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Abstract

In this paper, we consider a ferromagnetic material of ellipsoidal shape. The associated magnetic
moment then has two asymptotically stable opposite equilibria, of the form ±m. In order to use
these materials for memory storage purposes, it is necessary to know how to control the magnetic
moment. We use as a control variable a spatially uniform external magnetic field and consider the
question of flipping the magnetic moment, i.e., changing it from the +m configuration to the −m
one, in minimal time. Of course, it is necessary to impose restrictions on the external magnetic
field used. We therefore include a constraint on the L∞ norm of the controls, assumed to be less
than a threshold value U . We show that, generically with respect to the dimensions of the ellipsoid,
there is a minimal value of U for this problem to have a solution. We then characterize it precisely.
Finally, we investigate some particular configurations associated to geometries enjoying symmetries
properties and show that in this case the magnetic moment can be controlled in minimal time
without imposing a threshold condition on U .
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1 Introduction

1.1 The Landau-Lifshitz equation for ellipsoidal ferromagnetic samples

Ferromagnetic materials have come into common use in the last few decades, especially since they are
found in devices used to store digital information such as magnetic tapes or hard disks, but also in
magnetic chips called Magnetic Random Access Memory (MRAM). These chips have many advantages
over their silicon counterparts, in particular that of requiring energy only to change the value bits and
not to maintain the storage itself. This is probably one of the most challenging applications since it
opens the door towards new spintronic applications and storage technologies while allowing a very fast
access to information (see, e.g., [15]).

The magnetic moment of a ferromagnetic material represented by a domain Ω ⊂ R3 is usually
modelled as a time-varying vector field

m : R× Ω → S2,

where S2 is the unit sphere of R3, the evolution of which is driven by the so-called Landau-Lifshitz
equation (see [13])

∂m

∂t
= −m ∧ h(m)− αm ∧ (m ∧ h(m)), (1)

where the effective field h(m) is defined by

h(m) = 2A∆m+ hd(m) + hext

with α > 0, a constant (in time and space) damping coefficient which is characterized by the material.
We refer for instance to [12, 6] for additional explanations. The constant A > 0 is the exchange
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constant, and can be assumed to be equal to A = 1/2 without loss of generality, with a normalization
argument. The demagnetizing field hd(m) is the solution of the equations{

div(hd(m) +m) = 0

curl(hd(m)) = 0
in D′(R3)

where m is extended to R3 by 0 outside Ω and D′(R3) denotes the space of distributions on R3. The
field hext is an external one, for instance it can be an external magnetic field.

Note that it is possible to complete and specify this physical model by adding other relevant terms,
for example by taking into account the anisotropic behavior of the crystal that composes the ferromag-
netic material.

Finally, it is standard to assume homogeneous Neumann boundary conditions on the magnetization
on the boundary of Ω.

In this article, we will consider a ferromagnetic sample of ellipsoidal shape, and the magnetization
m and external field hext both spatially uniform. Indeed, ellipsoidal domains have been much studied
in the literature dedicated to ferromagnetism [14, 8, 19]: on the one hand, they cover a large variety
of geometrical shapes, and on the other hand, they are the only known bodies that can be uniformly
magnetized in the presence of a spatially uniform inducing field. From the mathematical point of view,
it is nice to consider such samples because the demagnetizing field hd appearing in the Landau-Lifschitz
equation can be determined in an explicit way.

Let us be more precise and clarify the model obtained in this case. In all the following of this article,
we will denote Ω the ellipsoid of R3 of semiaxes a1 > 0, a2 > 0 and a3 > 0, and a basis (O; e1, e2, e3)
chosen so that the Cartesian equation of Ω reads

x2

a21
+
y2

a22
+
z2

a23
= 1. (2)

An illustration of the ellipsoid Ω is shown in Figure 1. According to [14, 8], for uniform (in space)
magnetizations m on Ω, the demagnetizing field hd(m) can be explicitly computed and reads

hd(m) = −Dm, with D =

γ1 0 0
0 γ2 0
0 0 γ3

 ,

where γi (i = 1, 2, 3) denotes a positive constant depending only on the semiaxes a, b and c (we provide
the precise dependence in Appendix A).

One can easily infer from this result that, provided that the external field hext and the initial
magnetization m0 are constant in space, so is the magnetic moment m solving the Landau-Lifshitz
equation (1) completed with homogeneous Neumann boundary conditions.

As a consequence, the Landau-Lifschitz equation with a time-dependent external magnetic field hext
reads as the ordinary differential system{

ṁ = α (h0(m)− (h0(m) ·m)m)−m ∧ h0(m) in (0, T )

m(0) = m0
(3)

where the dotted notation ṁ stands for the time derivative of m, h0(m) = −Dm + hext, T > 0,
m(t) ∈ S2 ⊂ R3, D = diag([γ1, γ2, γ3]) denotes a diagonal matrix with positive coefficients. Up to a
change of basis, we will also assume without loss of generality that

0 ≤ γ1 ≤ γ2 ≤ γ3 ≤ 1. (4)

In what follows, we will assume that the ferromagnetic particle is subjected to a spatially uniform
external magnetic field hext, and we are interested in two asymptotically stable stationary states of the
resulting system, denoted m. We seek to answer the following question:
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Given a maximum value U of the norm of the field hext at all times, can we determine
whether there exists such a field flipping the magnetic spin from m to −m in minimal time?

x y

z

2a1
2a2

2a3

Figure 1: The ellipsoid shaped ferromagnetic sample

1.2 State of the art and structure of the article

The development of the use of ferromagnetic materials has led to the emergence of new storage pos-
sibilities, and consequently to a renewed interest of the scientific community around the control of
EDO/EDP on this topic.

The use of an external magnetic field to control a ferromagnetic system is a very present issue in
the literature of the field (see for instance [7, 18, 20, 21]).

Many works have focused on both the derivation of relevant models, i.e. sufficiently close to the
physics, but also simple enough to be exploited mathematically, and on the related optimization issues.
Many studies are devoted to these modeling questions, to the obtaining of exploitable optimality con-
ditions leading to numerical simulations. Thus, in the same spirit as the present study, the authors of
[5] seek to flip the magnetic spin using electric current injections. Let us mention in the same vein the
works [10, 11] also addressing similar issues: minimization of the distance to a target state with a fixed
time horizon, addition of stochastic term in the model, search for a feedback and numerical analysis of
the considered problems.

Recent progress has been made in the understanding of the control (exact and approximate) of
ellipsoidal samples/networks : [9, 4, 1]. Our study has been particularly motivated by [3], in which
it is notably proved that, when the size of an open bounded by Ω tends to 0, then we find a uniform
magnification in the domain, which lends itself to the study of ellipsoids.

Structure of the article. In this paper, we are interested in a single ferromagnetic particle of
ellipsoidal shape in R3. We seek to perform a magnetic moment reversal in minimal time, using an
external magnetic field as a control of the resulting physical system.

We model this issue in section 2.1, imposing a maximum L∞ norm on the control translated using
the parameter U > 0, reflecting the difficulty and cost of using very high magnetic fields. In the
absence of additional symmetries on the geometry of the system, we show the existence of a minimal
threshold on U for the minimum time problem to have a solution. We refine this result when additional
symmetries are assumed on the material geometry. The main results of this paper are gathered in the
section 2.2. The section 3 contains the foundation of the proofs of the main results: indeed, we state
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necessary and sufficient conditions guaranteeing the well-posedness of the time-optimal problem and
write the necessary conditions of optimality to the first order using the Pontryagin maximum principle.

The proofs of the main results are contained in the sections 4, 5 and 6. Finally, some numerical
simulations are listed in the section 7 to illustrate the qualitative behavior of the solutions obtained
in theoretical theorems. The appendices contain additional information and/or secondary calculations.
Appendix A contains the calculation of the demagnetizing field in the case of a ferromagnetic ellipsoid
sample. Appendix B contains the proof that −e1 is indeed the only asymptotically stable state for
equation (3). Finally, Appendix C contains the calculations of the explicit constants in the case γ1 < γ2.

Notations. In the whole article, | · | denotes the standard euclidean norm on R3 (or Rd), and its inner
product in Rd is denoted with a dot.

We are essentially interested in a control problem where the control function is the external field:
we abide by the usual convention, and denote

hext = u.

2 Existence of a minimal switching time

Let us recall that, as mentioned in the introduction, we will consider a ferromagnetic sample whose
shape Ω is the ellipsoid with Cartesian equation (2). The dynamics of the magnetic moment m(·),
equal to m0 at the initial time, is hence driven by the simplified Landau-Lifshitz equation (3).

2.1 Towards an optimal control problem

The main issue we want to tackle reads

Given a steady-state m of (3) in S2, can we achieve a reversal by solving an optimal control
problem, i.e. steering the system from m(0) = m to m(T ) = −m while minimizing T?

In what follows, we will consider particular stationary states: m = ±e1. It is proved in appendix B
that these equilibria are asymptotically stable when γ1 < γ2. Therefore, they can be used as magnetic
spin orientation for memory storage purposes. We will denote by u(·) the external (spatially uniform)
magnetic field imposed on the system. This is the control variable in this problem. The question is
then to ask if it is possible to steer the solution mu of the system (3) associated to the control u(·) and
to the initial data mu(0) = e1 until mu(T ) = −e1, in minimal time.

Of course, it is necessary to add physical constraints to this problem: if one imposes no restrictions
on the choice of admissible controls, it is likely that the minimal time problem will have a solution,
reached by unrealistic controls. For this reason, we will assume in what follows the constraint

|u(t)| ≤ U a.e. in (0, T ), (CT,U )

in order to limit the choice of controls to realistic possibilities.
All in all, the problem we aim at investigating reads as follows.

Minimal time problem: let U > 0 and assume that m0 = e1. The problem reads

TU := inf
(T,u)∈OU

T, (P0)

where

OU = {(T, u) | T ∈ R+, u ∈ L∞(0, T ) satisfies (CT,U ) and mu(T ) = −e1},

with mu, the solution to (3) associated to the control function u(·) and the initial datum e1.
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We will investigate the following issues:

• Does Problem (P0) have an optimal solution for any value of U > 0 ?

• How to characterize all the solutions to this problem and understand their geometric dependence
to the parameters γi, i = 1, 2, 3?

2.2 Main results

First, the minimization problem is indeed well-posed, meaning that the existence of an optimal solution
is equivalent to the existence of a minimal trajectory.

Theorem 1. Let U > 0. The following properties are equivalent:

(i) There exists an optimal pair (TU , u) ∈ OU for Problem (P0).

(ii) TU is finite.

(iii) OU is nonempty.

The behavior of the control system differs greatly depending on the values of the parameters γi and
more specifically on the values of γ1 and γ2.

Theorem 2. Assume γ1 < γ2. Then there exists Ucrit > 0 such that

• for all U ∈ (0, Ucrit], (P0) has no solution.

