Asymptotic stability of solitons for the Zahkarov-Kuznetsov equation RAPHAËL CÔTE

(joint work with Claudio Muñoz, Didier Pilod, and Gideon Simpson)

We consider the Zahkarov-Kuznetsov equation in dimension $d \geq 2$

(ZK)
$$\partial_t u + \partial_{x_1} (\Delta u + u^2) = 0$$

where u = u(x,t) is a real-valued function, $x = (x_1, x_2) \in \mathbb{R} \times \mathbb{R}^{d-1}$ and $t \in \mathbb{R}$. (ZK) was introduced by Zakharov and Kuznetsov [5] to describe the propagation of ionic-acoustic waves in uniformly magnetized plasma in dimensions 2 and 3. (ZK) was derived from the Euler-Poisson system with magnetic field in the long wave limit was carried out by Lannes, Linares and Saut [6]; and from the Vlasov-Poisson system in a combined cold ions and long wave limit, by Han-Kwan [4].

The Cauchy problem for (ZK) in $H^s(\mathbb{R}^d)$ has been extensively studied: let us mention the currently optimal results for local well posedness in dimension 2, for s > 1/2 by Grünrock and Herr [3], and by Molinet and Pilod [10] (solutions in $H^1(\mathbb{R}^2)$ are global); and in dimension 3 for s > 1 by Ribaud and Vento [11].

We are interested in studying the flow of (ZK) around special travelling wave solutions called solitons. They are solutions fo the form

$$Q_c(x_1 - ct, x_2)$$
 with $Q_c(x) \xrightarrow[|x| \to +\infty]{} 0, \quad c > 0$

(the travelling speed must lie along the privileged direction x_1 if one expects the travelling wave to be in H^1), where $Q_c(x) = c^{1/(p-1)}Q(c^{1/2}x)$ and Q > 0 satisfies

$$-\Delta Q + Q - Q^p = 0.$$

A. de Bouard [1] proved that the L^2 -subcritical solitons are orbitally stable (using concentrate compactness à la Cazenave-Lions). The main result of [2] is the *asymptotic stability* of solitons of (ZK) in the case d = 2.

Theorem 1 (Asymptotic stability). Assume d = 2. Let $c_0 > 0$. For any $\beta > 0$, there exists $\varepsilon_0 > 0$ such that if $0 < \varepsilon \leq \varepsilon_0$ and $u \in \mathcal{C}(\mathbb{R}, H^1(\mathbb{R}^2))$ is a solution of (ZK) satisfying

$$\|u(0) - Q_{c_0}\|_{H^1} \leqslant \varepsilon,$$

then the following holds true.

There exist $c_+ > 0$ with $|c_+ - c_0| \le K_0 \varepsilon$, for some positive constant K_0 independent of ε_0 , and $\rho = (\rho_1, \rho_2) \in C^1(\mathbb{R}, \mathbb{R}^2)$ such that

(1)
$$u(\cdot,t) - Q_{c_+}(\cdot - \rho(t)) \to 0 \quad in \ H^1(x_1 > \beta t) \quad as \quad t \to +\infty,$$

(2) $\rho_{\ell}t \to (c_+, 0) \quad as \quad t \to +\infty.$

In fact, the convergence (1) can also be obtained in regions of the form

$$\mathcal{AS}(t,\theta) := \left\{ (x_1, x_2) \in \mathbb{R}^2 : x_1 - \beta t + (\tan \theta) x_2 > 0 \right\}, \text{ where } \theta \in \left(-\frac{\pi}{3}, \frac{\pi}{3} \right).$$

The maximal angle $\pi/3$, which appears in the crucial monotonicity formula (in physical space), also occurs in Fourier space: for example, when proving the following Strichartz estimate – used in [10] to improve the well-posed results for ZK at low regularity –

$$\left\| |K(D)|^{\frac{1}{8}} e^{-t\partial_{x_1}\Delta}\varphi \right\|_{L^4_{xt}} \leqslant C \|\varphi\|_{L^2} \,,$$

where $|K(D)|^{\frac{1}{8}}$ is the Fourier multiplier associated to the symbol $|K(k_1, k_2)|^{\frac{1}{8}} = |3k_1^2 - k_2^2|^{\frac{1}{8}}$. Observe that the multiplier $|K(k_1, k_2)|^{\frac{1}{8}}$ cancels out along the cone $|k_2| = \tan(\frac{\pi}{3})|k_1|$.

