M. C. (IRMA Strasbourg) Un théoreme du jardin d'Eden 11 décembre 2025 10/30



N
Homoclinicité dans le chat d’'Arnold

Exemple 5 (Homoclinicité dans le chat d'Arnold)

Soit (X, f) le chat d'Arnold.
Equipons X = R?/Z? de sa structure (localement) euclidienne.

M. C. (IRMA Strasbourg) Un théoreme du jardin d'Eden 11 décembre 2025 10/30



N
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Exemple 5 (Homoclinicité dans le chat d'Arnold)

Soit (X, f) le chat d’Arnold.

Equipons X = R2?/Z2 de sa structure (localement) euclidienne.

La classe homoclinique d'un point x € X est D,(x) N Ds(x), ot D,(x) C X est la
droite locale passant par x de pente le nombre d'or ¢ := (1 + \/5)/2 =1,618...
et Ds(x) C X est la droite locale passant par x perpendiculairement a D,(x).
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Exemple 5 (Homoclinicité dans le chat d'Arnold)

Soit (X, f) le chat d’Arnold.

Equipons X = R2?/Z2 de sa structure (localement) euclidienne.

La classe homoclinique d'un point x € X est D,(x) N Ds(x), ot D,(x) C X est la
droite locale passant par x de pente le nombre d'or ¢ := (1 + \/5)/2 =1,618...

et Ds(x) C X est la droite locale passant par x perpendiculairement 3 D,(x). La

droite D,(x) (resp. Ds(x)) est la droite instable (resp. stable) passant par x. Ces

deux droites s'enroulent de maniere dense sur le tore X.
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Exemple 6 (Homoclinicité dans les décalages)

Soit (X, f) un sous-décalage sur un ensemble fini A.
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Homoclinicité dans les sous-décalages

Exemple 6 (Homoclinicité dans les décalages)

Soit (X, f) un sous-décalage sur un ensemble fini A.
Deux points x,y € X sont homocliniques si et seulement si |I'ensemble

{i€Z:x #y}

est fini.
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Soit (X, f) un systéme dynamique.
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Endomorphismes pré-injectifs

Soit (X, f) un systéme dynamique.
Un endomorphisme de (X, f) est une application continue 7: X — X telle que
Tof=for.
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Endomorphismes pré-injectifs

Soit (X, f) un systéme dynamique.

Un endomorphisme de (X, f) est une application continue 7: X — X telle que
Tof=for.

Définition

On dit qu'un endomorphisme de (X, f) est pré-injectif si sa restriction a toute
classe homoclinique est injective.
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Endomorphismes pré-injectifs

Soit (X, f) un systéme dynamique.

Un endomorphisme de (X, f) est une application continue 7: X — X telle que
Tof=for.

Définition

On dit qu'un endomorphisme de (X, f) est pré-injectif si sa restriction a toute
classe homoclinique est injective.

On a toujours

Tinjectif = Tpré-injectif
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Endomorphismes pré-injectifs

Soit (X, f) un systéme dynamique.

Un endomorphisme de (X, f) est une application continue 7: X — X telle que
Tof=for.

Définition

On dit qu'un endomorphisme de (X, f) est pré-injectif si sa restriction a toute
classe homoclinique est injective.

On a toujours
Tinjectif = Tpré-injectif

mais la réciproque est fausse.
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Exemple 7
Soit (X, f) le chat d’Arnold.
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Exemple 7

Soit (X, f) le chat d’Arnold.
Alors 7: X — X, x + 2x, est un endomorphisme de (X, ) qui est pré-injectif
mais pas injectif.
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Exemples d’endomorphismes pré-injectifs non-injectifs

Exemple 7

Soit (X, f) le chat d’Arnold.
Alors 7: X — X, x + 2x, est un endomorphisme de (X, ) qui est pré-injectif
mais pas injectif.

Exemple 8
Soit (X, f) le décalage sur A= {0,1} = Z/27Z.
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Exemples d’endomorphismes pré-injectifs non-injectifs

Exemple 7

Soit (X, f) le chat d’Arnold.

Alors 7: X — X, x + 2x, est un endomorphisme de (X, ) qui est pré-injectif
mais pas injectif.