• for all U > Ucrit, (P0) has a solution.

Remark 3. It is notable that the proof of this theorem provides an explicit lower-bound estimate of
Ucrit. The precise bound is derived in Remark 18

We are now interested in the case where γ1 = γ2, which is not covered by the above result. It is
interesting to note that in this case, the behavior of the optimized physical system is very different from
the one described in the Theorem 2. Indeed, this situation of symmetry leads to the fact that there is
no longer a threshold from which the system is controllable.

To complete this analysis, we also investigate in the following result the existence of optimal planar
trajectories. In view of the system symmetry, it is natural to conjecture that the optimal trajectory
are planar, since all the points in span(e1, e2)∩S2 are stable, and this set is even asymptotically stable.
Somewhat surprisingly, We show here that this is actually not the case.

Theorem 4. If γ1 = γ2 ≤ γ3, then the optimal control problem (P0) has a solution whatever the value
of U > 0, meaning that Ucrit = 0, with the notations of Theorem 2. Furthermore, if γ1 < γ3, the
optimal trajectory in S2 is not contained in the plane span(e1, e2).

It is interesting to notice that Theorem 2 can be refined in the particular case where γ1 < γ2 = γ3.
To this aim, we will deeply exploit the necessary first order optimality conditions provided by the so-
called Pontryagin Maximum Principle (PMP). We refer to Section 3.3 for a precise statement of such
conditions.

Theorem 5. If γ1 ≤ γ2 = γ3, then Ucrit =
α

2
√
1+α2

(γ2 − γ1). Furthermore, for all U > Ucrit,

TU =
π

√
1 + α2

√
U2 − U2

crit

.
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Remark 6. In particular, we infer from the result above the following asymptotics:

TU ∼ π√
2Ucrit(1 + α2)

1√
U − Ucrit

as U ↘ Ucrit,

and
TU ∼ π

U
√
1 + α2

as U → +∞.

Remark 7 (Case of where the shape of the sample is a sphere). In the case where Ω is a sphere, then
one has γ1 = γ2 = γ3. Then, both conclusions of Theorem 4 and 5 apply, meaning that Ucrit = 0 and
the optimal time is given by TU = π/(U

√
1 + α2). Furthermore, it may be shown that, in that case,

there exists optimal planar trajectories in each of the hyperplanes span(ei, ej) with i ̸= j. We refer for
instance to [3, Proof of Prop. 2], whose main argument can be reproduced in our case.

We end this section by a result on the asymptotic behavior of optimal magnetization trajectories
as U diverges to +∞. We prove that optimal trajectories tend to be supported on a geodesic on the
sphere whenever U is large.

Theorem 8. Let γ1 ≤ γ2 ≤ γ3 and U > Ucrit and m be an optimal trajectory. Let p be its adjoint state.
Then, if U is large enough, m stays close to the plane V = span(e1, p(TU )) in the following sense: there
exists U0 > 0 and C > 0 such that for every U > U0 and t ∈ [0, TU ],

∥m(t)− PVm(t)∥ ≤ C

U
,

where PV denotes the orthogonal projection onto V .

3 Minimization and optimality

3.1 Proof of Theorem 1: existence of an optimal trajectory

Let us assume that OU is nonempty. This allows us to consider a minimizing sequence (Tn, un)n∈N ∈ ON
U ,

and mn ∈ C ([0, Tn] the solution to (3) with field un. By definition, Tn → TU as n → ∞. In what
follows, we will denote similarly a sequence and any subsequence with a slight abuse of notation, for
the sake of simplicity.

Let us introduce the functions ũn, m̃un defined on [0, 1] by

ũn(s) = un(Tns) and m̃n(s) = mn(Tns).

Hence, System (3) rewrites{
˙̃mn = Tn

(
α
(
h̃0(m̃n)− (h̃0(m̃n) · m̃n)m̃n

)
− m̃n ∧ h̃0(m̃n)

)
in (0, 1)

m̃n(0) = e1
(5)

where h̃0(m̃n) = −Dm̃n + ũn.
Similarly, since the sequence (ũn)n∈N is bounded in L∞(0, 1), it converges weakly-star in L∞(0, 1)

up to a subsequence to some element u∗ such that |u∗(·)| ≤ U a.e. in [0, 1] according to the Banach-
Alaoglu-Bourbaki theorem. Since both (m̃n)n∈N and (ũn)n∈N are bounded in L∞([0, 1]), we infer that
so is ˙̃mn according to (3). Therefore, the sequence (m̃n)n∈N is bounded in W 1,∞(0, 1) and hence
converges (up to a subsequence) towards an element m̃∗ ∈ W 1,∞(0, 1) in C0([0, 1]) according to the
Ascoli theorem. In particular, one has necessarily |m̃∗(·)| = 1. Now, let us rewrite (5) as the fixed-point
equation

∀s ∈ [0, 1], m̃n(s) = e1 + Tn

∫ s

0

(
α
(
h̃0(m̃n)− (h̃0(m̃n) · m̃n)m̃n

)
− m̃n ∧ h̃0(m̃n)

)
dσ
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Observe that the right-hand side is linear with respect to h̃0(mn) and that, according to the properties
above, (h̃0(m̃n))n∈N converges weakly-star to h̃0(m̃∗) in L∞(0, 1), where h̃0(m̃∗) = −Dm̃∗+ ũ∗. Letting
n tend to +∞ in the equation above, we obtain:

∀s ∈ [0, 1], m̃∗(s) = e1 + TU
∫ s

0

(
α
(
h̃0(m̃

∗)− (h̃0(m̃
∗) · m̃∗)m̃∗

)
− m̃∗ ∧ h̃0(m̃∗)

)
dσ.

Moreover, since m̃n(1) = −e1 by construction, the convergence in C0([0, 1]) leads to m̃∗(1) = −e1.
Taking the previous formula with s = 1, we get

−2e1 = TU
∫ 1

0

(
α
(
h̃0(m̃

∗)− (h̃0(m̃
∗) · m̃∗)m̃∗

)
− m̃∗ ∧ h̃0(m̃∗)

)
dσ.

This proves that TU > 0. Now, let us introduce u∗ as u∗(t) = ũ∗(t/TU ). By undoing the change of
variable above, we get that m̃∗(t/TU ) = mu∗(t) for a.e. t ∈ [0, TU ]. Furthermore, mu∗(0) = e1 and
mu∗(TU ) = −e1 since m̃n(0) = e1 and m̃n(1) = −e1. The converse sense is straightforward and the
expected conclusion follows.

Finally, observe that the same reasoning can be reproduced whenever TU is finite.

3.2 Sufficient and necessary condition for the existence of an admissible trajectory

Let (m,u) be a solution to (3) on [0, T ], and for t ∈ [0, T ], consider the mobile frame B(t) =
(m(t), ė(t),m(t) ∧ ė(t)) where ė = ṁ/|ṁ|1. According to [3], by observing that

m ⊥ ṁ, ṁ ⊥ m ∧ ṁ and m ⊥ m ∧ (m ∧Dm),

one shows easily, by decomposing u(t) into B(t) and writing the equation for u−(u·m)m, the projection
of u on m⊥, that there exists λ ∈ L∞(0, T ) such that

u =
1

1 + α2
(αṁ+m ∧ ṁ) +Dm− (Dm ·m)m+ λm. (6)

In fact, λ = u · m. Reciprocally, given any function m ∈ W 1,∞([0, T ],S2), and any function λ ∈
L∞([0, T ],R), if we define u by (6), then (m,u) is solution to (3). These considerations can be seen as
a consequence of a flatness property of the main system.

Again assuming that (m,u) is admissible trajectory, i.e a solution to (3), We infer from (6) that
u(t) expands as

u = λm+

(
α

1 + α2
|ṁ|+ ė ·Dm

)
ė+

(
Dm · (m ∧ ė) + 1

1 + α2
|ṁ|
)
m ∧ ė. (7)

As, a consequence, using that Dm · (m ∧ ė) = ė · (Dm ∧m) due the triple product property, we get

|u|2 = λ2 +

(
α

1 + α2
|ṁ|+ ė ·Dm

)2

+

(
Dm · (m ∧ ė) + |ṁ|

1 + α2

)2

= λ2 +

(
ė ·Dm+

α|ṁ|
1 + α2

)2

+

(
ė · (Dmu ∧m) +

|ṁ|
1 + α2

)2

.

Clearly, this computation and the previous remarks show that, without loss of generality, we can
furthermore assume that an optimal trajectory satisfies λ = 0, or equivalently, u ·m = 0: we will do
this in the following.

1Here, ė is merely a notation, and not the time derivative of a previously defined vector e.
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Let us introduce, for a given T > 0,

VT = {m ∈ H1([0, T ];S2) | m(0) = e1 and m(T ) = −e1}.

To investigate the existence of an admissible trajectory, it is then convenient to introduce

Λ(T ) := inf
λ∈L∞([0,T ])

inf
m∈VT

sup
t∈[0,T ]

(
λ2 +

(
ė · (Dm ∧m) +

|ṁ|
1 + α2

)2

+

(
ė ·Dm+

α|ṁ|
1 + α2

)2
)
,

= inf
m∈VT

sup
t∈[0,T ]

((
ė · (Dm ∧m) +

|ṁ|
1 + α2

)2

+

(
ė ·Dm+

α|ṁ|
1 + α2

)2
)
. (8)

We summarize the above discussion in the form of a lemma.

Lemma 9. The existence of an admissible trajectory for Problem (P0) comes to the existence of
m ∈ VT such that the function u given by (7) with λ = 0 satisfies ∥u∥L∞([0,T ];R3) ≤ U , which is also
equivalent to Λ(T ) ≤ U2. Also, u satisfies u ·m = 0.

3.3 Necessary optimality conditions for Problem (P0)

This problem can be solved by using the Pontryagin maximum principle. The main results of this
section are gathered in Proposition 11, at the end of this section.

The Hamiltonian associated to Problem (P0) is

H : S2 × R3 × {−1, 0} × R3 → R
(m, p, p0, u) 7→ p · (−αm ∧ (m ∧ h0(m))−m ∧ h0(m)) .

It can be noted that the dependence of H on the control function u is affine and one has

H(m, p, p0, u) = p · (−αm ∧ (m ∧ u)−m ∧ u)− p · (−αm ∧ (m ∧Dm)−m ∧Dm)

As a first remark, the magnetization stays in S2 = ∂B, where B is the closed unit ball of R3.
Therefore, our problem is obviously equivalent to the problem with restricted conditions

TU = inf
(T,u)∈OU

|m|2−1=0

T.

Thus, we use the version of the Pontryagin maximum principle with restricted phase coordinates, as
stated in [17, Theorem 22]. This theorem is stated for a minimization of an integral with fixed T , but it
can be easily adapted to the case of a minimal time with classical changes (see for instance the passage
from Theorem 1 to Theorem 2 in the same reference). With such a statement, we point out that, for
all m ∈ R3

∇(|m|2 − 1) = 2m,

and that
2m · (−αm ∧ (m ∧ h0(m))−m ∧ h0(m)) = 0.

