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Abstract

We consider a ferromagnetic nanowire, with an energy functional £ with easy-axis in the direction e, and which
takes into account the Dzyaloshinskii-Moriya interaction. We consider configurations of the magnetization which
are perturbations of two well separated domain wall, and study their evolution under the Landau-Lifshitz-Gilbert
flow associated to E.

Our main result is that, if the two walls have opposite speed, these configurations are asymptotically stable, up to
gauges intrinsic to the invariances of the energy E. Our analysis builds on the framework developed in [4]], taking
advantage that it is amenable to space localisation.
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1. INTRODUCTION

1.1. A model for a ferromagnetic nanowire
We model a ferromagnetic nanowire by a straight line Re; C R? (of infinite length) where
0

1 0
€1 = 0 5 €y = 1 5 €3 = 0
0 0 1

is the canonical basis of R®. The magnetization m = (my, ma, m3) : R — S? of this nanowire takes its values into the unit sphere
S? C R3, and we associate to it the energy functional

1
E(m) = 5/ |0,m|? + 270,m - (ex Am) + (1 —m7)dz, (1.1)
R
where z is the variable in direction e; of the nanowire and v € R is a given constant with |y| < 1; it will be convenient to denote

I=+1-72

Here, - and A are the scalar and cross product in R®. The term with -y accounts for the Dzyaloshinskii-Moriya interaction (DMI).
We refer to [4]] where this model was derived from the full 3D system by I'-convergence in a special regime.

We are interested in the evolution of the magnetization under the Landau-Lifshitz-Gilbert flow associated to F, that is the
equation:
om =mA H(m)—amA (m A H(m)), (LLG)
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where now m : I x R — S? is the time dependent magnetization (I is an interval of time of R), a > 0 is the damping coefficient,
and the magnetic field H is given by
H(m) = —0E(m) + h(t)e;.

dE(m) is the variation of the energy, which writes
SE(m) = —0%,m — 2ve; A Oym + maes + maes.

(recall that m? + m3 + m32 = 1). Finally, the function h : I — R is the (given) intensity of an applied external field, which we
stress that it depends solely on the time variable ¢, and is oriented on the axis e;.
The (LLG)) flow is equivariant under the following set of transformations:

e translations in space 7,m(z) = m(z — y) for y € R, and

1 0 0
e rotations Rg = [ 0 cos¢ —sing¢ | about the axis e; and angle ¢ € R.
0 sing coso

There is another symmetry: if m solves with parameter v, then *m(t, ) := m(t, —x) solves with parameter —.
We nonetheless leave this last symmetry aside (it does not play any role in modulation theory for example), and we are lead to
define the group

G =RxR/27Z

which naturally acts on function w : R — R3 as follows: if g = (y, ¢) € G, g.w := Ry7,w. The action of G preserves S? valued
functions, and so acts on magnetizations; it also extends naturally to functions of space and time, for which it preserves solutions
to (CLG). Also, we endow G with the natural quotient distance over R?:

Vo= (y,¢0) € G, |g] =yl +inf{|¢ + 2kn|, k € Z}.

Our main object of interest here are (precessing) domain walls. These are explicit solutions studied in [4] (to which we refer
for further details): given o = (01, 02) € {£1}? (we equivalently use the notation =+ instead of +1), denote

cos(f.(o12))
Ve e R, wl(x):=| ozsin(f.(o1z))cos(yz) with 6, (x) = 2arctan(e '), (1.2)
o109 sin(0, (o1 2)) sin(yx)
and
97 = (01Y«, 97?) where (1.3)
t t
fort >0, y.(t)= —g/ h(s)ds and ¢F(t) = (71 + @) / h(s)ds (1.4)
L' Jo '/ Jo
Then
(t,x) = g7 (t).w(z) (1.5)
is a solution to (CLG), which we call a domain wall.
Recall that w? are the only solutions, up to a gauge in G, to the static equation
wASE(w) =0,
which satisfy the suitable limits at infinity limy ., w = 07e;. Moreover, they satisfy §E(w?) = S,w? where
B, == 2I'%sin?0,. (1.6)

The case v = 0 (i.e., absence of DMI) corresponds to (in-plane) static domain walls where a rotation in 6, of 180° takes place along
the nanowire axis e;; these transitions are called Bloch walls (see e.g. [3}8]). For future reference, we note that 8, : R — (0, )
solves the first order ODE

00, = —T'sinf,, 0.(—00)=m, 0,(+o0) =0, (1.7)

and wy satisfies the system of first order ODE:s:
O, wi = o1Tw A (e ANwl) —ver Awy. (1.8)

Note also that formulas (I.2), (T.4) and (I.5) make sense for all & € R; however the condition « > 0 is the physically relevant
one, and will be required in all the following analysis.



1.2. Functional spaces and Cauchy problem

We denote H* (and LP) for the Sobolev space H*(R,R?) with s > 0 (and the Lebesgue space L* (R, R?) with p € [1, oc],
respectively). We also denote H* for the homogeneous Sobolev space whose seminorm is given via Fourier transform:

1 )
Il = 5 [ @Rl ds, where (€)= [ e Em(a)da. (19)
2 R R
(In particular, |m|| ;2 = ||Ozam||L2). We define for s > 1, the spaces
HE = {m = (m1,ma,m3) € €(R,S?) : ||m|lp: < +oo} (1.10)
with [lmll3s == [[mallz2 + [lmsllz2 + [lmll 4.