Exemple 8

Soit (X, f) le décalage sur A= {0,1} = Z/2Z.
Alors I'application 7: X — X definie par

Vx € X,Vi € Z, (T(X)),':X,'—FX,'+1

est un endomorphisme pré-injectif de (X, f) qui n'est pas injectif.
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En 1963, Moore et Myhill ont démontré le théoreme suivant :
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En 1963, Moore et Myhill ont démontré le théoreme suivant :

Théoreme (Théoreme du jardin d’Eden de Moore-Myhill)

Soit A un ensemble fini, (X, f) le décalage plein sur A, et 7: X — X un
endomorphisme de (X, f). Alors on a

T surjectif <= T pré-injectif.
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Soit A un ensemble fini, (X, f) le décalage plein sur A, et 7: X — X un
endomorphisme de (X, f). Alors on a
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Moore [Moo63] a démontré —> .
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Le théoreme du jardin d’Eden de Moore-Myhill

En 1963, Moore et Myhill ont démontré le théoreme suivant :

Théoreme (Théoreme du jardin d’Eden de Moore-Myhill)

Soit A un ensemble fini, (X, f) le décalage plein sur A, et 7: X — X un
endomorphisme de (X, f). Alors on a

T surjectif <= T pré-injectif.

Moore [Moo63] a démontré —> .
Un peu aprés, Myhill [Myh63] a démontré <.
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Soit (X, f) un systeme dynamique.
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Propriété de Moore et propriété de Myhill

Soit (X, f) un systeme dynamique.
Définition

On dit que (X, f) vérifie Moore si tout endomorphisme surjectif de (X, f) est
pré-injectif.
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On dit que (X, f) vérifie Moore si tout endomorphisme surjectif de (X, f) est
pré-injectif.
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Propriété de Moore et propriété de Myhill

Soit (X, f) un systeme dynamique.

Définition

On dit que (X, f) vérifie Moore si tout endomorphisme surjectif de (X, f) est
pré-injectif.

Définition
On dit que (X, f) vérifie Myhill si tout endomorphisme pré-injectif de (X, f) est
surjectif.

Définition
On dit que (X, f) vérifie Moore-Myhill, ou encore que (X, f) vérifie le théoreme
du jardin d’Eden, si (X, f) vérifie a la fois Moore et Myhill.
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Espaces de Smale

La classe des espaces de Smale a été introduite par David Ruelle [Rue78] (voir
aussi [Rue04], [Putl4], [Putl5]).
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Espaces de Smale

La classe des espaces de Smale a été introduite par David Ruelle [Rue78] (voir
aussi [Rue04], [Put14], [Putl5]).

Définition

Soit X un espace compact métrisable équippé d’'un homéomorphisme 7: X — X.

On dit que (X, f) est un espace de Smale s'il existe une métrique compatible d
sur X, des constantes £, A avec ¢ > 0 et 0 < A\ < 1, et une application continue

[,]]: Ac ={(x,y) e X x X : d(x,y) <e} = X

vérifiant les conditions suivantes :

[x,x] = x pour tout x € X;

[[x, ], z] = [x, z] si les deux membres sont définis;

[x,[y, z]] = [x, z] si les deux membres sont définis;

[f(x), f(y)] = f([x, y]) si les deux membres sont définis;

d(f(y) f(2)) < Ad(y,2) si (x,y), (x,2) € Ac et [y,x] = [z,x] = x;
d(f~1(y), f1(2)) < Ad(y,z) si (x,y),(x,z) € A et [x,y] = [x,2] = x.

6 6 6 6 6 6
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Exemples d’'espaces de Smale

Exemple 9 (Chat d'Arnold)

Le chat d'Arnold est un espace de Smale.
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Exemples d'espaces de Smale (suite)
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Exemples d'espaces de Smale (suite)

Exemple 10 (Automorphisme hyperbolique du n-tore)

De maniere plus générale, soit M € GL,(Z) n’ayant aucune valeur propre
complexe de module 1. Alors M induit un homéomorphisme du tore X := R"/Z"

et (X, f) est un espace de Smale.
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Exemples d'espaces de Smale (suite)

Exemple 11 (Difféomorphisme d'Anosov)

De maniere encore plus générale, soit X une variété différentielle compacte munie
d'un difféomorphisme d'Anosov f: X — X.
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Exemples d'espaces de Smale (suite)

Exemple 11 (Difféomorphisme d'Anosov)

De maniere encore plus générale, soit X une variété différentielle compacte munie
d'un difféomorphisme d'Anosov f: X — X. Cela veut dire que X est hyperbolique
pour f, i.e., TX = E; & E,, ol E; et E, sont des sous-fibrés df-invariants, et il
existe une métrique riemannienne sur X et une constante 0 < A < 1 tels que

Vv € E,Yw € E,, ||df(v)|| < A|v]| et |ldf T (w)] < A|w].
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Exemple 11 (Difféomorphisme d'Anosov)

De maniere encore plus générale, soit X une variété différentielle compacte munie
d'un difféomorphisme d'Anosov f: X — X. Cela veut dire que X est hyperbolique
pour f, i.e., TX = E; & E,, ol E; et E, sont des sous-fibrés df-invariants, et il
existe une métrique riemannienne sur X et une constante 0 < A < 1 tels que

Vv € E,Yw € E,, ||df(v)|| < A|v]| et |ldf T (w)] < A|w].