Therefore, in our case, this statement gives the exact same necessary conditions, with an additional
orthogonality condition for the adjoint state, stated hereafter.

The first order optimality conditions read as follows: let us denote by (T, u), an optimal pair for
this problem; there exists an absolutely continuous mapping p : [0, T ] → R3 called adjoint state and a
real number p0 ∈ {0,−1} such that the pair (p, p0) is non-trivial and for almost every t ∈ [0, T ], the
following conditions hold.

9



• Adjoint equations. Setting

F1(m, p) := α
(
p ∧ (m ∧Dm) +Dm ∧ (m ∧ p)−D(m ∧ (m ∧ p))

)
−Dm ∧ p−D(p ∧m),

F2(m, p, u) := −α(p ∧ (m ∧ u) + u ∧ (m ∧ p)) + u ∧ p,

one gets

ṗ = −∂H
∂m

= F1(m, p) + F2(m, p, u). (9)

Remark that, since |m| = 1, one equivalently has

F1(m, p) = α(Dp− (Dm ·m)p− 2(m · p)Dm− 2(Dm · p)m)−Dm ∧ p−D(p ∧m),

F2(m, p, u) = α(p ·m)u+ α(u ·m)p− 2α(p · u)m+ u ∧ p

• Maximality conditions. For a.e. t ∈ [0, T ], u(t) solves the optimization problem

max
|v|≤U

H(m(t), p(t), p0, v) (10)

and one has at the final time T

max
|vT |≤U

H(m(T ), p(T ), p0, vT ) = −p0. (11)

• A useful identity. Since the dynamics only depends on the magnetization m(·) and the control
u(·), the Hamiltonian functional is constant in time:

H(m(t), p(t), p0, u(t)) = −p0, t ∈ [0, T ], (12)

according to (11), by evaluating the expression for t = T .

• An orthogonality condition for the adjoint state. At the final time t = T , the adjoint state p(T )
is tangent to the boundary |m|2 − 1 = 0 at m(T ) = −e1. This condition is thus equivalent to

p(T ) · e1 = 0. (13)

• Orthogonality between u and m. As seen in Lemma 9, u ·m = 0 on [0, T ].

Remark 10. Since the initial and final state are fixed, there is no need to impose any transversality
condition on the adjoint state.

Let us analyze the conditions (10) and (11).

The adjoint state p cannot vanish on [0, T ]. Indeed, in the converse case, if there exists t0 ∈
[0, T ] such that p(t0) = 0, it follows from the Cauchy-Lipschitz theorem that p(·) = 0 and by using
Condition (11), one gets p0 = 0, a contradiction with the non-triviality of the pair (p, p0).

On condition (10). Observe that v 7→ H(m(t), p(t), p0, v) is affine with respect to v. According to
the Karush-Kuhn-Tucker theorem, there exists µ ≥ 0 such that ∇vH(m(t), p(t), p0, u(t)) − µu(t) = 0
and the slackness condition µ(|u(t)|2 − U2) = 0 is satisfied.

If the set I := {|u| < U} is of positive Lebesgue measure, then one has

α(p(t)− (p(t) ·m(t))m(t)) = p(t) ∧m(t) a.e. t ∈ I.

10



Taking the scalar product of this identity with p(t) leads to |p(t)|2 = (p(t) ·m(t))2 on I. Since p does
not vanish, it follows from the equality case in the Cauchy-Schwarz inequality that p(t) is proportional
to m(t). We will show that such a case cannot occur.

Let us introduce the function φ := p− (p ·m)m. One can compute that φ satisfies the differential
(linear) relation

φ̇ = αDφ − α(Dm · m)φ − Dm ∧ φ − D(φ ∧ m) + u ∧ φ + (m · (Dm ∧ φ))m − α(u · φ)m (14)

a.e. in [0, T ]. This follows from an easy but lengthy computation, and from the fact that the function
λ given by λ = p ·m satisfies

λ̇ = −2α(Dm ·m)λ− (Dm ∧ p) ·m− α(u · p) + 2α(Dm · p),

a.e. in [0, T ]. We leave the details to the reader.
Now, let us assume that the set I := {|u(·)| < U} is of positive Lebesgue measure. According to the

discussion above, there exists a bounded function λ such that p = λm on I, and therefore, φ vanishes
on I. Due to (14) being linear in φ, we obtain that φ(·) = 0 on [0, T ], which means that

p(T ) = (p(T ) ·m(T ))m(T ) = (p(T ) · e1)e1 = 0,

from the orthogonality condition (13). But recall that p cannot vanish on [0, T ]: we reached a contra-
diction.

We conclude that |u| = U a.e. on [0, T ]. It follows that

α(p− (p ·m)m) = p ∧m+ µu on [0, T ],

and using furthermore that

|α(p− (p ·m)m)− p ∧m|2 = α2(|p|2 − (p ·m)2) + |p ∧m|2

= (α2 + 1)(|p|2 − (p ·m)2),

one gets an expression of u in terms of p or φ:

u =
U

(α2 + 1)1/2
α(p− (p ·m)m)− p ∧m√

|p|2 − (p ·m)2
=

U

(α2 + 1)1/2
αφ− φ ∧m

|φ|
(15)

In particular, we get

m ∧ u =
U

(α2 + 1)1/2
αm ∧ φ− φ

|φ|
,

αm ∧ (m ∧ u) = U

(α2 + 1)1/2
−α2φ− αm ∧ φ

|φ|
.

Substituting those terms in (3) and (14), we get at last

ṁ = m ∧Dm+m ∧ (m ∧Dm) + U(α2 + 1)1/2
φ

|φ|
, (16)

φ̇ = αDφ− α(Dm ·m)φ−Dm ∧ φ−D(φ ∧m) + (m · (Dm ∧ φ))m− U(α2 + 1)1/2|φ|m. (17)

On condition (11). By setting p(T ) = (0, p2,T , p3,T ) (since p(T ) · e1 = 0) and vT = (v1,T , v2,T , v3,T ),
since m(T ) = −e1, this condition also rewrites

−p0 = max
|vT |≤U

p(T ) ·

 0
αv2,T − v3,T
αv3,T + v2,T

 = max
v22,T+v23,T=U2

(
v2,T
v3,T

)
·
(
αp2,T + p3,T
αp3,T − p2,T

)
.

The Cauchy-Schwarz inequality then implies that −p0 = U
√
1 + α2

√
p22,T + p23,T . It follows that p0 =

−1 (else, the pair (p0, p) would be trivial) and condition (11) finally rewrites:

U
√
1 + α2|φ(T )| = −p0 = 1.

11



Analysis of the optimality conditions. From the previous discussion, u(t) is given by (15) for a.e.
t ∈ [0, T ], leading to

|φ| (α (u− (u ·m)m)−m ∧ u) = A
(
α2φ− αφ ∧m− αm ∧ φ+m ∧ (φ ∧m)

)
= A(α2 + 1)φ

where A = U
(α2+1)1/2

, so that

H(m(t), p(t), p0, u(t)) = U(α2 + 1)1/2|φ| − p · (α (Dm− (Dm ·m)m)−m ∧Dm)

= U(α2 + 1)1/2|φ| −Dm · (α (p− (p ·m)m)− p ∧m)

= U(α2 + 1)1/2|φ| −Dm · (αφ− φ ∧m)

=
(α2 + 1)1/2|φ|

U

(
U2 −Dm · u

)
and we infer that

|φ(t)|
(
U2 −Dm(t) · u(t)

)
=

U

(α2 + 1)1/2
> 0 a.e. in [0, T ]. (18)

On condition (12) From the previous discussion, we have for any t ∈ [0, T ]

max
|v|≤U

H(m(t), p(t), p0, v) = −p0 = 1, (19)

which leads at t = 0 to
U
√
1 + α2|φ(0)| = −p0 = 1. (20)

More generally, with the above expression (15) of u(t) which is the argmax of H, we get

1 = U
√

1 + α2|φ| − φ ·
[
αDm−m ∧Dm

]
. (21)

For the sake of clarity, we sum-up all these informations in the following result.

Proposition 11 (Necessary first order optimality conditions). Let (T, u) denote an optimal pair for
Problem (P0). Then, the adjoint state p defined by (9) does not vanish on [0, T ] and one has

u =
U

(α2 + 1)1/2
αφ− φ ∧m

|φ|
, (22)

where φ is given by φ = p− (p ·m)m. In particular, one has |u(t)| = U a.e. on [0, T ].
Moreover, φ satisfies the differential relation (17) completed by the conditions (18) and

U
√

1 + α2|φ(0)| = U
√
1 + α2|φ(T )| = 1. (23)

Finally, m satisfies (16).

4 Proof of Theorem 2

4.1 Preliminary results

We first state preliminary results, in the form of a series of lemmas.
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Lemma 12. For all T <∞, the map

L∞(0, T ) →W 1,∞(0, T )

u 7→ m solution to (3) with m(0) = e1

is continuous and locally Lipschitz.

Proof. Let u1, u2 ∈ L∞(0, T ) and m1,m2 the corresponding solution to (3). Define δm := m1−m2 and
δu := u1 − u2. Simple, though tedious, calculations provide that δm satisfies

dδm

dt
= α

[
−D δm+ δu− ((−D δm+ δu) ·m1)m1

− ((−Dm2 + u2) · δm)m1 − ((−Dm2 + u2) ·m2)δm
]

−m1 ∧ (−Dδm+ δu)− δm ∧ (−Dm2 + u2).

in (0, T ). Since |m1| = |m2| = 1, we obtain∣∣∣∣dδmdt
∣∣∣∣ ≤ ((4α+ 2)∥D∥2 + (2α+ 1)|u2|) |δm|+ (2α+ 1)|δu|, in (0, T ), (24)

where ∥·∥2 denotes the operator norm associated to the euclidean norm |·|. Since δm(0) = 0, we have
for all t ∈ (0, T )

|δm(t)| ≤
∫ t

0

∣∣∣∣dδmdt
∣∣∣∣(s) ds ≤ (2α+ 1)T∥δu∥L∞ +

∫ t

0
((4α+ 2)∥D∥2 + (2α+ 1)∥u2∥L∞) |δm|(s) ds,

and thus by Gronwall’s lemma,

|δm(t)| ≤ (2α+ 1)T∥δu∥L∞ exp (((4α+ 2)∥D∥2 + (2α+ 1)∥u2∥L∞)t), t ∈ [0, T ].

Using this estimate, and plugging it aslo in (24), we get

∥δm∥W 1,∞ ≤ C(T, ∥u2∥L∞)∥δu∥L∞ ,

and the conclusion follows.