The H? spaces are modelled on the usual Sobolev spaces H*, but adapted to the geometry of the target manifold S? and to
the energy functional E: the main point is that |m;| — 1 at 00 so that m; ¢ L?. H! corresponds to the set of finite energy
configurations E(m) < +oo in which case, the energy gradient SE(m) € H~L. Also if m,m € H! with m(£oo) = m(+o0),
then m — m € H'. Moreover, if w, is a domain wall (T.2), then every configuration m € H! with |[m — w,||31 small enough is
actually close to w, in H' with Lipschitz bounds, i.e., ||m — w.| g1 < ||[m — w.||1 (we refer to [4] for details and proofs).
Note that all the derivatives of w? of order k& > 1 are exponentially localised, so that w? € H* for all k > 1.
We use the following well posedness result, quoted from [4]: see section 4 there, and the reference therein for more comments.

Theorem 1.1 (Local well-posedness in H®). Let oo > 0, v € (—1,1) and h € L*>([0,400),R). Assume s > 1 and mg € H*.
Then there exist a maximal time Ty = T (mg) € (0, +00] and a unique solution m € €([0, 1), H*) to (CLG) with initial data
mo.

Moreover,

1. if Ty < +oo, then |m(t)||yr — +ooast T Ty,

2. for T < Ty (with Ty finite or infinite), the map mg € H° — m € €([0,T],H?) is continuous in a small H*
neighbourhood of myq (for every initial data g in that neighborhood, the maximal time of the corresponding solution m
satisfies Ty (mo) > T);

3. if s > 2, one has the energy dissipation identity : t — E(m(t)) is a locally Lipschitz function in [0, T.) (even € provided
h is continuous) and for all t € [0,T.),

%E(m) = foz/(|5E(m)|2 — |m - SE(m)|?) dx + ah(t) /(m Nep) - (mASE(m))d. (L.11)

1.3. Statement of the main result

In [4], the flow of around the domains wall (T.3) was studied: for small H! perturbation, and under a small applied
field h (in L$°((0, 4+00))), domains walls were proved to be (exponentially) asymptotically stable, up to a gauge. This work thus
extended previous results in two directions: in the absence of Dzyaloshinskii-Moriya interaction (case y = 0), precessing domain
walls were reported in [6], and their linear asymptotic stability was proved in [5] (it however completely disregards the gauge
involved); nonlinear stability was also checked numerically in [5]. We can also mention earlier studies of stability for Bloch or
Walker walls (which are travelling fronts, not precessing) under some variant of (the DMI interaction is not taken into
account in the energy E): we refer for example to [3} [7, [1, 2} [11]].

In the present paper, we are further interested to study the dynamics of solutions to (CLG) in the presence of several domain
walls. This question is not only academically relevant for the long time dynamics, but also motivated by application of this model
to data storage: domain walls encode information, and their stability property is important for the persistence of this storage over
time.

The simplest case to tackle is the interaction of domain walls decoupling with time: in view of y.,, there is essentially one such
configuration, where the speeds are opposite (the transition of these domain walls are centered at y.(¢) and —y. (t) respectively,
up to a fixed translation). This corresponds to studying the evolution of a perturbation of

gF (1)t (2) + g (H)w (@) + e (1.12)

where given o3, 04 € {+1}, we let w] = wil’@), wy = wﬁ_l’%), and g = g&l’UZ), g. = gi_l’%).
In the decomposition of a S?> magnetisation around two decoupled domain walls, it is interesting to consider gauges in G with

large translation parameter, which motivate the notation, given L > 0,

Gop={(y,0)€eG:y>L}, Gep={(y,0)cCG:y<—L}.



Theorem 1.2. There exist Ly, dg > 0 and C, A > 0 such that the following holds. Assume that h satisfies
21| Lo ((0,00)) < o0, (1.13)
and that

/OO Va(2y. (1)) dt < 400 where, forr € R, q(r) == (1+ |r|)e”I". (1.14)
0

Denote fort > 0,

1/2
Kk(t) = e T 4 (/Ot eQA(ts)q(2y*(s))ds> / . (1.15)
Let mg € H' such that that there exist L > Ly and (* € Gs1, (T € G<_p, with
6= Hmo - (C"'.wj‘ + (" aw, +61)HH1 < 4. (1.16)
Then the solution m to is global for forward times and there exist 2 gauges g*,g~ € WY (R, , G), such that,
Vi >0, Hm(t) — (gt wf +g i +e) HH < C(6 + Va(2L))e ™ + C/qL))k(1). (1.17)

Moreover, there exist two gauges gg:O € G such that

+oo
W0, 3 19" — (60 + 95| < C6 + VaL)e ™ + C\/q(2L) / (s)ds. (1.18)

ve{£}

In view of the definition (T.4), both assumptions (I.14) and (I.13) are about the applied field k. As it will be seen from Lemma
k(t) — 0 as t — +oo and is integrable in time, so that the estimates (I.17)-(T.I8) yield convergence results. Notice that & is
strongly related to h, whereas ) is essentially a coercivity constant, which depends on = (it is related to the closeness of || to 1).
The decay functions e~** and (t) are therefore mostly unrelated, even though in most cases (for example, as soon as h — 0),
k(t) > e~*. On the other hand, if h < hy < 0 is bounded away from 0 (for some constant hy < 0), then x tends to 0 with a
exponential rate, and so are the convergences in (I.17)-(T.18).

