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We are interested in the dynamics near self-similar solutions for the modified
Korteweg-de Vries equation:

(mKdV) Opu+ 0P

rxrxr

u+ed,(u®) =0, u:R; xR, —R.

The signum € € {£1} indicates whether the equation is focusing or defocusing. In
our framework, € will play no major role.
The (mKdV) equation enjoy a natural scaling: if u is a solution then

ux(t, ) == A 3u(At, \V3x)

is also a solution to (mKdV). As a consequence, the self-similar solutions, which
preserve their shape under scaling

S(t,x) =t~V (1 3g)

are of special interest. Self-similar solutions play an important role for the (mKdV)
flow: they exhibit an explicit blow up behavior, and are also related with the long
time description of solutions. Even for small and smooth initial data, solutions
display a modified scattering where self-similar solutions naturally appear: we
refer to Hayashi and Naumkin [6, 5], which was revisited by Germain, Pusateri
and Rousset [3] and Harrop-Griffiths [4].

Self-similar solutions and the (mKdV) flow are also relevant as a model for the
behavior of vortex filament in fluid dynamics. More precisely, Goldstein and Pet-
rich proposed the following geometric flow for the description of the evolution of
the boundary of a vortex patch in the plane under the Euler equations:

Opz = —0s52 + 8(92(8(98'3)27 |8Sz|2 =1

where z = z(¢,s) is complex valued and parametrize by its arctlength s a plane
curve which evolves in time t. A direct computation shows that its curvature solves
the focusing (mKdV) (with e = 1), and self-similar solutions with initial data

1
(1) U(t) = ¢dp + av.p. (x) ast—= 0", a,ceR,

corresponds to logarithmic spirals making a corner: this kind of spirals are ob-
served in a number of fluid dynamics phenomena (we refer [8] for more details).
We were also motivated by the works by Banica and Vega (see for example [1]) on
nonlinear Schrédinger type equations.

Our goal in this paper is to study the (mKdV) flow around self similar. Our first
result is the description of self-similar solutions in Fourier space.
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Theorem 1. Given c,a € R small enough, there exists unique a € R, A,B € C
and a self-similar solution S(t,z) = t=Y/3V (t=1/3x), where V satisfies

Q4 -8,3
e3ialn |pl—igp

(2) forpz2, e WV(p) = AP 4 B+ 2(p),

—q 3.~ 32a
(3) forlp| <1, e "™ V(p)=c+ 5 sen(p) + z(p),

where z € WH(R), 2(0) = 0 and for any k < 2, |2(p)| + [pz’(p)| = O(|p| %) as
Ip| = +o0.

Hence self-similar solutions exhibit logarithmic oscillations for large frequencies
(which are related to the critical nature of the problem), and if o # 0, a jump at
frequency p = 0. We are also able to related the constants involved (a, 4, B) with
those appearing in the description in physical space.

The proof consists in writing the problem as a fixed point. We compute expansions
for the first three Picard iterates, for the function and is derivative; and we are
able to control the remainder term in the weighted L°° based space indicated. The
techniques involves essentially stationnary phase analysis with a careful control on
the error.

Our second result is concerned with local well posedness in a critical space which
contains the self-similar solutions constructed above. We work with the norm (for
space time functions):

(4)
lulle(r) = Sup lu® ey, Nvllew = 1G(=t)vllzeo®) + 810G (—t)v[l L2((0,400))s

where G(t) denote the linear KAV group and I C (0,+400) is a time interval. The
above norm is scaling invariant, in the sense that |lux(t)[|s) = [[u(Mt)[ls(x); also
it is finite for the self-similar solutions of Theorem 1. Our result is as follows.

Theorem 2. Letuy € &(1). Then there exist T > 1 and a solutionu € &([1/T,T)
to (mKdV) such that uw(1) = uy.

Furthermore, one has forward uniqueness. More precisely, let 0 < tg < t1 and u
and v be two solutions to (mKdV) such that 4,0 € € ([to, t1], L) and

HUHg([tO,tl])a HU||£([t0,t1]) < +00.
If u(to) = v(to), then for all t € [to, t1], u(t) = v(t).

For small data in &(1), the solution is actually defined for large times, and one
can describe the asymptotic behavior. This is the content of our last main result.

Theorem 3. There exists 0 > 0 small enough such that the following holds.
If lurll g1y < 0, the corresponding solution satisfies u € &([1,+00)). Furthermore,
let S be the self-similar solution such that

S(1,0%) =4, (07) e C.
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Then |Ju(t) — S(t)|L= S lluilleqt™/%" and there exists a profile Us, € (R \
{0},C), with |Use (0)] = limp_ 4 o0 |S(1, p)| is well-defined, and

it.5) ~ Uslp)exp (U)o <

an T ||U1||5(1)-

)
)
As a consequence, one has the asymptotic in the physical space. In the setting of
the above Theorem 3, if we let

{\/—x/St, if x <0,
y:

0, if x > 0.

one has, for all t > 1 and z € R,

1 e 1
) = 575 41 (575) U ) 030 (G100t

The main challenge we faced in proving Theorem 2 is that we cannot work with
smooth data, due to the jump at frequency 0. Also, the multiplier estimates
suitable for the space £(I) require computations on a non linear solution, and
are not amenable to a fixed point scheme. Therefore, we had to rely on the
resolution of an approximate problem first, followed by a compactness argument.
It turns out that the approximation has to obey several constraints, which could
ultimately be met by following a Friedrichs scheme with a suitably twisted cut-off
in frequency. Again, the approximate problem is solved by fixed point in a space
where smooth function are not dense. The compactness argument is then fairly
standard. Theorem 3 follows a similar path, the expansion as ¢ — 400 being
merely a by product of the analysis.

For the forward uniqueness result of Theorem 2, we consider the variation of
localized L? norm of the difference w of two solutions. Our solutions do not
belong to L?, but we make use of an improved decay of functions in &(I) to make
sense of it. If the cut-off is furthermore chosen to be non decreasing, we can make
use of a monotonicty property to control the variations of this L? quantity and
conclude via a Gronwall-type argument. This kind of monotonicity property was
first observed and used by Kato, and is a key feature in the study of the dynamics
of solitons by Martel and Merle [7]. To our knowledge, it is however the first time
that is used in the context of self-similar solutions.

<0
~ /3 (g /¢1/3)3/10°

We are now concerned with the behavior near blow up time ¢ = 0: in particular,
whether the self-similar blow up is stable, and the understanding of perturbations
of self-similar solutions.
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