Lemma 13. If γ1 < γ2, there exists δ > 0 such that for all U > 0, if |m(0) + e1| < δ, then −e1 can be
reached in finite time with a control u such that |u| ≤ U .

Proof. Let us introduce m as the solution to (3) with the feedback control term

u(t) =
U√

1 + α2

α(−e1 + (e1 ·m(t))m(t)) + e1 ∧m(t)√
1− (m(t) · e1)2

,

so that the equation on m becomes autonomous, and is well defined as long as m(t) ̸= ±e1. Observing
that (

m,
e1 − (m · e1)m√
1− (m · e1)2

,
m ∧ e1√

1− (m · e1)2

)
is an orthonormal basis, one immediately gets that |u(t)| = U for a.e. t ∈ [0, T ].

Denote m = (m1,m2,m3) the coordinates of m. From (3), the ODEs satisfied by m2 and m3 are

ṁ2 = −α[(γ2 − γ1)m2 − ((γ2 − γ1)m
2
2 + (γ3 − γ1)m

3
3)m2] + (γ1 − γ3)m1m3 + v2,

ṁ3 = −α[(γ3 − γ1)m3 − ((γ2 − γ1)m
2
2 + (γ3 − γ1)m

3
3)m3]− (γ1 − γ2)m1m2 + v3.
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Therefore, by setting m̃ := (m2,m3), it follows that m̃ solves the controlled system

˙̃m = A−m̃+ ξ− + ṽ, (25)

where

A− =

[
−α(γ2 − γ1) (γ3 − γ1)
−(γ2 − γ1) −α(γ3 − γ1)

]
,

ξ− =

[
α((γ2 − γ1)m

2
2 + (γ3 − γ1)m

2
3)m2 − (γ3 − γ1)(1 +m1)m3

α((γ2 − γ1)m
2
2 + (γ3 − γ1)m

2
3)m3 + (γ2 − γ1)(1 +m1)m2

]
and ṽ = (v2, v3) where v = (v1, v2, v3) = α(u− (u ·m)m)−m ∧ u, which means here

v = U
√
1 + α2

(−e1 +m1(t)m(t))√
|m(t)|2 − (m1(t))2

= U
√
1 + α2

(−e1 +m1(t)m(t))

|m̃|
,

We infer that ṽ = U
√
1 + α2m1m̃/|m̃|. Observing that (1 − m1)(1 + m1) = |m̃|2 yields, as soon as

m1 ≤ 0,
|ξ−(t)| ≤ (1 + |α|) δγ+ |m̃(t)|3

where δγ+ := γ3 − γ1 > 0, and also that∣∣∣∣ṽ + U
√
1 + α2

m̃(t)

|m̃|

∣∣∣∣ ≤ U
√
1 + α2|m̃(t)|2.

With these estimates and by taking the inner product of (25) with m̃, we get

1

2

d

dt
|m̃(t)|2 ≤ −U

√
1 + α2|m̃(t)|+ (U

√
1 + α2 + ∥A−∥)|m̃(t)|2 + (1 + |α|) δγ+ |m̃(t)|4,

and
d

dt
|m̃(t)| ≤ −U

√
1 + α2 + (U

√
1 + α2 + ∥A−∥)|m̃(t)|+ (1 + |α|) δγ+ |m̃(t)|3.

Let us introduce δU ∈ (0, 1/2) small enough (depending on U > 0) so that

(U
√
1 + α2 + ∥A−∥)δU + (1 + |α|) δγ+ δ3U ≤ U

√
1 + α2

2
. (26)

Then, if |m(0) + e1| < δU , which gives |m̃(0)| < δU , one has

d

dt
|m̃(t)| ≤ −U

√
1 + α2

2
< 0,

as long as |m̃(t)| < δU . This yields that, for such time intervals, the mapping t 7→ |m̃(t)| is decreasing.
Therefore, this shows that if δU satisfies (26) andm(0) is such that |m(0)+e1| < δU , then |m̃(t)| < δU

for all t ≥ 0 and that m̃(t) reaches 0 in finite time. In other words, −e1 can be reached in finite time
with a control u such that |u| ≤ U if m is such that |m+ e1| < δU .

To conclude, it remains to drop the dependency of δ in U . Let us use that −e1 is asymptotically
stable according to Proposition 24. Therefore, there exists δ > 0 such that, starting from a point
m(0) chosen so that |m(0) + e1| < δ, we can first let the system evolve without control until we obtain
|m(TU ) + e1| < δU for some finite time TU . From this moment, we know we can reach −e1 in finite
time, whence the expected conclusion.

Recall for the sake of readability that the notation TU has been introduced in Section 2.1.
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Lemma 14. Let γ1 < γ2 and U > 0 such that TU <∞. Then there exists ε > 0 such that TU−ε <∞.

Proof. Since TU < ∞ and according to Theorem 1, there exists u∗ ∈ L∞(0, TU ) such that m∗(0) = e1
and m∗(TU ) = −e1. Now, let us consider m the solution to (3) associated to the control choice
u = U−ε

U u∗ for some ε ∈ (0, U) to be defined later. From Lemma 12, we obtain

∥m−m∗∥W 1,∞(0,TU ) ≤ C

∥∥∥∥U − ε

U
u∗ − u∗

∥∥∥∥
L∞(0,TU )

= Cε
∥u∗∥L∞(0,TU )

U
≤ Cε

for some C > 0.
Since m∗(TU ) = −e1 by definition, we can take ε > 0 small enough so that |m(TU ) + e1| < δ, where

δ > 0 is given by Lemma 13. From this lemma, we know we can reach −e1 in finite time, and since
|u| ≤ U − ε, this leads to TU−ε <∞.

Lemma 15. TU is non-increasing with respect to U > 0. In particular, if TU0 < ∞ for some U0 > 0,
then TU <∞ for all U > U0.

Proof. This property is an immediate consequence of the definition of TU and the fact that the sets OU

are increasing for the inclusion.

4.2 Emergence of a threshold

The following result is the most crucial for concluding. It quantifies the asymptotic stability of e1 for
the evolution of the magnetization m, with respect to u viewed as a perturbation. It is notable that its
proof not only highlights the emergence of a threshold but also provides an explicit expression.

Lemma 16. Let us assume that γ1 < γ2. There exists Ustab > 0 depending only on γ3 − γ1, γ2 − γ1
and α such that, for any U < Ustab, the following holds. Let (m,u) be a solution of (3) on [0,+∞),
such that u ∈ L∞([0,∞)) and ∥u∥L∞ ≤ U . Then for all t ≥ 0, m1(t) ≥ 0.

In other words, m remains in the hemisphere with pole e1, and in particular, m can not reach −e1.
One has the same statement if (m,u) are defined on a bounded interval [0, T ].

Proof. Let v = α(u− (u ·m)m)−m∧ u. Then, using that v reads as the sum of two orthogonal terms,
one has |v|2 ≤ (1 + α2)U2. Moreover, since |m|2 = 1, there holds

Dm ·m = γ1 + (γ2 − γ1)m
2
2 + (γ3 − γ1)m

2
3.

As in the proof of Lemma 13, m̃ solves the controlled system

˙̃m = Am̃+ ξ + ṽ. (27)

where

A =

[
−α(γ2 − γ1) −(γ3 − γ1)
γ2 − γ1 −α(γ3 − γ1)

]
, ξ =

[
α((γ2 − γ1)m

2
2 + (γ3 − γ1)m

2
3)m2 + (γ3 − γ1)(1−m1)m3

α((γ2 − γ1)m
2
2 + (γ3 − γ1)m

2
3)m3 − (γ2 − γ1)(1−m1)m2

]
.

(28)
Pay attention to the sign change between A and ξ used here and A− and ξ− introduced in the proof of
Lemma 13. Let ν ∈ (0, 1] to be fixed later and define

Tν = inf{t ≥ 0 | |m̃(t)| ≥ ν}.

Our goal is to derive suitable bounds on m̃, so that for a well chosen ν, Tν = +∞.
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Since m(0) = e1 and m is continuous, we know that Tν > 0. Note that one has necessarily
m1(·) > 0 on (0, Tν). Then, for all t ∈ [0, Tν), using that m is normalized, there holds like previously
0 ≤ 1−m1(t) ≤ 1−m1(t)

2 = |m̃(t)|2, and therefore

|ξ(t)| ≤ (1 + |α|) δγ+ |m̃(t)|3 ≤ (1 + |α|) δγ+ ν3,

where δγ+ := γ3 − γ1 ≥ γ2 − γ1 =: δγ− > 0. On the other hand, thanks to the Duhamel formula on
(27) using the fact that m̃(0) = 0, there holds

m̃(t) =

∫ t

0
exp ((t− s)A)(ξ(s) + ṽ(s)) ds

for all t ≥ 0. This, together with the previous estimates, drives to

|m̃(t)| ≤
∫ t

0
∥exp ((t− s)A)∥2

(
(1 + |α|)δγ+ν3 +

√
1 + α2U

)
ds

≤ (1 + |α|)(δγ+ν3 + U)

∫ t

0
∥exp ((t− s)A)∥2 ds

≤ (1 + |α|)(δγ+ν3 + U)

∫ t

0
∥exp (sA)∥2 ds, (29)

for all t ∈ [0, Tν), where ∥·∥2 still denotes the operator norm associated to the euclidean norm |·|.
We will now provide an estimate of the norm of the exponential matrix. Recall that the characteristic

polynomial of A is PA(X) = X2 − Tr(A)X + det(A) with

det(A) = (1 + α2)δγ− δγ+ > 0, Tr(A) = −α(δγ− + δγ+) < 0.

Its discriminant ∆ reads ∆ = Tr(A)2 − 4 det(A) = α2(δγ+ − δγ−)
2 − 4δγ−δγ+. To compute the

eigenvalues of A, we have to distinguish between several cases.

1st case: ∆ > 0. Then its eigenvalues are λ± := 1
2(Tr(A) ±

√
∆). Remark that both eigenvalues of

A are negative (according to the signs of the trace and the determinant above) and different from each
other, which means that A is diagonalizable. Therefore, we infer2 that

exp (sA) = esλ+
sA− sλ− I2
sλ+ − sλ−

+ esλ− sA− sλ+ I2
sλ− − sλ+

=
1√
∆

(
esλ+(A− λ− I2)− esλ−(A− λ+ I2)

)
=

1√
∆

(
(esλ+ − esλ−)A+ (esλ−λ+ − esλ+λ−) I2

)
=
esλ+

√
∆

(
(1− e−s

√
∆)A+ (e−s

√
∆λ+ − λ−) I2

)
= sesλ+

(
1− e−s

√
∆

s
√
∆

A− λ−
1− e−s

√
∆

s
√
∆

I2

)
+ esλ− I2 .