Theorem [I.2] therefore quantifies how and under which condition the structure made of two decoupled domain walls persists
over time. Assumption (T.13)) ensures that the external magnetic field is not too strong: this is required even for configuration with
one domain wall not to be destroyed or for the constant magnetizations +e; to be stable. Our second assumption (I.14)) states that
the free evolution of the center of the domain wall should separate them indefinitely: in order to have asymptotic stability (that is
convergence of the gauge g*), a requirement of the type v, — 400 is in order. It turns out that, for our analysis to work, we need
a somewhat stronger integrability condition, which however remains rather mild (see point 2) of Lemma [T.3).

This result is a stability statement for well prepared data, which bear some resemblance with the stability of the sum of
decoupled solitons for non linear dispersive model: we refer for example to [9] for the generalised Korteweg-de Vries equation, or
to [10] for the nonlinear Schrédinger equation. An important difference though, is that in these settings, each soliton brings its
own dynamic, which is leading order (solitons are assumed to have distinct speeds), whereas in the present context, the dynamics
is determined at the main order by the external magnetic field represented by h.

Our analysis relies on the framework developed in [4], which combines modulation techniques to split the evolution between
some geometric parameters (the gauge) and a remainder term; energy estimates to control the remainder; and dynamical arguments
(consequence of energy dissipation) for the gauge.

An important point of this paper, and a novelty with respect to [4], is that this framework is amenable to space localization, and
is therefore suitable to study the interactions of domain walls: we believe that is much less so for earlier methods and results on
stability of (single) domain wall (referred to at the beginning of this section), which relied on spectral properties of the linearized
flow around domain walls. We localize the coercivity properties of the energy around each domain walls, as well as the
energy dissipation equality. For these two results to make sense, one must first modulate around a sum of two domain walls; this
must be done carefully, keeping into account the geometric constraint || = 1 on the magnetization: this property is crucial for
the coercivity. These three results are stated at the beginning of section 2} and proven in sections [} [5| and [6] respectively. Section[3]
gives some preliminary results, in particular about a frame adapted to the domain wall and the control of the nonlinearity, and first
introduced in [4].

The proof of stability is done in section 2] and consists in a bootstrap argument: on a time interval on which one can modulate
the magnetization around two domain walls, and one has sufficient control on the gauges involved and the remainder terms, we
combine the localized energy dissipation and coercivity to improve these controls. We give a special attention to the decay of the
remainder term in order to make the assumption on the external field & as mild as possible: this is a delicate part of the analysis.
We gather useful notations in an index at the end of the paper.

Before going to the proof of the main results, we conclude this section by giving some consequences on the behavior of y, of

the assumptions (T.14)-(T.15) for h.



1.4. On the assumptions on the external field h

We recall that the distance between the two domains walls is essentially 2y, (t), and it will turn out that ¢(2y. (t)) measures
correctly the interaction between them.

The assumptions on h are relatively mild: apart from uniform smallness (required to ensure stability, even for one domain
wall), some oscillation and decay are allowed as long as the external field still pushes the domain walls away, so that their
interaction enjoys some integrability in time. This is quantified in the simple computation below.

Lemma 1.3. 1) Assume that h satisfies (T13) and (T14) with 6o < L. Ift, 7 > 0 are such that [t—7| < 1, then |y.(7)—y.(t)| < 1.
As a consequence, y.(t) — +00 as t — 400, and there exists C > 0 such that for all t,7 > O with |t — 7| < 1,

q(2y«(7)) < Cq(2y.(2)). (1.19)

p 1 . 1
2) If liminf =—= e () > — then (I.14) is fulfilled. This is in particular the case if limsup th(t) < ——.
t—+oo Int I t—r 400 «

Proof. 1) Recall that 69 < g, so that the first bound is immediate from the mean value theorem. Assume that for some, R > 1,
there exists ¢, — 400 such that y.(t,,) < R. Up to extracting in n, we can assume that t,,.1 > ¢, + 1 for all n; also, as ¢ is
eventually decreasing to 0, we can assume that R > 1/T" is so large that inf{q(2r) : » < R + 1} is attained for » = R + 1. Then,
in view of the Lipschitz bound on y. induced by (T.13)), y.(t) < R+ 1 forall ¢t € [t,, ¢, + 1] so that

/\/ch»z:/ Va2y.0)dt >3 /g2(R +1)) = +oo,

n>0 n>0

a contradiction with (T.T4). Hence y.(t) — +oco as t — +oc.
Now for any » > 2 and h € [—2,2],

lg(r +h) —q(r)|=|1+7r+ h)eiF(TJrh) —(A4re <+ r)eiFﬂe*Fh - 1| + \h|eiF(T*1) < C|hlg(r).
In particular, for any r > 1,

sup ¢(2(r+h)) < Cq(2r).
he[—1,1]

Together with the fact that for |t — 7| < 1, |y.(¢) — y.(7)] < 1, yields (T.19).
2) The assumption on ¥, writes that for some a > 1, and some T" > 2,

YVt > T, y«(t) > =Int.
As g is eventually decreasing to 0,
+o0 +oo dt
V@ @) dt < / VIS < oo,
T

The condition on h implies that on y, by direct integration. O

Lemma 1.4. Under the assumptions (1.13) and (I.14), the function  defined in (I.13)) has the properties:
+oo
k() —0 as t— 4oo and / K(T)dT < +00.
0

Proof. We already saw that v, — 400 so that e T¥+() — 0 and is integrable on [0, 4+00). For the integral term, this is merely a
convolution: as we made the hypothesis that 1/q(2y. ) is integrable, convergence to zero is straightforward:

. t/2 t
/ e M g(2y.(s))ds < HQ(2y*)||L°°([O,+oo))/ e*”“*SH/ q(2y-(s))ds
0 0 t/2
“+o0
e a2yl L= 10,400 + 1Va2y) o= (/2,400 / V2 (e))ds 50

