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We are interested in the dynamics near self-similar solutions for the modified
Korteweg-de Vries equation:

∂tu+ ∂3
xxxu+ ϵ∂x(u

3) = 0, u : Rt × Rx → R.(mKdV)

The signum ϵ ∈ {±1} indicates whether the equation is focusing or defocusing. In
our framework, ϵ will play no major role.
The (mKdV) equation enjoy a natural scaling: if u is a solution then

uλ(t, x) := λ1/3u(λt, λ1/3x)

is also a solution to (mKdV). As a consequence, the self-similar solutions, which
preserve their shape under scaling

S(t, x) = t−1/3V (t−1/3x)

are of special interest. Self-similar solutions play an important role for the (mKdV)
flow: they exhibit an explicit blow up behavior, and are also related with the long
time description of solutions. Even for small and smooth initial data, solutions
display a modified scattering where self-similar solutions naturally appear: we
refer to Hayashi and Naumkin [6, 5], which was revisited by Germain, Pusateri
and Rousset [3] and Harrop-Griffiths [4].
Self-similar solutions and the (mKdV) flow are also relevant as a model for the
behavior of vortex filament in fluid dynamics. More precisely, Goldstein and Pet-
rich proposed the following geometric flow for the description of the evolution of
the boundary of a vortex patch in the plane under the Euler equations:

∂tz = −∂sssz + ∂sz̄(∂ssz)
2, |∂sz|2 = 1,

where z = z(t, s) is complex valued and parametrize by its arctlength s a plane
curve which evolves in time t. A direct computation shows that its curvature solves
the focusing (mKdV) (with ϵ = 1), and self-similar solutions with initial data

U(t) ⇀ cδ0 + α v.p.

(
1

x

)
as t → 0+, α, c ∈ R,(1)

corresponds to logarithmic spirals making a corner: this kind of spirals are ob-
served in a number of fluid dynamics phenomena (we refer [8] for more details).
We were also motivated by the works by Banica and Vega (see for example [1]) on
nonlinear Schrödinger type equations.

Our goal in this paper is to study the (mKdV) flow around self similar. Our first
result is the description of self-similar solutions in Fourier space.
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Theorem 1. Given c, α ∈ R small enough, there exists unique a ∈ R, A,B ∈ C
and a self-similar solution S(t, x) = t−1/3V (t−1/3x), where V satisfies

for p ≥ 2, e−itp3

V̂ (p) = Aeia ln |p| +B
e3ia ln |p|−i 8

9p
3

p3
+ z(p),(2)

for |p| ≤ 1, e−itp3

V̂ (p) = c+
3iα

2π
sgn(p) + z(p),(3)

where z ∈ W 1,∞(R), z(0) = 0 and for any k < 4
7 , |z(p)| + |pz′(p)| = O(|p|−k) as

|p| → +∞.

Hence self-similar solutions exhibit logarithmic oscillations for large frequencies
(which are related to the critical nature of the problem), and if α ̸= 0, a jump at
frequency p = 0. We are also able to related the constants involved (a,A,B) with
those appearing in the description in physical space.
The proof consists in writing the problem as a fixed point. We compute expansions
for the first three Picard iterates, for the function and is derivative; and we are
able to control the remainder term in the weighted L∞ based space indicated. The
techniques involves essentially stationnary phase analysis with a careful control on
the error.

Our second result is concerned with local well posedness in a critical space which
contains the self-similar solutions constructed above. We work with the norm (for
space time functions):

∥u∥E (I) := sup
t∈I

∥u(t)∥E (t), ∥v∥E (t) := ∥Ĝ(−t)v∥L∞(R) + t−1/6∥∂pĜ(−t)v∥L2((0,+∞)),

(4)

where G(t) denote the linear KdV group and I ⊂ (0,+∞) is a time interval. The
above norm is scaling invariant, in the sense that ∥uλ(t)∥E (t) = ∥u(λt)∥E (λt); also
it is finite for the self-similar solutions of Theorem 1. Our result is as follows.

Theorem 2. Let u1 ∈ E (1). Then there exist T > 1 and a solution u ∈ E ([1/T, T ])
to (mKdV) such that u(1) = u1.
Furthermore, one has forward uniqueness. More precisely, let 0 < t0 < t1 and u
and v be two solutions to (mKdV) such that û, v̂ ∈ C ([t0, t1], L

∞) and

∥u∥E ([t0,t1]), ∥v∥E ([t0,t1]) < +∞.

If u(t0) = v(t0), then for all t ∈ [t0, t1], u(t) = v(t).

For small data in E (1), the solution is actually defined for large times, and one
can describe the asymptotic behavior. This is the content of our last main result.

Theorem 3. There exists δ > 0 small enough such that the following holds.
If ∥u1∥E (1) ≤ δ, the corresponding solution satisfies u ∈ E ([1,+∞)). Furthermore,
let S be the self-similar solution such that

Ŝ(1, 0+) = û1(0
+) ∈ C.
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Then ∥u(t) − S(t)∥L∞ ≲ ∥u1∥E (1)t
−5/6− and there exists a profile U∞ ∈ Cb(R \

{0},C), with |U∞(0+)| = limp→+∞ |Ŝ(1, p)| is well-defined, and∣∣∣∣ũ(t, p)− U∞(p) exp

(
i

4π
|U∞(p)|2 log t

)∣∣∣∣ ≲ δ

⟨p3t⟩ 1
12

∥u1∥E(1).

As a consequence, one has the asymptotic in the physical space. In the setting of
the above Theorem 3, if we let

y =

{√
−x/3t, if x < 0,

0, if x > 0.

one has, for all t ≥ 1 and x ∈ R,∣∣∣∣u(t, x)− 1

t1/3
Ai

( x

t1/3

)
U∞ (y) exp

(
i

6
|U∞(y)|2 log t

)∣∣∣∣ ≲ δ

t1/3⟨x/t1/3⟩3/10
.

The main challenge we faced in proving Theorem 2 is that we cannot work with
smooth data, due to the jump at frequency 0. Also, the multiplier estimates
suitable for the space E(I) require computations on a non linear solution, and
are not amenable to a fixed point scheme. Therefore, we had to rely on the
resolution of an approximate problem first, followed by a compactness argument.
It turns out that the approximation has to obey several constraints, which could
ultimately be met by following a Friedrichs scheme with a suitably twisted cut-off
in frequency. Again, the approximate problem is solved by fixed point in a space
where smooth function are not dense. The compactness argument is then fairly
standard. Theorem 3 follows a similar path, the expansion as t → +∞ being
merely a by product of the analysis.
For the forward uniqueness result of Theorem 2, we consider the variation of
localized L2 norm of the difference w of two solutions. Our solutions do not
belong to L2, but we make use of an improved decay of functions in E (I) to make
sense of it. If the cut-off is furthermore chosen to be non decreasing, we can make
use of a monotonicty property to control the variations of this L2 quantity and
conclude via a Gronwall-type argument. This kind of monotonicity property was
first observed and used by Kato, and is a key feature in the study of the dynamics
of solitons by Martel and Merle [7]. To our knowledge, it is however the first time
that is used in the context of self-similar solutions.

We are now concerned with the behavior near blow up time t = 0: in particular,
whether the self-similar blow up is stable, and the understanding of perturbations
of self-similar solutions.
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