Thus, using the facts that λ− < λ+ < 0, ∥A∥2 ≥ |λ−| and also that the function f given by f(x) = 1−e−x

x
analytically extended to R is uniformly bounded by 1 on [0,∞), we get

∥exp (sA)∥2 ≤ esλ+ (s(∥A∥2 + |λ−|) + 1) ≤ esλ+ (2s∥A∥2 + 1) .

2Here, the Lagrange interpolation formula is used to compute the exponential of A: for every matrix M ∈ Md(C)
whose spectrum {λi}1≤i≤d consists of distinct eigenvalues, one has

exp(M) =
d∑

j=1

eλj
∏
i ̸=j

M − λi Id
λj − λi

.
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Hence, ∫ t

0
∥exp (sA)∥2 ds ≤ |λ+|−1(1− eλ+t) + 2∥A∥2|λ+|

−2(1− (|λ+|t+ 1)eλ+t)

≤ (1− eλ+t)
(
|λ+|−1 + 2∥A∥2|λ+|

−2
)

≤ 3(1− eλ+t)∥A∥2|λ+|
−2,

and according to (29), one has for all t ∈ [0, Tν)

|m̃(t)| ≤ 3∥A∥2|λ+|
−2(1− eλ+t)(1 + |α|)(δγ+ν3 + U)

To conclude, we will choose U adequately so that the function x 7→ 3∥A∥2|λ+|
−2(1 + |α|)(δγ+x3 + U)

admits a fixed point x0 in (0, 1]. This is possible thanks to the next lemma, whose proof is postponed
to the end of this section for the sake of clarity.

Lemma 17. Let a, b, c > 0. The function x 7→ a−1(bx3 + c) has a fixed point x0 in (0, 1] if, and only
if c ≤ ax1 − bx31 where x1 = min{1,

√
a
3b}.

Remark that if x1 is as in this lemma, one has ax1 − bx31 ≥ 2
3ax1 > 0. Hence, setting a =

|λ+|2/(3∥A∥2(1 + |α|)), b = δγ+ and c = U drives us to assume that

U ≤ |λ+|2

3∥A∥2(1 + |α|)
x1 − δγ+ x

3
1, with x1 := min

{
1,

|λ+|
3
√
∥A∥2(1 + |α|)δγ+

}
,

we can take ν = x0 provided by Lemma 17, and the previous estimate leads to

|m̃(t)| ≤ (1− eλ+t)ν,

for all t ∈ [0, Tν). A continuity argument then implies that Tν = ∞. In other words, for all t ≥ 0,
|m1(t)| =

√
1− |m̃(t)|2 ≥

√
1− (1− eλ+t)2ν2 > 0. Now, m1 is continuous, so that it keeps a constant

sign. As m1(0) = 1, m1(t) ≥ 0 for all t ≥ 0, which is the desired conclusion.

2nd case: ∆ < 0. In this case, the eigenvalues are

λ± :=
Tr(A)± i

√
−∆

2
.

One more time, the two eigenvalues are distinct, complex conjugate with negative real part. Yet, the
same decompositions as previously can still be applied and there holds

exp (sA) = esλ+
sA− sλ− I2
sλ+ − sλ−

+ esλ− sA− sλ+ I2
sλ− − sλ+

=
1

i
√
−∆

(
esλ+(A− λ− I2)− esλ−(A− λ+ I2)

)
=

1

i
√
−∆

(
(esλ+ − esλ−)A+ (esλ−λ+ − esλ+λ−) I2

)
=
e

s
2
Tr(A)

i
√
−∆

(
(e

is
√
−∆
2 − e−

is
√
−∆
2 )A+ (λ+e

− is
√
−∆
2 − λ−e

is
√
−∆
2 ) I2

)
=
e

s
2
Tr(A)

√
−∆

[
2 sin

(
s
√
−∆

2

)
A+

(√
−∆cos

(
s
√
−∆

2

)
− Tr(A) sin

(
s
√
−∆

2

))
I2

]
=
s

2
e

s
2
Tr(A)

[
2A− Tr(A) I2

]
sinc

(
s
√
−∆

2

)
+ e

s
2
Tr(A) cos

(
s
√
−∆

2

)
I2 .
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Thus, we get

∥exp (sA)∥2 ≤
s

2
e

s
2
Tr(A) (2∥A∥2 − Tr(A)) + e

s
2
Tr(A) ≤ e

s
2
Tr(A) (2s∥A∥2 + 1) ,

since Tr(A) = λ+ + λ− and |λ±| ≤ ∥A∥2. Hence, following the same way as in the first case, we get∫ t

0
∥exp (sA)∥2 ds ≤ (1− e

1
2
Tr(A)t)

(
2|Tr(A)|−1 + 8∥A∥2|Tr(A)|

−2
)

≤ 12(1− e
1
2
Tr(A)t)∥A∥2|Tr(A)|

−2,

and according to (29), one has for all t ∈ [0, Tν)

|m̃(t)| ≤ 12∥A∥2|Tr(A)|
−2(1− e

1
2
Tr(A)t)(1 + |α|)(δγ+ν3 + U)

Now, by mimicking the reasoning done in the first case, by assuming

U ≤ Tr(A)2

12∥A∥2(1 + |α|)
x1 − δγ+ x

3
1, with x1 := min

{
1,

Tr(A)

6
√

∥A∥2(1 + |α|)δγ+

}
,

and taking ν = x0 given by Lemma 17, the previous estimate leads to

|m̃(t)| ≤ (1− e
1
2
Tr(A)t)ν,

for all t ∈ [0, Tν). Arguing as in the first case, we infer that Tν = ∞ in this case as well, and then,
m1(t) > 0 for all t ≥ 0.

3rd case: ∆ = 0. In this case, both eigenvalues are equal, one has λ = Tr(A)/2 < 0. Note that, in
that case, A− 1

2 Tr(A) I2 is therefore a non-zero nilpotent matrix, and more precisely (A− 1
2 Tr(A) I2)

2 =
(sA− s

2 Tr(A) I2)
2 = 0. Thus, there holds

exp (sA) = exp
(s
2
Tr(A) I2

)
exp (sA− s

2
Tr(A) I2)

= e
s
2
Tr(A)(I2+sA− s

2
Tr(A) I2)

which yields

∥exp (sA)∥2 ≤ e
s
2
Tr(A)(1 + s(∥A∥2 −

1

2
Tr(A))) ≤ e

s
2
Tr(A)(1 + 2s∥A∥2).

The computations are then exactly the same ones as in the second case, and the conclusion follows in
the same fashion.

Proof of Lemma 17. We are looking for a root x0 ∈ (0, 1] of the polynomial function f given by f(X) =
bX3 − aX + c, whose derivative 3bX2 − a is negative for X <

√
a
3b =: x2 and positive for X > x2.

The minimum in [0, 1] is therefore reached at x1 and, since f(0) = c > 0, there is a root if and only if
f(x1) ≤ 0, which corresponds to the assumption in the statement.

Remark 18. From the proof of Lemma 16, we obtained the following expression for Ustab. Consider
the matrix A defined there in (28), denote ∆ = Tr(A)2 − 4 det(A) the discriminant of its characteristic
polynomial, λ± its eigenvalues chosen so that λ+ > λ− whenever ∆ > 0, and δγ+ := γ3 − γ1 > 0.

Let

x1(A) :=


min

{
1, |λ+|

3
√

∥A∥2(1+|α|)δγ+

}
if ∆ > 0

min

{
1, Tr(A)

6
√

∥A∥2(1+|α|)δγ+

}
else.

18



Then

Ustab = Γ(∆) :=


|λ+|2

3∥A∥2(1+|α|)x1(A)− δγ+ x1(A)
3 if ∆ > 0

Tr(A)2

12∥A∥2(1+|α|)x1(A)− δγ+ x1(A)
3 else.

Note also that, to complement this result, explicit computations of the quantities involved (like ∥A∥2)
are provided in Appendix C.

We now have all the elements to conclude the:

Proof of Theorem 2. Define
Ucrit := inf{U | TU <∞}.

From Lemma 16, we know that Ucrit > 0. Lemma 15 proves the second point. To investigate the case
where U = Ucrit, observe that, by definition, (P0) has no solution for all U ∈ (0, Ucrit). Moreover, if
(P0) had a solution for U = Ucrit, then Lemma 14 would provide a contradiction with respect to the
definition of Ucrit.

5 Cases with symmetry

In this section, we deal with the two cases when the material satisfies additional symmetry without
being a sphere (in which case the analysis becomes trivial). They correspond to the cases γ1 = γ2 < γ3
and γ1 < γ2 = γ3.

5.1 Proof of Theorem 4 (case γ1 = γ2)

From Theorem 1, we have to investigate the existence of an admissible trajectory for this problem,
in other words, the existence of a control u ∈ OU and a time T > 0 such that mu(T ) = −e1. This
property is known to be true as soon as U is large enough according to [3]. But it has to be proved for
smaller U .

Let us assume that γ1 = γ2. We will prove that, in that case, infT>0 Λ(T ) = 0, (with Λ(T ) defined
by Equation (8)) which will prove that Problem (P0) has a solution whatever the value of U > 0.
For ε > 0, let us consider a particular trajectory mε of the form mε = (cos(εt), sin(εt), 0). Then, by
defining

Fε :=

(
ėε · (Dmε ∧mε) +

|ṁε|
1 + α2

)2

+

(
ėε ·Dmε +

α|ṁε|
1 + α2

)2

with ėε = ṁε/|ṁε|, a straightforward computation yields

Fε =
ε2

1 + α2
≤ ε2.

We infer that infT>0 Λ(T ) ≤ Fε ≤ ε2 whence the conclusion, since ε is arbitrary.
Let us now prove the last point of this result, assuming that from now on γ1 < γ3. Assume that

m3(t) = 0 for all t ≥ 0. Then, Dm = γ1m. By contradiction, if such an m is an optimal trajectory,
Proposition 11 is satisfied, and (16) gives

ṁ = U(α2 + 1)1/2
φ

|φ|
.

By taking the third coordinate, we get φ3(t) = 0 for all t ≥ 0. Thus, we also get Dφ = γ1φ and (17)
gives

φ̇ = −γ1m ∧ φ−D(φ ∧m)− U(α2 + 1)1/2|φ|m.
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By taking again the third coordinate, we get

0 = −γ1(m ∧ φ) · e3 −D(φ ∧m) · e3 = (γ3 − γ1)(m ∧ φ) · e3 = (γ3 − γ1)(e3 ∧m) · φ.

Since γ3 > γ1, this proves that (e3 ∧m) · φ = 0. However, at t = 0, this means that

0 = (e3 ∧ e1)φ(0) = φ2(0).

Now φ1(0) = φ(0) ·m(0) = 0, and we obtained φ(0) = 0: this is a contradiction with (23).

5.2 Proof of Theorem 5 (case γ2 = γ3)

For this case, we first show that the (PMP) conditions are also sufficient conditions for optimal trajec-
tories :

Lemma 19. Let U > Ucrit. Then any trajectory m satisfying the (PMP) ( (9)-(12) with p0 = −1) is
an optimal trajectory.