For the integrability, we need an extra ingredient: the previous Lemma [I.3|allows to relate to a series. To avoid side effect, first
observe that there is no integrability issue on [0, 1]:

1 t
/ \/ / e=2Mt=5) (2. (s))dsdt < || /2290 | 1= (o.1)-
0 0

5



Ift € [n,n + 1) for some integer n > 1, using (I.19) there hold
t n+1
/ e g(2y.(s))ds < C / e g (2y.(s))ds < C Z e Mg (2y.(k))
0 0

Hence, using that v/a + b < \/a + /b, we infer

t
\// e2Mt=5) g(2y, (s))ds < Cze—k(n k) ) < C/ —A(t=s) VvV q(2y«(s))ds.
0

(We used again (T.19) on each interval [k, k+ 1] for K < n—2, and one last time on [n— 1, ¢] which is of lengtht —n+1 < 2 < 2¢;
this is where ¢ > 1 is useful). Therefore,

+oo t
/ \// e 2 t=5)g(2y.(s))dsdt < C’/ / e =9 /42y, (s))dsdt.
1 0 t>1Jo<s<t

For this last integral we split the integration domain
{(5,t) : t>1,0<s<t}={(s,8): 0<s<1<t}U{(s,¢) : 1 <s <t}

In both subdomains, we integrate first in ¢: there hold

1
/ / eAE=9) q<2y*(s>>dsdt:§ / e M7\ /4(2y,(s))ds < +oo,
0<s<1<t 0

and
+oo
// e NE=9) fa (2 (s))dsdt = % 2(2y.(s))ds < +oo,
1<s<t 1

by assumption. O

2. PROOF OF THE STABILITY

2.1. Preliminary results

The first result we need is an appropriate modulation of the magnetization when it is near two well separated domain walls,
via the use of two gauges g™ this gives two degrees of freedom, which allows to require two orthogonality conditions, crucial to
derive coervicity properties (in the next 2 Propositions), a bound on the remainder term ¢, and the evolution laws (at main order)
of the gauges.

Lemma 2.1 (Decomposition of the magnetization). There exist 61 > 0, L1 > 1 and Cy > 0 such that the following holds. Let
T >0, heL>®(0,T)) and m € €([0,T], H?) solution to (CLG), assume that for all t € [0, T), and for some L > L,

0= inf
¢teGsr, (€G-

m(t) — <C+wj + (" awy, —|—€1>HH1 <

Then there exists three functions :
e gt =(y",¢"):[0,T] = G~1_1 Lipschitz,
e g = ,¢7):[0,T] = G<_r41 Lipschitz,
e :[0,T) — H? continuous,
such that, for w™ = gT.wl and w™ = g~ .w;,
em=wr4+w +e +¢
* ¢ satisfies for . € {£1}

/5~8xdex:/6~(el Aw")dx =0, 2.1)



* the following bounds hold for all t € [0,T] and v € {%}:

30) = 9401 < CL (@l + alwt = 97)). @2)

le@ s < C1(3+aty™ —y7)). 23)

This decomposition also holds with T = +oo, mutatis mutandis. The two domain walls are at distance y* — y~ > 2L, and
(2:3)) bounds the size of the perturbation. Equation (2:2)) shows that the evolution of geometric parameters is driven by g., that is
ultimately, /. This result will be proved in Section [6}

The proof of the stability then relies on two main estimates. The first one shows an equivalence between the energy E and the
norm of ¢ defined in the above modulation Lemma For this, observe that E(w?) does not depend on o € {#£1}2, we denote it
E(w.) hereafter.

Proposition 2.2 (Coercivity of the energy). There exists 0 < do < 61/3, Lo > L1, Co > 0 and Ag > 0 such that the following
holds. Under the assumptions (and notations) of Lemma assuming further 6 < 8, L > Lo, there hold, forany 0 < R < L/2
and for all t € [0,T)

Callellf + () 4 X)) > B(m) - 2B(w.)
&

> (002 = 22) el — Callellfn + (7R 4 2 E0)) - 24
In (2:4), the (large but constant) R is related to the size of the support of (the transition of) an adequate cut-off function ¢ p,
defined in (3.I). The condition R < L/2 ensures that each cut-off (localized around each domain wall) has only little interaction
with the other domain wall. The coercivity displayed in (2.4) of course relies strongly on the orthogonality conditions Z.I)).
Proposition[2.2]is proven in Section 4}
The second result is an estimate of the evolution of the energy. It shows that, up to some quantities which are negligible
enough in some sense, the energy is almost decreasing; its proof is the purpose of Section[3] and again, (2-I) plays an important

role.

Proposition 2.3 (Localised energy dissipation). There exists 0 < 03 < §1/3, L3 > L1, C3 > 0 and A3 such that the following
holds. Under the same assumptions and notations as Proposition assuming further 6 < 3, L > Lz and forany0 < R < L/2,
there holds, for all t € [0, T

d C . .
S B(m) + (Amg - R) el < G ((1h] + XA 4 PR o2, 4 el a3

Lo (62F(Rfy+) I y*)). 2.5)

Proof of Theorem[I.2} assuming Lemma 2.1 and Propositions[2.2|and[2.3) We assume in the following that mg € H?, so that all
the computations are justified. When mg € H', one can use a limiting argument as in [4, Section 4.4]; we will not develop it
further here.