Alors (X, f) est un espace de Smale.
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Exemples d'espaces de Smale (suite)

Exemple 12 (Ensemble non-errant d'un difféomorphisme axiome A)

Soit f un difféfomorphisme d'une variété différentielle compacte X qui vérifie
I'axiome A de Smale [Sma67].
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Exemple 12 (Ensemble non-errant d'un difféomorphisme axiome A)

Soit f un difféfomorphisme d'une variété différentielle compacte X qui vérifie
I'axiome A de Smale [Sma67]. Cela veut dire que I'ensemble non-errant Q(X, f)

est hyperbolique pour f et que I'ensemble des points périodiques de f est dense
dans Q(X, f).
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Soit f un difféfomorphisme d'une variété différentielle compacte X qui vérifie
I'axiome A de Smale [Sma67]. Cela veut dire que I'ensemble non-errant Q(X, f)
est hyperbolique pour f et que I'ensemble des points périodiques de f est dense
dans Q(X, f). Alors (Q(X, f), f) est un espace de Smale.
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Exemples d'espaces de Smale (suite)

Exemple 12 (Ensemble non-errant d'un difféomorphisme axiome A)

Soit f un difféfomorphisme d'une variété différentielle compacte X qui vérifie
I'axiome A de Smale [Sma67]. Cela veut dire que I'ensemble non-errant Q(X, f)
est hyperbolique pour f et que I'ensemble des points périodiques de f est dense
dans Q(X, f). Alors (Q(X, f), f) est un espace de Smale.

Exemple 13 (Sous-décalage de type fini)

Soit A un ensemble fini et (X, ) un sous-décalage sur A.
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Exemple 12 (Ensemble non-errant d'un difféomorphisme axiome A)

Soit f un difféfomorphisme d'une variété différentielle compacte X qui vérifie
I'axiome A de Smale [Sma67]. Cela veut dire que I'ensemble non-errant Q(X, f)
est hyperbolique pour f et que I'ensemble des points périodiques de f est dense
dans Q(X, f). Alors (Q(X, f), f) est un espace de Smale.

Exemple 13 (Sous-décalage de type fini)

Soit A un ensemble fini et (X, ) un sous-décalage sur A. On a

(X, f) est un espace de Smale <= X est de type fini.
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Exemples d'espaces de Smale (suite)

Exemple 12 (Ensemble non-errant d'un difféomorphisme axiome A)

Soit f un difféfomorphisme d'une variété différentielle compacte X qui vérifie
I'axiome A de Smale [Sma67]. Cela veut dire que I'ensemble non-errant Q(X, f)
est hyperbolique pour f et que I'ensemble des points périodiques de f est dense
dans Q(X, f). Alors (Q(X, f), f) est un espace de Smale.

Exemple 13 (Sous-décalage de type fini)

Soit A un ensemble fini et (X, ) un sous-décalage sur A. On a
(X, f) est un espace de Smale <= X est de type fini.

Par exemple, le sous-décalage d'or est un espace de Smale mais le sous-décalage
pair n'en est pas un.
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Théoreme du jardin d'Eden pour les espaces de Smale
irréductibles

Théoreme A ([CC25])

Tout espace de Smale irréductible vérifie Moore-Myhill.
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Théoreme du jardin d'Eden pour les espaces de Smale
irréductibles

Théoreme A ([CC25])

Tout espace de Smale irréductible vérifie Moore-Myhill.

Corollaire (Fiorenzi [Fio00])

Tout sous-décalage irréductible de type fini vérifie Moore-Myhill.

M. C. (IRMA Strasbourg)

Un théoreme du jardin d'Eden 11 décembre 2025 23/30



Théoreme du jardin d'Eden pour les espaces de Smale
irréductibles

Théoreme A ([CC25])

Tout espace de Smale irréductible vérifie Moore-Myhill.

Corollaire (Fiorenzi [Fio00])

Tout sous-décalage irréductible de type fini vérifie Moore-Myhill.