Proof. Let m∗ be an optimal trajectory, and p∗ the associated adjoint state. By definition, they satisfy
the (PMP) conditions. Now, let (m, p) be a trajectory and its adjoint state satisfying the (PMP)
conditions. Let also φ = p − (p ·m)m and φ∗ = p∗ − (p∗ ·m∗)m∗. In particular, we know that φ(0)
satisfies (23) and φ(0) ⊥ m(0) = e1, and similarly for φ∗ with respect to m∗. Thus, there exists
θ ∈ [0, 2π] such that Rθφ(0) = φ∗(0) where Rθ is the rotation along e1 of angle θ:

Rθ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

On the other hand, since γ2 = γ3, we have DRθ = RθD for all θ, but also Rθf ∧ Rθg = Rθ(f ∧ g)
for any f, g ∈ R3. Last, Rθm∗(0) = Rθe1 = e1. Thus, (Rθm,Rθφ) satisfies the same system of
ODEs as (m∗, φ∗) (i.e. (3)-(9) with u(·) or u∗(·) satisfying (22)) with the same initial data. By the
Cauchy-Lipschtiz theorem and using the fact that both φ and φ∗ never vanish thanks to (18), we obtain
(Rθm,Rθφ) = (m∗, φ∗), i.e. (m,φ) = (R−θm∗, R−θφ∗), and thus the conclusion.

The following two results exploit in a precise way the (necessary and sufficient) optimality conditions.

Lemma 20. Let U > 0 and (m, p) satisfy the (PMP) conditions ( (9)-(12) with p0 = −1) and φ =
p− (p ·m)m. Then, for every t ≥ 0, φ(t) · (e1 ∧m(t)) = 0.

Proof. We know that φ satisfies (17) and m satisfies (16) with u given by (22). Moreover,

d

dt
(φ · (e1 ∧m)) = φ̇ · (e1 ∧m) + φ · (e1 ∧ ṁ).

Using the facts that u ⊥ m and m ⊥ (e1 ∧m), there holds

φ̇ · (e1 ∧m) = αDφ · (e1 ∧m)− α(Dm ·m)φ · (e1 ∧m)− (Dm ∧ φ) · (e1 ∧m)−D(φ ∧m) · (e1 ∧m)

+
U√

1 + α2
(φ ∧ (

φ

|φ|
∧m)) · (e1 ∧m),

φ · (e1 ∧ ṁ) = −αφ · (e1 ∧Dm)+α(Dm ·m)φ · (e1 ∧m)+φ · (e1 ∧ (m∧Dm))+U
√
1 + α2φ · (e1 ∧

φ

|φ|
).

First, we point out that φ ⊥ m so that φ ∧ (φ ∧m) = −|φ|2m, and thus (φ ∧ (φ ∧m)) · (e1 ∧m) = 0.
Similarly, U

√
1 + α2φ · (e1 ∧ φ

|φ|) = 0. Then, using the triple product formula, we get

φ · (e1 ∧Dm) = −Dm · (e1 ∧ φ)
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(Dm ∧ φ) · (e1 ∧m) = (φ ∧ (e1 ∧m)) ·Dm = −(φ · e1)(m ·Dm),

(m ∧Dm) · (e1 ∧ φ) = ((e1 ∧ φ) ∧m) ·Dm = (m · e1)(φ ·Dm).

Moreover, since γ2 = γ3, we know that, for any vector f ∈ R3 such that f · e1 = 0, Df = γ2f = γ3f .
With the fact that D is symmetric, this leads to

Dφ · (e1 ∧m) = φ ·D(e1 ∧m) = γ2φ · (e1 ∧m),

Dm · (e1 ∧ φ) = m ·D(e1 ∧ φ) = γ2m · (e1 ∧ φ) = −γ2φ · (e1 ∧m),

D(φ ∧m) · (e1 ∧m) = (φ ∧m) ·D(e1 ∧m) = γ2(φ ∧m) · (e1 ∧m).

Last, using again the double product, we have

φ · (e1 ∧ (m ∧Dm)) = (φ ·m)(e1 ·Dm)− (φ ·Dm)(e1 ·m) = −(φ ·Dm)(e1 ·m).

But one has then

(φ · e1)(m ·Dm)− (φ ·Dm)(e1 ·m) = e1 ·
[
(Dm ·m)φ− (Dm · φ)m

]
= −e1 · (Dm ∧ (m ∧ φ))

= −Dm · ((m ∧ φ) ∧ e1) = −m ·D((m ∧ φ) ∧ e1)
= −γ2m · ((m ∧ φ) ∧ e1) = γ2(φ ∧m) · (e1 ∧m).

This means

φ · (e1 ∧ (m ∧Dm))− (Dm ∧ φ) · (e1 ∧m)−D(φ ∧m) · (e1 ∧m) = 0.

Hence,
d

dt
(φ · (e1 ∧m)) = 0.

The conclusion comes by integration, noticing furthermore that m(0) = e1 and thus e1 ∧m(0) = 0.

Lemma 21. Let U > 0 and (m, p) satisfy the (PMP) conditions ( (9)-(12) with p0 = −1). Denote
m = (m1,m2,m3) the coordinates of m, and define t0 := inf{t ≥ 0 |m(t) = ±e1} > 0 (possibly +∞)
and θ ∈ [0, π] such that m1 = cos θ on [0, t0). Then m1 and θ satisfy on [0, t0)

ṁ1 = α(γ2 − γ1)(1−m2
1)m1 − U

√
1 + α2

√
1−m2

1,

θ̇ = −α(γ2 − γ1) sin θ cos θ + U
√

1 + α2. (30)

Last, t0 = ∞ if U ≤ Ucrit and t0 = TU if U > Ucrit

Proof. Let p its adjoint state and φ = p−(p ·m)m. Then φ ·(e1∧m) = 0 from Lemma 20, which means
that φ is orthogonal to both m and e1 ∧m for all times in [0, TU ]. Moreover, as soon as m(t) ̸= ±e1
(i.e. as soon as t ∈ (0, TU )), (m(t), e1∧m(t),m(t)∧ (e1∧m(t))) is an orthogonal basis of R3. Therefore,
φ(t) is colinear to m(t) ∧ (e1 ∧m(t)), i.e. there is λ ∈ C ((0, TU ),R) such that

φ = λm ∧ (e1 ∧m) = λ
[
e1 −m1m

]
.

Moreover, from (21), we know that φ does not vanish, thus neither does λ, which has a constant sign.
Then, we also have

e1 · φ(t) = λ(t)(1−m2
1) and |φ(t)| = |λ(t)|

√
1−m2

1,

which leads to
e1 ·

φ(t)

|φ(t)|
= sign(λ)

√
1−m2

1,
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with sign(λ) = ±1 constant in time. We also have

(Dm ·m) = γ1m
2
1 + γ2(m

2
2 +m2

3) = γ2 − (γ2 − γ1)m
2
1,

e1 · (m ∧Dm) = Dm · (e1 ∧m) = m ·D(e1 ∧m) = m · γ2(e1 ∧m) = 0.

Therefore, the evolution equation on m1 is

ṁ1 = α(γ2 − γ1)(1−m2
1)m1 + sign(λ)U

√
1 + α2

√
1−m2

1. (31)

On the other hand, we know that m̃ = (m2,m3) satisfies at t = 0:

˙̃m(0) = U
√
1 + α2

φ̃(0)

|φ(0)|
,

with φ̃(0) ̸= 0 since φ(0) · e1 = 0 and |φ(0)| = 1
U
√
1+α2

> 0. Since m̃(0) = (0, 0), this means that |m̃| is

not vanishing on (0, ε] for some ε > 0 small enough. Since |m|2 = 1, this necessarily means that m2
1 < 1

on (0, ε]. Now, we can introduce θ(t) the first angle of the spherical coordinate such that m1 = cos θ,
and we can assume that θ(0) = 0 and θ(t) > 0 on (0, ε]. The angle θ(t) is then well defined on [0, t0)
where t0 = min{t > 0 |m(t) = ±e1} and θ(t) ∈ [0, π]. Moreover, since m1 is C 1 (due to (31), for
example), θ is C 1 on (0, t0) as well. Then, on this interval, we can replace m1 in (31) by its expression
in terms of θ, which leads to

−θ̇ sin θ = α(γ2 − γ1) sin
2 θ cos θ + sign(λ)U

√
1 + α2 sin θ,

hence
θ̇ = −α(γ2 − γ1) sin θ cos θ − sign(λ)U

√
1 + α2.

From this, we also see that θ is C 1 at t = 0 with θ̇(0) = − sign(λ)U
√
1 + α2. As θ ≥ 0 on [0, t0], we

can easily see that sign(λ) = −1 (otherwise we would have θ̇(0) < 0). This gives the expected ODEs
on m1 and θ, but on [0, t0) only.

To conclude, we shall prove that t0 = ∞ if U ≤ Ucrit or t0 = TU if U > Ucrit, which is equivalent
to prove that m does not reach e1 again (up to reaching −e1 before), or equivalently that θ does not
come back to 0 before reaching π. This follows from the fact that θ satisfies an autonomous first-order
ODE of the form θ̇ = f(θ) with f(0) > 0.

We are now in position to prove Theorem 5.

Proof of Theorem 5. Let U > 0 and (m,φ) satisfying the (PMP) conditions ((9)-(12) with p0 = −1).
From Lemma 19 and Theorem 2, we have 2 cases:

• either U ≤ Ucrit, and then no trajectory reaches −e1 (and so in particular m).

• either U > Ucrit, and then m reaches −e1.

Therefore, we shall analyze only the case when U > Ucrit and m is able to reach −e1 and. From Lemma
21, we can define θ(t) ∈ [0, π] such that m1 = cos θ, and it satisfies (30). Since it is an autonomous ODE
of the form θ̇ = f(θ) with f(0) > 0, it is easy to prove that θ is able to reach π (which means m1 reaches
−1 or alsom reaches −e1) if and only if f > 0 on [0, π], where f(x) = −α(γ2−γ1) sinx cosx+U

√
1 + α2.

From this,

f(x) > 0 ∀x ∈ [0, π] ⇐⇒ 1

2
sin (2x) <

U
√
1 + α2

α(γ2 − γ1)
∀x ∈ [0, π]

⇐⇒ U >
α

2
√
1 + α2

(γ2 − γ1).
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This gives the desired expression of Ucrit.
Let us now compute the minimal time in that case. From the ODE (30) satisfied by θ for the

optimal trajectory, we know that

TU =

∫ π

0

dθ

−α(γ2 − γ1) sin θ cos θ + U
√
1 + α2

=

∫ π

0

dθ

−1
2α(γ2 − γ1) sin 2θ + U

√
1 + α2

=

∫ 2π

0

dx

−α(γ2 − γ1) sinx+ 2U
√
1 + α2

=
1

2
√
1 + α2

∫ π

−π

dx

−Ucrit sinx+ U
.