The above result follows the framework developed by Martel and Merle [7, 8] for (gKdV), and which we extend to higher space dimension. The proof does neither rely on the structure of the nonlinearity $\partial_{x_1}(u^2)$ of (ZK) – which is *not* integrable – neither on the dimension d. Indeed, it could be extended to different d and p as long as

- local well posedness holds in H^1 (not available in dimension 3).
- a sign condition holds, namely that $\langle \mathcal{L}^{-1}\Lambda Q, \Lambda Q \rangle_{L^2} < 0$. Here $\mathcal{L} = -\Delta + 1 pQ^{p-1}$ is the linearized operator around Q, and $\Lambda Q = \frac{d}{dc}Q_c|_{c=1}$ is the scaling operator.

The above sign spectral condition ensures a certain coercivity in a crucial Virial identity: it has been numerically checked in dimension 2 for p < 2.1491 and in dimension 3 for p < 1.8333. We however believe that the coercivity could be obtained for a large class of p (observe nonetheless that (ZK) is L^2 critical when d = 3, so that solitons are expected to be unstable).

The tools developed for Theorem 1 also apply in the context of a sum of decoupled solitons: they allow to show stability and asymptotic stability of multisolitons in the sense of (1) and (2).

Let us finally mention a few open problems. We would be interested in understanding the behavior in the whole space (i.e. convergence in $H^1(\mathbb{R}^d)$ in (1)): this would require improved dispersion estimates and revisit the theory of global well posedness for small data. A second natural question regards the long time dynamics of large solution in dimension 3. More precisely, we conjecture the existence of finite-time blowup solution for 3D (ZK), as it is expected in the L^2 critical context. Also, (ZK) admits another nonlinear solution: the line soliton. Although it does not lie in $H^1(\mathbb{R}^d)$, this object is worth studying: this was initiated by Mizumachi [9] for the Kadomtsev-Petviashvili II equation, another extension of (KdV) in dimension 2.

References

- A. de Bouard, Stability and instability of some nonlinear dispersive solitary waves in higher dimension, Proc. Royal Soc. Edinburgh, 126 (1996), 89–112.
- [2] R. Côte, C. Muñoz, D. Pilod, and G. Simpson, Asymptotic stability of soliton of highdimensional Zakharov-Kuznetsov solitons, Arch. Ration. Mech. Anal., 220 (2016), 639–710.

- [3] A. Grünrock and S. Herr, The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Disc. Contin. Dyn. Syst. Ser. A, 34 (2014), 2061–2068.
- [4] D. Han-Kwan, From Vlasov-Poisson to Korteweg-de Vries and Zakharov-Kuznetsov, Comm. Math. Phys., 324 (2013), 961–993.
- [5] E. A. Kuznetsov and V. E. Zakharov, On three dimensional solitons, Sov. Phys. JETP., 39 (1974), 285–286.
- [6] D. Lannes, F. Linares and J.-C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Prog. Nonlinear Diff. Eq. Appl., 84 (2013), 181–213.
- [7] Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal., 157 (2001), 219–254.
- [8] Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann., 341 (2008), 391–427.
- [9] T. Mizumachi, Stability of line solitons for the KP-II equation in ℝ², Mem. Amer. Math. Soc., 238, (2015), vii+95.
- [10] L. Molinet and D. Pilod, Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré, Annal. Non., 32 (2015), 347–371.
- F. Ribaud and S. Vento, Well-posedness results for the 3D Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 44 (2012), 2289–2304.