On ne sait pas si tout difféomorphisme d'Anosov est irréductible.
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Théoreme du jardin d'Eden pour les espaces de Smale
irréductibles

Théoreme A ([CC25])

Tout espace de Smale irréductible vérifie Moore-Myhill. {

Corollaire (Fiorenzi [Fio00])
Tout sous-décalage irréductible de type fini vérifie Moore-Myhill. {

On ne sait pas si tout difféomorphisme d'Anosov est irréductible. Les seuls
exemples connus de variétés compactes admettant des difféfomorphismes d'Anosov
sont les infra-nilvariétés (i.e., les quotients compacts d'un groupe de Lie nilpotent
simplement connexe par un groupe discret sans torsion d'isométries).
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irréductibles

Théoreme A ([CC25])

Tout espace de Smale irréductible vérifie Moore-Myhill. {

Corollaire (Fiorenzi [Fio00])
Tout sous-décalage irréductible de type fini vérifie Moore-Myhill. {

On ne sait pas si tout difféomorphisme d'Anosov est irréductible. Les seuls
exemples connus de variétés compactes admettant des difféfomorphismes d'Anosov
sont les infra-nilvariétés (i.e., les quotients compacts d'un groupe de Lie nilpotent
simplement connexe par un groupe discret sans torsion d'isométries).

Manning [Man74] a démontré que tout difféomorphsme d'Anosov d'une
infra-nilvariété est irréductible. On en déduit le résultat suivant obtenu

dans [CC16] dans le cas particulier des tores.
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Théoreme du jardin d'Eden pour les espaces de Smale
irréductibles

Théoreme A ([CC25])

Tout espace de Smale irréductible vérifie Moore-Myhill. {

Corollaire (Fiorenzi [Fio00])
Tout sous-décalage irréductible de type fini vérifie Moore-Myhill. {

On ne sait pas si tout difféomorphisme d'Anosov est irréductible. Les seuls
exemples connus de variétés compactes admettant des difféfomorphismes d'Anosov
sont les infra-nilvariétés (i.e., les quotients compacts d'un groupe de Lie nilpotent
simplement connexe par un groupe discret sans torsion d'isométries).

Manning [Man74] a démontré que tout difféomorphsme d'Anosov d'une
infra-nilvariété est irréductible. On en déduit le résultat suivant obtenu

dans [CC16] dans le cas particulier des tores.

Corollaire ([CC25])

Tout difféomorphisme d’Anosov d’une infra-nilvariété vérifie Moore-Myhill.

M. C. (IRMA Strasbourg) Un théoreme du jardin d'Eden 11 décembre 2025 23/30



|
Propriétés des espaces de Smale non-errants

M. C. (IRMA Strasbourg) Un théoreme du jardin d'Eden 11 décembre 2025 24 /30



|
Propriétés des espaces de Smale non-errants

On dit qu'un systeme dynamique (X, f) est surjonctif si tout endomorphisme
injectif de (X, f) est surjectif.
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Propriétés des espaces de Smale non-errants

On dit qu'un systeme dynamique (X, f) est surjonctif si tout endomorphisme
injectif de (X, f) est surjectif.
On a trivialement

((X, f) vérifie Myhill) = ((X, f) est surjonctif).
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Propriétés des espaces de Smale non-errants

On dit qu'un systeme dynamique (X, f) est surjonctif si tout endomorphisme
injectif de (X, f) est surjectif.
On a trivialement

((X, f) vérifie Myhill) = ((X, f) est surjonctif).

Théoreme B ([CC25])

Tout espace de Smale non-errant est surjonctif et vérifie Moore.
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Quelques contre-exemples

Exemple 14

Si X est un espace discret réduit a deux points et f est |'application identique de
X, alors (X, f) est un espace de Smale non-errant mais pas irréductible.
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Quelques contre-exemples

Exemple 14

Si X est un espace discret réduit a deux points et f est |'application identique de
X, alors (X, f) est un espace de Smale non-errant mais pas irréductible. On peut
vérifier directement que (X, f) est surjonctif et que (X, f) vérifie Moore mais pas
Myhill.
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Exemple 14

Si X est un espace discret réduit a deux points et f est |'application identique de
X, alors (X, f) est un espace de Smale non-errant mais pas irréductible. On peut
vérifier directement que (X, f) est surjonctif et que (X, f) vérifie Moore mais pas
Myhill.

Exemple 15
Considérons le sous-décalage de type fini sur I'alphabet A := {0, 1,2} défini par

X = {X S AZ 1Vie Za (XI,XH-I) ¢ {(270)a (27 1)}}
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Exemple 14

Si X est un espace discret réduit a deux points et f est |'application identique de
X, alors (X, f) est un espace de Smale non-errant mais pas irréductible. On peut
vérifier directement que (X, f) est surjonctif et que (X, f) vérifie Moore mais pas
Myhill.