Step 1. Main boostrap

Let 'y (m) be the maximum time of existence of the solution m to (CLG). Let d9, Ly > 0, and M > 2 be an extra large
parameter to be fixed later. Assume already that M §y < min(ds, d3), and Ly > max (L1, L) + 2 so large that ¢(2Lg) < 1 and ¢
is non increasing on [Lg, +00). Define 7} as the supremum of

{T € (0,Ty(m)) : Vt € [0,T], inf [m(t) — (T wf + ¢ wy 4610 < M6+ \/q(ZL))} . (2.6)
(TeG>r-1,¢("€G<c—Lt+1
By continuity of the flow of and the assumption on the initial data as M > 1 and L > Ly > L4, the above set is non
empty and 7} > 0. We aim at proving that 7} = Ty (m) = +o0.
As M&y < &y, m satisfies the assumptions of Lemma[2.1on [0, T] for any 7' € (0,7}): it provides us with the functions
gt =", ¢"), 97 = (y,¢) and ¢ satisfying its conclusions, on the interval [0, T}). Also, at time 0, we have the improved
bound:

le(0) ][ < C1(8 +a(2(L — 1)) < C1(8 +q(2L)). 2.7)

(where C; depends on C only). We recall that the domain walls with initial data g*(0).wZ have center y=(t) = %y, (t) + y=(0)
where



Let T’ be the supremum of
(T € (0,T1) : ¥t € [0,T'),¥0 € {2}, [y"(t) — (5"(0) + 1y ()] < 1. 28)

By continuity of y, and yi, we know that Ty > 0 (we will show that T, = T3 as well). We choose T' € (0, T3], and we work on
the interval [0, T').

Step 2. Deriving convenient bounds on ¢ and g*.
First observe that for ¢t € [0, 7], y* () > L+ y.(t) —2and y~ () < —L — y.(¢) + 2 so that for some constant K (depending
solely on 7y)

672Fy+ < Ke’zF(L“’*), 2Ty < Ke’QF(LJFy*), (2.9)
gyt —y7) < gy + 2L —4) < e ?'EDg(2y.) + q(2(L — 2))e > < Kq(21)q(2ys). (2.10)

This allows to take care of the terms in y in the estimates.
We now choose R so that we gain some coercivity in (2.4) and (2.3)). For this we impose that

) ) 1
8o < 84 := min (,/463‘2,,/30;) and R =, @.11)
so that % < a3 and % < o.

Hence for Cy = max (K, Cy, C3) R?e?' (the point is to observe that it does not depend on M), for all ¢ € [0, T there hold
E(m) = 2E(w.) > 2>\2||€||§{1 - C4(H€H§{1 + 6_2FL6_2Fy*),
E(m) — 2E(w,) < C4 (Hsn?{l + e*me*?%),

d
S B(m) + 3asllels < Calhllel + lellm lel3e) + a(2L)a(2p.) ).

We also want to make use of the smallness of / and ¢ to get rid of terms which are cubic or higher in (g, h). We therefore
assume that

5o < %” (2.12)
so that for all t > 0, C4|h(t)| < aAs. Recall that y,, — 400, so that inf y, > —oo: we choose Lg such that
Lo > —2infy, + 4.
Thenon [0,7],y" —y~ > 2(L+y.—2) > L > Lg and as ¢ is decreasing on [Lg, +00), ¢(y™ —y~) < ¢(L). Thus, due to Z.3)
el < C1M (6 + /q(2L)) + Caq(L) < C1(M +1)(5 + q(L)).
We therefore assume that §g < 05 and Lo > L5 where 5 > 0 and L5 > 0 are such that

min(Ag, als)

05 +q(Ls) < ——————~ 2.13
5 q( 5) = (M+1)01C4 ( )
and we infer that on [0, 7]
C4||€||H1 < mil’l(/\g, Oé/\g).
Therefore, we obtained that
E(m) — 2B(w.) > Aslle||3: — Cue™FLe2Ty- (2.14)
B(m) = 2B(w,) < Cu(|lellfps + e~ Fe20v-) (2.15)
d
—E(m) + adsle]| 52 < Cag(2L)q(2y.). (2.16)

dt

The point is that, even if they hold in a regime where the relevant quantities are small or large depending on M, these estimates
(and the constants involved) do not depend on M.



Step 3. Decay of €.
Let 7,t € [0, 7] such that 7 < ¢. Integrating (2.16) on [r, t], we infer

E(m(1)) + aks / lell%e < E(m(r)) + Caq(2L) / 4(2y. (5))ds.

From there, together with (2.14) and (2:13), we infer

t t
Aa[le(®) I3 + Oé/\s/ le(s)72ds < Ci (IIE(T)I?p R GRS R ) Q(2L)/ q(2y*(8))d8)
< 2C4(e(n) 7 + ¢(2L)ko (T 1)), (2.17)
where for 7 < ¢, .
ko (T, 1) := e72T¥=(7) 4 o=2Tw-(1) +/ q(2y.(s))ds.
In particular, with 7 = 0, we obtain a uniform bound:
t
Aa[le(®)ll5 + 04)\3/ le(s)[132s < 2C4 (l(0) |31 + q(2L) ko (0, +00)) , (2.18)
0
—+ 00
where (0, +o00) =1 +/ q(2y.(s))ds < +o0. (2.19)
0