With the change of variable y = tan x
2 , so that dx = 2 dy

1+y2
, sinx = 2y

1+y2
, we get

TU =
1

2
√
1 + α2

∫ +∞

−∞

2 dy

−2Ucrity + U(1 + y2)

=
1√

1 + α2

∫ +∞

−∞

dy

U
(
y − Ucrit

U

)2
+

U2−U2
crit

U

=
1

U
√
1 + α2

∫ +∞

−∞

dy

y2 +
U2−U2

crit
U2

=
1

U
√
1 + α2

√
U2 − U2

crit
U2

∫ +∞

−∞

dz
U2−U2

crit
U2 z2 +

U2−U2
crit

U2

,

with the change of variable y =

√
U2−U2

crit
U2 z. Therefore,

TU =
1

U
√
1 + α2

√
U2

U2 − U2
crit

∫ +∞

−∞

dz

z2 + 1
=

π
√
1 + α2

√
U2 − U2

crit

.

6 Proof of Theorem 8: on almost planar trajectories

Let us first state a result based on tedious computations, whose detail is left to the reader.

Lemma 22. Let U > Ucrit, m be an optimal trajectory and p its adjoint state.
Then ζ := p ∧m = φ ∧m satisfies

ζ̇ = α
(
D(m ∧ ζ) ∧m− (m ∧ ζ) ∧Dm

)
+Dm ∧ ζ −Dζ ∧m

Similarly, denote Z := ζ/|ζ|. At every point where ζ does not vanish, one has

Ż = PZ⊥

[
α
(
D(m ∧ Z) ∧m− (m ∧ Z) ∧Dm

)
+Dm ∧ Z −DZ ∧m

]
, (32)

where PZ⊥ : x 7→ x− (Z · x)Z is the projection onto the orthogonal space to Z.

The proof of the Theorem 8 relies on the following result, establishing the existence of a planar
trajectory joining e1 to −e1, without any norm condition on the chosen control.
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Lemma 23 (Existence of planar trajectory). For any ε > 0, there exists a trajectory of the form
m(t) = (m1(t),m2(t), 0) defined on [0, Tε] for some Tε > 0, joining the state e1 to −e1 and such that

F :=

(
ė · (Dm ∧m) +

|ṁ|
1 + α2

)2

+

(
ė ·Dm+

α|ṁ|
1 + α2

)2

≤ 1

4
(γ2 − γ1)

2(1 + ε).

for all t ∈ [0, Tε]. Furthermore, Tε ≲ 1/ε.

Proof of Lemma 23. Define m1(t) = cos θ(t) and m2(t) = sin θ(t), our goal is to define a suitable
function θ, such that θ(0) = 0 and θ(Tε) = π.

Observe that ė, Dm,m are coplanar so that ė · (Dm ∧m) = 0. Also

|ṁ| = |θ̇|, ė ·Dm = (γ2 − γ1) sin(θ) cos(θ) =
γ2 − γ1

2
sin(2θ).

Hence

F =
1

(1 + α2)2
|θ̇|2 +

(
γ2 − γ1

2
sin(2θ) +

α|θ̇|
1 + α2

)2

=
1

1 + α2
|θ̇|2 + α(γ2 − γ1)

1 + α2
sin(2θ)|θ̇|+ (γ2 − γ1)

2

4
sin2(2θ).

This is a quadratic expression in |θ̇|. Let us solve F = 1
4(γ2−γ1)

2(1+ ε): this is a polynomial equation
of degree 2, whose discriminant reads

∆ =
α2(γ2 − γ1)

2

(1 + α2)2
sin2(2θ)− 4

(1 + α2)2
(γ2 − γ1)

2

4
(sin2(2θ)− 1− ε)

=
(γ2 − γ1)

2

(1 + α2)2
(
1 + ε+ (α2 − 1) sin2(2θ)

)
.

Observe that ∆ > 0 for all θ, so that we can choose

θ̇ =
γ2 − γ1

2

(
−α sin(2θ) +

√
1 + ε+ (α2 − 1) sin2(2θ)

)
=: fε(θ)

As
fε(θ) ≥

γ2 − γ1
2

(√
ε+ α2 sin2(2θ)− α sin(2θ)

)
≥ ε√

ε+ α2 + α
> 0,

we infer that this ODE on θ admits a unique solution θε, strictly increasing such that θ̇ε ≳ ε, and so,
there exists a unique Tε ≲ 1/ε such that θε(Tε) = π. This provides the desired trajectory.

Denote Uplan = γ2−γ1
2 . Lemma 23 shows in particular that Ucrit ≤ Uplan. We are now in position to

complete the:

Proof of Theorem 8. Let ζ and Z as in Lemma 22: Z satisfies (32). Observe moreover that the equations
on ζ and Z remain unchanged if one replaces D into D−λI3 for some λ ∈ R. We can therefore assume
that the spectral norm of D is ∥D∥ = γ3−γ1

2 by taking λ = γ3+γ1
2 . Then, since |Z| = |m| = 1 and

∥PZ⊥∥ = 1, we get ∣∣∣Ż∣∣∣ ≤ 2(1 + α)∥D∥ = (1 + α)(γ3 − γ1).

On the other hand, according to Lemmas 9 and 23, we know that for all U > Uplan, there holds
TU ≤ C

U−Uplan
for some constant C > 0. Thus, one has

|Z(t)− Z(TU )| ≤ (1 + α)(γ3 − γ1)TU ≤ (1 + α)(γ3 − γ1)
C

U − Uplan
. (33)
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for all t ∈ [0, TU ].We also know that |ζ| = |φ|. Thus, by introducing ψ = φ/|φ|, one gets Z = ψ ∧m
and m ∧ Z = ψ since φ ·m = 0. A straightforward computation yields that the pair (m,ψ) satisfies

ψ̇ = α(Dψ − (Dψ · ψ)ψ)− U
√
1 + α2m−Dm ∧ ψ +D(m ∧ ψ)

− (ψ ·D(m ∧ ψ))ψ − ((m ∧ ψ) ·Dm)m,

ṁ = −α (Dm− (Dm ·m)m) +m ∧Dm+ U
√

1 + α2ψ. (34)

From estimate (33), we infer that, for U large enough,

∀t ∈ [0, TU ], |ψ(t)−m ∧ Z(TU )| ≤
C

U
.

Putting this in Equation (34) for m, we get some constant C > 0 such that for all U large enough and
t ∈ [0, TU ], ∣∣∣ṁ− U

√
1 + α2m ∧ Z(TU )

∣∣∣ ≤ C,

which leads to
|ṁ · Z(TU )| ≤ C.

Since m(TU ) · Z(TU ) = 0 by definition and using once again that TU ≤ C
U−Uplan

, we get for all U large
enough and t ∈ [0, TU ]

|m · Z(TU )| ≤
C

U
.

However, p(TU ) = φ(TU ) (since p(TU ) ·m(TU ) = 0 from the orthogonality condition) and m(TU ) = −e1,
and thus the orthogonal space of V is exactly span(Z(TU )), which means that m(t) − PVm(t) =
(m · Z(TU ))Z(TU ). The conclusion easily follows.

7 Conclusion and perspectives

7.1 Extension of our results

It would be natural to extend our study in several directions. On the one hand, we would like to
complete our study of a single ferromagnetic particle of ellipsoidal shape by studying other criteria,
and typically a combination of time and cost L2 of control. This problem could read:

Second version of the optimal control problem: case of L2 constraints. Let λ > 0
and let us assume that m0 = e1. The problem reads

Eλ
U = inf

(T,u)∈OU

T +
λ

2

∫ T

0
|u(t)|2 dt, (Pλ)

where mu denotes the solution to (3) associated to the control function u(·),

or alternatively, if one aims at dropping the effect of the L∞ constraint on the control,

Modified second version of the optimal control problem: case of L2 constraints.
Let λ > 0 and let us assume that m0 = e1. The problem reads

Eλ
U = inf

(T,u)∈
⋃

U≥0 OU

T +
λ

2

∫ T

0
|u(t)|2 dt, (Pλ)

where mu denotes the solution to (3) associated to the control function u(·).

Finally, we also plan to study similar issues for more realistic physical systems, for example a
network of ellipsoidal particles, possibly rectilinear, as in the model introduced in [1].
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7.2 Numerical illustrations of our results

We provide hereafter several numerical illustrations of our results. More precisely, we want to determine
numerically the existence or not of an admissible trajectory connecting e1 to −e1, in accordance with
what we have found theoretically. Let us first notice that a trajectory m can easily be computed
numerically by solving the ODE (3) with the expression (22) for the control u where the variable φ is
given by (14).

To initialize both ODE (3) and (14), m(0) = e1 is given, but φ(0) is unknown. On the one
hand, we overcome this difficulty by noticing that φ(0).e1 = 0, which allows us to have only two
unknowns: φ2(0) and φ3(0) to be determined. On the other hand, working with the normalized
variable ψ = φ/|φ| enables us to reduce the unknowns to only one angle variable ϑ ∈ [0, 2π] such that
(ψ2(0), ψ3(0)) = (cos(ϑ), sin(ϑ)). ODE (3) and (14) are thus replaced by the system (34).

Numerically, implement a shooting method to determine ϑ ∈ [0, 2π]: namely, for each ϑ, we solve
the system (34) on a very large time horizon by a fourth-order Runge-Kutta method and determine if
the trajectory m reaches −e1 on a certain time T .

We list below the numerical results, all obtained with α = 0.6. The initial position e1 is represented
with a red circle on the sphere and the goal −e1 with a green star. Parameters γi, ϑ and control U
are specified in the caption of each figure. For each one, we have represented the trajectory m on the
sphere as well as the coordinates of m and of the control u as functions of time.

First of all, in the non-symmetric case, a threshold on the control appears. If the control is suffi-
ciently large, there is (at least) an initialization of ψ (i.e at least one angle ϑ) which allows to have an
admissible trajectory represented in Subfigures 2(a)-2(b). On the contrary, if the control is not large
enough, no initialization of ψ will give an admissible trajectory. We have represented for instance one
of them in Subfigure 2(e)-2(f) with a particular ϑ but be aware that they all have the same behavior
whatever the initialization of ψ: the trajectory remains in the northern half-sphere without enough
control. Figure 2 is thus a perfect illustration of Theorem 2. Note that it also helps to illustrate
Theorem 8 since the larger U is, the closer the trajectory is to a planar trajectory, as we can see by
comparing Subfigures 2(c)-2(d) with a medium control and Subfigures 2(a)-2(b) with a larger control.

Figure 3 illustrates once again the case of control too weak to reach −e1, for other γi parameters.