Exemple 15
Considérons le sous-décalage de type fini sur I'alphabet A := {0, 1,2} défini par

X = {X S AZ 1Vie Za (XI,XH-I) ¢ {(270)a (27 1)}}

L’endomorphisme 7 de X qui remplace (0,2) par (0,0) est injectif mais pas
surjectif.
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Quelques contre-exemples

Exemple 14

Si X est un espace discret réduit a deux points et f est |'application identique de
X, alors (X, f) est un espace de Smale non-errant mais pas irréductible. On peut
vérifier directement que (X, f) est surjonctif et que (X, f) vérifie Moore mais pas
Myhill.

Exemple 15
Considérons le sous-décalage de type fini sur I'alphabet A := {0, 1,2} défini par
X ={xe Al :ViecZ, (x,xi11) ¢ {(2,0),(2,1)}}.

L’endomorphisme 7 de X qui remplace (0,2) par (0,0) est injectif mais pas
surjectif. L'endomorphisme 7/ de X qui remplace (0,2) par (2,2) est surjectif mais
pas pré-injectif.
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Quelques contre-exemples

Exemple 14

Si X est un espace discret réduit a deux points et f est |'application identique de
X, alors (X, f) est un espace de Smale non-errant mais pas irréductible. On peut
vérifier directement que (X, f) est surjonctif et que (X, f) vérifie Moore mais pas
Myhill.

Exemple 15
Considérons le sous-décalage de type fini sur I'alphabet A := {0, 1,2} défini par

X = {X S AZ 1Vie Za (XI,XH-I) ¢ {(270)a (27 1)}}

L’endomorphisme 7 de X qui remplace (0,2) par (0,0) est injectif mais pas
surjectif. L'endomorphisme 7/ de X qui remplace (0,2) par (2,2) est surjectif mais
pas pré-injectif. Donc (X, f) est un systéme dynamique qui n'est pas surjonctif (et
donc ne vérifie pas Myhill) et qui ne vérifie pas Moore. C'est un espace de Smale
mais il contient des points errants.
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Quelques contre-exemples (suite)

Exemple 16

Fiorenzi [Fio00] a démontré que le sous-décalage pair vérifie Myhill mais pas
Moore.
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Quelques contre-exemples (suite)

Exemple 16

Fiorenzi [Fio00] a démontré que le sous-décalage pair vérifie Myhill mais pas
Moore. Rappelons que ce n’est pas un espace de Smale puisque ce sous-décalage
n'est pas de type fini.
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Esquisse de démonstration du théoreme A

Soit (X, f) un espace de Smale irréductible.
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Esquisse de démonstration du théoreme A

Soit (X, f) un espace de Smale irréductible.

D’'apres le théoreme de décomposition spectrale de Smale-Bowen-Ruelle, il existe
un entier s > 1 et une famille (X;);cz/sz de sous-ensembles fermés disjoints de X
telle que

X = Uiezsz.Xi,

f(Xi) = Xiz1 et telle que le systéme dynamique (X;, f*) est un espace de Smale
mélangeant pour tout i € Z/sZ.
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En utilisant des partitions de Markov, on construit, pour tout i € Z/sZ, un
sous-décalage mélangeant de type fini (Y}, g;) dont (X;, f*) est un facteur. Cela
veut dire qu'il existe une application continue surjective 7;: Y; — X; telle que

mi(gi(y)) = f*(mi(y)) pour tout y € Y.
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un entier s > 1 et une famille (X;);cz/sz de sous-ensembles fermés disjoints de X
telle que

X = Ujez/sz.Xi,

f(Xi) = Xiz1 et telle que le systéme dynamique (X;, f*) est un espace de Smale
mélangeant pour tout i € Z/sZ.

En utilisant des partitions de Markov, on construit, pour tout i € Z/sZ, un
sous-décalage mélangeant de type fini (Y}, g;) dont (X;, f*) est un facteur. Cela
veut dire qu'il existe une application continue surjective 7;: Y; — X; telle que
7i(&i(y)) = f*(mi(y)) pour tout y € Yi.

Un théoréme du jardin d'Eden dii a Li [Li19] et Doucha [Dou23] montre alors que
(X, °) vérifie Moore-Myhill. On en déduit alors que (X, f*) et donc (X, f)
vérifient Moore-Myhill.
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