Going back to (2:17), fixing for now ¢ and seeing T as a variable, we have

9 [ axa, [t axs (adg [*
2 ([ Ielnds) = (G2 [ 1eolnds — el )

a
< 2C4e % Tq(2L) ko (T, t).
Now integrate this estimate on [0, 7] (for 7 < t) to get

alg

t T T ax
[ e s < [ Ne(s)nds + 205a2L) [ F ko(s. s,
T 0 0

Assume for now that ¢t > 1. In view of (Z.I8) with 7 = ¢ — 1, we infer that for A = %,

t 1 t
/ Ie(s) 3 ds < =D S((O)]3 + a(2L)mo(0, +00)) + 2Caq(2L) / e NE18) (s 1),
t—1 0
Let 7 € [t — 1,] such that
t
()2 < / el ds

(we use the mean value theorem). Then (Z-17) now writes, noticing that #o (7, t) < (ex(t))? (due to Lemmal[l.3} & is defined in

(LI,

- ~ t
Xolle(®)3 < e M (J|e(0)]13 + ¢(2L)ko(0,+00)) + Caq(2L) (n(t)2+ /0 e‘”“—%(s,t)ds), (2.20)

where Cy depends on C; and A only. Observe that

t t t
/ efzx(tfs)/io(s,t)ds :/ e 2A(t=s) <e2ry*(8) + e 2T (8) —|—/ q(2y*(u)du> ds

0 0 s

1 t
< ﬁe*ny*(t) +/ e 229 g (29, (s))ds + // e =229 g (2y, (u))duds
0

0<s<u<t

After integrating in s, notice that the last double integral is bounded by
n / C e 40y, ),
2\ u=0
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so that

t
1
/ e A=) ko (s, t)ds < (1 + 2/\> K(t)2.
0
We can therefore simplify (2.20): recall the initial estimate (2-7) on £(0), we also use that v/a + b < y/a + v/ for a,b > 0, and

Cy>1,q(2L) <1.For C5 = U% max <C’1(1 + v k0(0,400)),1/2 + 21)\> we obtain the bound
2

Vvt € [0,T], |let)|lg < Cse 64 Csy/q(2L) (e + k(t)), (2.21)

Let us also recall at this point that due to Lemma k — 0 at co and is integrable on [0, +0c0). In particular, & is bounded.

Step4. Ty =Ty =TT (m) = +oo.
Let us first define M and choose dy and L. For this, we recall (2.2) and (2.10): there holds for ¢ € {+} and ¢ € [0, T}]

|y () = (4°(0) + v (D))] < 01/0 ||5(5)||H1d5+201Q(2L)/0 q(2y-(s))ds. (2.22)

Define oo oo
My, = 2CC5 (i —|—/ q(2y.(t))dt +/ n(t)dt) , (2.23)
0 0

and
M = 2C5(1 + ||kl Lo (j0,4-00)))-

Now that M has been determined, choose g and L so as to satisfies the constraints in the previous steps, namely 2.11), 2.12)

and (2:13), and also so that
do < 1/(4My) and /2q(Lo) < 1/(4M).
From (2:22) and the definition of M; (2.23)), we obtain for c € {£} and ¢ € [0, 7]

[y (1) — (4(0) + 19 (1)) < CLM (6 + v/2q(L)) < % <1

In view of the definition of 7% (2:8), and using a continuity argument, this last bound implies that 75 = T;. Now, from 2.21)) and
the definition of M, we get that

Ve 0.T), el < % (5 +/a@h).

Again, recalling the definition of T3 (2.6)), a continuity argument yields that 7; = T’ (m). This implies in turn that ||m|x: is
uniformly bounded on [0, T (m)) and from the blow up criterion in Theorem [I.1} 7'y (m) = +oc.

Step 5. Convergence of m and g.
The bound (Z:2T)) now holds for all ¢ > 0, and gives a rate of convergence of ¢ — 0, which is precisely (T.17).
Finally, (2.2)) writes

Vt,2 0, 9" — gil < Cillle@)lm + q(2Lo)q(2y«(t)))

for. € {£}. As ||e]| g1 and g(2y.) are integrable in time, g*(t) — g% (¢) therefore admits a limit g, € G as t — 400, and

+oo
9" (t) — (95 + 9:(8))] < Cl/t (lle(s)llzr + a(2L)q(2y«(s)))ds
< les (6 + V/q(2L))e
“+oo
+ C105(1 + v/ q(2L) IV a2y )l o< ([0, +00))) V' a(2L) /t K(s)ds.

and (as ¢ is bounded) this gives (T.18). O

3. LOCALISATION AND ASSOCIATED BASIS
In order to prove Propositions and[2.3] we need to introduce a localisation function 1) and the basis related to w;™ and

w, . This is the content of this section, along with several miscellaneous notations and results. From now on, C' will be a universal
positive constant which may change from line to line.

10



3.1. Interaction of domain walls
From the explicit formula of the domain walls, there holds the following.

Lemma 3.1. There exists C' > 0 which does not depend on ~y € (—1,1) such that, for all j € {0,1,2}

6%(11)5(1’02) - 61)(1‘)‘ <Ce ' ifx >0,

8 (w7 61)(30)‘ < CeTlal ifz < 0.

Similar estimates for wg follow, mutatis mutandis.