The symmetric case γ1 = γ2 is shown in Figure 4. Even for small controls (U = 0.7 numerically),
there is (at least) one initialization of ψ leading to an admissible trajectory reaching −e1 in finite
time. This illustrates well Theorem 4: Ucrit = 0 in this symmetric case. When γ2 < γ3 (Subfigures
4(a)-4(b)), the admissible trajectories are non planar whereas it is, in the case of a spherical symmetry
(Subfigures 4(c)-4(d)) without changing anything other than the symmetry of the test case. This is
again in accordance with the second statement of Theorem 4.

For the symmetric case γ2 = γ3, we see numerically in Figure 5 that for small values of U , an
admissible trajectory exists. With the parameters of Figure 5, Theorem 5 gives the following value
for Ucrit = α

2
√
1+α2

(γ2 − γ1) ≃ 0.026, which effectively allows to have admissible trajectories for very
small values of U . Note also in Subfigure 5(b) that all admissible trajectories reach the target −e1 in
a time greater than 14. With the values chosen for Figure 5, π√

1+α2
√

U2−U2
crit

≃ 13.58 corresponds to

the minimum time determined in Theorem 5. Here again, we notice the non-planar character of the
trajectory.

7.3 Conclusion and perspectives

The obtained results provide a complete characterization of the question of the magnetic moment
reversal in minimal time in a simple configuration. Indeed, we have considered here only one ellipsoidal
particle. In order to approach more realistic configurations, we wish to analyze a model in which several
ferromagnetic particles of ellipsoidal shape are combined to form a network. We refer for example to
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(a) Admissible trajectory for ϑ = 0.8976,
large control U = 10,

(b) The components of m and u for ϑ = 0.8976, large control U = 10

(c) Admissible trajectory for ϑ = 2.2440,
medium control U = 3

(d) The components of m and u for ϑ = 2.2440, medium control U = 3

(e) Generic trajectory for ϑ = 0.8976,
small control U = 0.1

(f) The components of m and u for ϑ = 0.8976, small control U = 0.1

Figure 2: Non-symmetric test case with (γ1; γ2; γ3) = (0.2; 0.5; 1), top: with a large control U = 10,
middle: with a medium control U = 3 and bottom: with a small control U = 0.1

27



(a) Generic trajectory (b) The components of m and u

Figure 3: Non-symmetric test case with (γ1; γ2; γ3) = (0.0; 0.8; 1), ϑ = 2.5646 and a small control
U = 0.2

(a) Admissible trajectory with γ3 = 1.0 (b) The components of m and u with γ3 = 1.0

(c) Admissible trajectory with γ3 = 0.2
(spherical case)

(d) The components of m and u with γ3 = 0.2 (spherical case)

Figure 4: Symmetric test case γ1 = γ2 with (γ1; γ2) = (0.2; 0.2), ϑ = 0.3206 and a small control
U = 0.7, top: γ3 = 1.0 and bottom: γ3 = 0.2 (spherical case)
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(a) Admissible trajectory (b) The components of m and u

Figure 5: Symmetric γ2 = γ3 test case with (γ1; γ2; γ3) = (0.1; 0.2; 0.2), ϑ = 2.7925 and a small control
U = 0.2

[2] for a possible model. After having characterized the set of stationary configurations, we will then
ask ourselves the question of controllability in minimal time, in order to go from one stationary state
to another.
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A Computation of the demagnetizing field in a ferromagnetic ellipsoid
sample

It is shown in [14, 8] that the demagnetizing tensor D reads D = diag([γ1, γ2, γ3]), where the γi’s are
given by

γi =
a1a2a3

2

∫ +∞

0

dt√
(a1 + t2)(a22 + t2)(a23 + t2)(a2i + t2)

.

Such an expression can be rewritten in terms of the elliptic integral of the second kind E, defined by

E(x, p) =

∫ x

0
(1− p sin2 θ)1/2 dθ, x ∈ R, p ∈ (0, 1).

If a1 ≥ a2 ≥ a3, then, one has 0 ≤ γ1 ≤ γ2 ≤ γ3 ≤ 1 and these coefficients read

γ1 = 1− γ2 − γ3

γ2 = − a3
a22 − a23

(
a3 −

a1a2

(a21 − a22)
1/2

E

(
a2
a1
,
a21 − a23
a21 − a22

))
γ3 =

a2
a22 − a23

(
a2 −

a1a3

(a22 − a23)
1/2

E

(
a3
a1
,
a21 − a22
a21 − a23

))
.
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In the case where a1 ≥ a2 = a3 (prolate spheroid), these formula simplify into

γ1 = − a23
(a21 − a23)

3/2

(
(a21 − a23)

1/2 + a1 argcoth

(
a1

(a21 − a23)
1/2

))
, γ2 = γ3 =

1− γ1
2

.

In the case where a1 = a2 ≥ a3 (oblate spheroid), these formula simplify into

γ3 = − a21
(a21 − a23)

3/2

(
(a21 − a23)

1/2 + a3 arctan

(
a3

(a21 − a23)
1/2

)
− π

2
a3

)
, γ1 = γ2 =

1− γ3
2

.

B Stability of steady-states for Eq. (3)

Let us first notice that, if m̄ is a steady-state of Equation (3) and if no control is applied on this system
(hext = 0), then by orthogonality of the terms in the right-hand side, it satisfies

h0(m̄) = (h0(m̄) · m̄)m̄ and m̄ ∧ h0(m̄) = 0.

Therefore, m̄ is an eigenfunction of Dm̄ and we infer that m̄ = ±ej , j = 1, 2, 3 whenever γ1 < γ2 ≤ γ3.

Proposition 24 (Asymptotic stability). Let γ1, γ2, γ3 be sorted in ascending order γ1 < γ2 ≤ γ3.
Then, in the absence of any control hext, the steady-state ±e1 is an asymptotically stable equilibrium
state for Equation (3). Nevertheless, the steady-states ±e2 and ±e3 are linearly unstable steady-states
for Equation (3).

Proof. Let h = (h1, h2, h3)
T ∈ R3 be a small perturbation such that e1 + h is still an admissible

magnetization, i.e. on the unit sphere S2 ⊂ R3. We obtain:

∥e1 + h∥2 = 1 ⇔ (1 + h1)
2 + h22 + h23 = 1 ⇔ h1 = −1

2

(
h21 + h22 + h33

)
= O(∥h∥2).

The unknown h1 is therefore of second order and does not occur in a linearized system of the first order.
By linearizing Equation (3) around the equilibrium state e1, one has, without any control u:{

ḣ2 = α(γ1 − γ2)h2 + (γ1 − γ3)h3 +O(∥h∥2)
ḣ3 = α(γ1 − γ3)h3 + (γ2 − γ1)h2 +O(∥h∥2)

(35)

The Jacobian matrix of the linearized system around e1 is therefore :

J =

(
α(γ1 − γ2) γ1 − γ3
γ2 − γ1 α(γ1 − γ3)

)
.

Since γ1 < γ2 ≤ γ3, one has

det(J) = (α2 + 1)(γ1 − γ2)(γ1 − γ3) > 0 and Tr(J) = α [(γ1 − γ2) + (γ1 − γ3)] < 0.

We infer that the two eigenvalues of the Jacobian matrix are of negative real parts. The steady state
e1 is therefore linearly stable and is an hyperbolic point (no eigenvalue with zero real part).

Hartman Grobman’s theorem [16] allows to conclude about the asymptotic stability of e1 for the
non-linear Equation (3) without any control u. As for −e1, similar computations give the conclusion.
Regarding now the stability of ±ek, k = 2, 3, notice that a similar computation drives to the following
expression of the Jacobian determinant: det J = (α2+1)(γ2−γ1)(γ2−γ3) < 0. The expected conclusion
follows.

Remark 25. If γ1 ≤ γ2 ≤ γ3, an eigenvalue of the Jacobian matrix may have a zero real part. In which
case one can conclude that e1 is linearly (non-asymptotically) stable, but Hartman Grobman’s theorem
no longer applies to return to the non-linear Equation (3).
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C Complement in the case γ1 < γ2: explicit computations of the con-
stants in the case

Let us use the notations introduced in Remark 18. We compute

A∗A =

[
(1 + α2)δγ2− −2αδγ− δγ+
−2αδγ− δγ+ (1 + α2)δγ2+

]
,

Tr(A∗A) = (1 + α2)(δγ2− + δγ2+) > 0, det(A∗A) = (1− α2)2δγ2−δγ
2
+ ≥ 0,

and the discriminant of its characteristic polynomial is

Tr(A∗A)2 − 4 det(A∗A) = (1 + α2)2(δγ2− + δγ2+)
2 − 4(1− α2)2δγ2−δγ

2
+

= (1 + α2)2(δγ2− − δγ2+)
2 + 16α2δγ2−δγ

2
+

= (1 + α2)2(δγ− − δγ+)
2(δγ− + δγ+)

2 + 16α2δγ2−δγ
2
+ > 0.

and its largest eigenvalue is therefore

∥A∥22 =
(1 + α2)(δγ2− + δγ2+) +

√
(1 + α2)2(δγ− − δγ+)2(δγ− + δγ+)2 + 16α2δγ2−δγ

2
+

2
.

On the other hand, when ∆ = α2(δγ+ − δγ−)
2 − δγ−δγ+ ≥ 0, we have

λ+ =
−α(δγ+ + δγ−) +

√
α2(δγ+ − δγ−)2 − δγ−δγ+
2

,

and therefore, with Γ = δγ−1
+ δγ−,

|λ+|2

∥A∥2(1 + |α|)δγ+
=

1√
2(1 + |α|)

(
α(1 + Γ)−

√
α2(1− Γ)2 − Γ

)2
(
(1 + α2)(1 + Γ2) +

√
(1 + α2)(Γ− 1)2(1 + Γ)2 + 16α2Γ2

) 1
2

.

Similarly, when ∆ < 0, we obtain

|TrA|2

∥A∥2(1 + |α|)δγ+
=

1√
2(1 + |α|)

α(1 + Γ)(
(1 + α2)(1 + Γ2) +

√
(1 + α2)(Γ− 1)2(1 + Γ)2 + 16α2Γ2

) 1
2

.

Remark also that ∆ = δγ2+

(
α2(1− Γ)2 − Γ

)
. Therefore, if we define

x̃0 :=


|λ+|2

∥A∥2(1+|α|)δγ+ , if ∆ ≥ 0,
Tr(A)2

4∥A∥2(1+|α|)δγ+ , if ∆ < 0,

and then x̃1 := min
(
1,

√
x̃0

3

)
, we obtain that both of them only depend on Γ and α and thus so is

µ0 = x0
3 x1 − x31. Last, the conditions on U becomes U ≤ δγ+ µ0, which is in agreement with the

invariances on D (invariance by shifting of the γis, invariance by multiplication of the γis with respect
to a change of time variable and a multiplication of the external field-control).
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