Corollary 3.2. There exists C > 0 such that for all g% € Gsq and g~ € G, forall x € Rand j € {0, 1,2}, there holds

(g~ wl ™ 4 61)’ < Ce T > gt

o (g* w7 — 61)‘

8 (g~ awl ™) 4 61)’ <Ce W V) iy <o <yt

O(g* w7 + 1)

3g(g_.w£7l’gé) _ 61)‘ < eF(Q;c—y++y7) ife <y,

oi(g+ 0l )

R I P
e~2@=y™) ife>y*
S Cefl“(y*'fy_) X 1 pr c [y_7y+} )
eQF(fc—yf) lf.l? < Y-
—or(z—y™t .
e M@=y ife>y*
‘ar(ng'wS‘L@))‘ ' ‘gf-wi_l’az) +61‘ < CeTW =)« {1 feely ,yt].
eflr=y™) ifr <y~
e eyt
eQF(m—yf) lf.’L' <y

Corollary 3.3. The integrals over x € R of all the functions appearing in Corollary are bounded (up to a constant) by

ay™ —y).
Lemma 3.4 ([4, Lemma 3.2]). There holds

2 2

0.0 125 = llex A2 = 2,
2

/(61 Aw?) - Opw? da = —%,

/(wf A WwI Aep)) - Opwd de = —207.

Lemma 3.5. Forall g € G, there holds
lg-wi —wl| g < Clgl,

and, foranyx € R, ify > 0and j =0, 1,

e—F(:E—y) l‘f.T Z Y
|01 g.w{ () — Hwf (z)| < Cmax(|gl,1) x { 1 ifzel0,y,
el'e ifx <0

and similarly when y < 0. Moreover there exists by > 0 independent of g such that, if ||g.w? — wl || g < b0, then

9l < Cllg-w] — w1

11



Proof. The third point is [4, Claim 4.12]. The first point was also proved in [4], see (4.6) in there. For the second point, we can
refine the latter:

g-wi () —wi(x) = 7y Rewi (x) = Rew] () + Ryw](z) — wi(z),
lg-wi () = wi(2)] < |7y Ryw](z) = Ryw? (z)] + |Ryw] (x)
< |y max |0pwl| + |@ls,,ler Awd ()

[z_yvm]

w (x)]

b

and the conclusion comes from Lemma@ On the other hand, one can also estimate in another way for x > 0:
gw(z) —wl(z) = gwl(x) —orer — (wl(x) — o1e1),
and we can estimate thanks to Lemma[3.1} A similar computation can be done for < —y. Finally, we also have
lg-wi (z) = wi (@)l L < llg-wlllpe + [[wl]Le <2,
which gives the estimate for z € [—y, 0]. Similar arguments for the derivative give the conclusion. O

3.2. Localisation
We fix some function 1 which satisfies the following assumptions :
e p=0o0n(—o0,—1],% =1on[l,+0c0),
e 0 <Y <1lonR,
e Vz e R, 1 —1¢(z) =¢(—x)
s Vi € W3(R).

Then, we take some R > 1 large to be fixed later and we define a localisation function and a localised scalar product:
T
vna) = v(F), ad (Fg)on = [ F@)gla)bno)d G.1)
defined for all f, g € L*(¢p(z) dz) = {h € L3 (Supp ), [hll72 (yr (0) da) = (B By < 00}

In the course of gaining control of localized quantities, we will also use L?(supp ¢'r) (or variants), and we emphasize the
need to pay attention to the difference between

1/2 1/2
lisoniran = ([ 15@PoRE)  and U lisumpin = ([ li@Poas)

To avoid confusion, we precise the underlying Lebesgue measure dx when a weight function is involved.
We can also define, in a similar way, H*(yg(z) dz) and H*(supp ¢r) for all k& € N. Moreover, observe that for all R > 1
and integer k, there hold

050 and |

). = 7]

We also show a result with respect to the localised H' and H? norms.

1
|05 vn]l . = 2] AN (32)

Lemma 3.6. There exists C' > 0 such that, for any f € H*(R) and any yo with 1o = 7,,%r, there holds for k = 1,2

2 2 C 2
H V wofHHk - ||fHHk(w0(m)da:) < ﬁ”f”H’“—l(suppawo)'

Remark 3.7. For the case k = 0, we even have the equality

| vies

Proof. For the homogeneous H' (semi-)norm, we compute :

0 (Vbof ) = Vbodaf + F0u/ o

2 2
Lo = L2 (o) doy-

12



Therefore,

o (Vs

2
100 oy +2 [ VT0uS  $0u e+ [[ 100/ o
1 2
100 30y + 5 [ OalP0utocda (11 (00v/io)
2 1
= 100 /72 oy amy + / 1P (0a/0) " = 502,00 da

The conclusion easily follows from the estimate of the L°° norm of ((’)z\/wo) L 02_1o with @) Morover, there holds

2%z

02, (V/0of ) = V02, f +20u\/Fo0e ] + [02\ /¥,

so that

(82, (Vo)) 0(02,0)? = 23/5002, § (20 /B0 + 3R/ + (2067 D00 f + 1520/

Expanding the first term of the right-hand side and integrating, we get
[ Vo218 bof dn = [ £32 (020~ (0:/00) ) da (3.3)
- [ (w0~ (i) Yo [ fazfax(aimo— (/i) ) e
[ Vit son S0 e = § [omon@u0ar =~ [ b0 G

and the conclusion follows from obvious estimation. O

3.3. Localized multilinear estimates in Sobolev spaces

Definition 3.8. For k > 0 and ¢ > 1, and given a (possibly vector valued) function f = (f;)1<;<., we use the notation

for a (possibly vector valued) function g if each component of g is an homogeneous polynomial of degree ¢ in the components of
f and their derivatives such that the total number of derivatives in each term is at most k, and whose coefficients are €;° (R)
functions (smooth and bounded, along with all their derivatives). g is then the sum of terms of the form

J ok
@ H H o5 f5) b where ZEW =/, and Zéjﬁﬁ <k, and «a€%”.
Jj=1r=0 Ik

e
Lemma3.9. 1. Ifk' >k, then OL(f) = OL,(f).
2. Ifa € €, then aOL(f) = OL(f).
OL(f1)Of (f2) = Ofh (fr fo).
3,05,(f) = Op41 (f),
Oi(f1 + f2) = Oi(f1. fo).

This notation has been used in [4] to express pointwise bounds that turn into Sobolev bounds with linear dependence in the
highest term. We will generalize these estimates for localised integrations :

“oR W

Lemma 3.10. 1. Assume g = O%(f). Then there holds if k > 2

”g”L2 (supp¥r) ~ Hf”H’“(Suppr)Hf”H’” I (supp Yr)"

k=1,

4
||g||L2(supp'¢)R) 5 ||f||H1(Suppr)'
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2. If f € H', we have for { > 2,
[ O8trn(a) as

4
S Hf”Hl(suppr)’

and, ifg € HY,
\ [ odngwpnt) s

S ez supp ) 191 1 supp )

3. If f € H?, we have for { > 2

-1
rS ||f||H1(suppr)||fHH2(supp¢R)7

[ Orrnta)as

{—2 2
5 ||f||H1(supp'¢)R)||fHH2(supp'¢1R)'

| [ Oivnta)ac

The proof of all these estimates is similar to that of [4], and we refer to it. We emphasize that all the integrals involved
are indeed on the support of ¢, but also that for all j > 1, H’(suppr) < L°(suppr) with uniform constant since
supp¥r = (—R, 00) is an unbounded interval.

3.4. Coercivity of a Schrodinger operator

We also define the following operator for I' = /1 — ~2 which was already used in [4] :
Lrv = —02,v +I'*(cos? , — sin® 6,)v.
We recall the main properties of this operator.

Lemma 3.11 ([4, Lemma 4.10]). Lr is a self-adjoint operator on L?(R) with dense domain H?(R). It admits 0 as a simple
eigenvalue with eigenfunction sin 0., and its spectrum is [['2, +00). As a consequence, there exists \g > 0 such that, for all
ve HY(R), (Lrv,v) < 2||v|[3: and

1 2
(Lrv,v) > 4)‘0””‘@11 - —(/vsin(é’*)dx) )
Ao

and for all v € H*(R),
1 . 2
ILrv))2s > 4hollvl|%e — —(/vsm(é)*)dx) .
Ao

However, we will not be able to apply directly this lemma on the same functions as in [4]]. Indeed, the localisation function
needs to be taken into account, as follows.

Lemma 3.12. There exists C > 0 such that, for any f € H?(R) and any yo with 1o = Ty, Vg,

2 C 2
201 e (go () dwy T ﬁHfHLz(suppazwo) >\ Lrf. f .
0

1 : 2 C
> Dl Mgy oy — 3o ([ VoL 510600 42)” = 12 0

and

2 2 1 : 2 C
HLFf||L2('¢)0(z) da) 2 4)\0Hf||H2(¢0(m) dz) — )\70(/ Vof sm(@@dm) - ?”fHHl(supp@Iwo)'

Proof. First, remark that we constructed 1 g so that /9o f € H? as soon as f € H?. Then, we also have

(LFf7f)1ZJ0 = (\/ ’(/JOLFf7 V 1/J0f>
From the definition of L, there holds

Lr(Vdof) = VoL f = =02, (Vbof ) + V002 f = O2/bof + 2007/ 000, f. (3.5)

14



Thus,

(L1 oo = (B (V1) VTt ) = = (2Bt /it ) = 2( 0/ Tuat. /T
—(M@ixwf?ﬁ f) - 2(%%@%%@10, f>.
Therefore, after an integration by parts in the last term,

(L o= (e (Vo) vins ) = (Vo2 /Tt ) + (0 (vids /i) 1.1 )
~ ((o-vim) 1.5).

Therefore, we get

(rer.5) = (me(Vor). Vs )| <

R2 ”fHL?(suppazwo)

—_—
=

The conclusion follows by applying Lemma|3.1

o} (Lr‘ (\/wo f) Vo f) and with Lemma As for the second estimate,

from (3:3), we also get

(2e(Vaur)) = (Be) o+ 20/BoLud (2o f + 20000 ) + (2,3 Bof + 20,/ 50017 )
For the second term, expanding Lr f, we obtain by integrating the following terms
[ Vo210 o an = [ g2 (0200 - (0:/50) ) da
=~ [@02 (020~ (0:/50) ) o [ 10u10, (02,00 - (az\/%)Q) dr
/\/% o fOu\/ 100, f dz = ~ /amoa (0 f)? :—f/ 0(0af)? 3.7

(3.6)

and also
1
/ Vo2 (cos? 0, — sin? 0,)0% /1o f>dx  and 3 / I'?(cos? 0, — sin? 0,.)0,10 fOu f da.

From straightforward estimates thanks to (3.2)), we get

C 2
= EHf”Hl(suppamwo)'

L2

2
‘|Lpf||ia(%(x)d$) = ||ze (Vos)|

2
The estimate then comes by applying Lemma|3.11|to HLF (\/1&0 f ) HL2 and Lemma again. [

3.5. Expansion in the associated basis

The computations made in [4] show that the following frame is better adapted to a S?>-valued magnetisation m close to a
domain wall w? for some o = (01, 02) € {£1}?. Define

o
*

1
= ———wi A (e1 Awy), Pg = wg A n.

n
sin 6,

(ws(z), ns(2), p+(2)) is thus an orthonormal basis in R? for all z € R.
One important observation, which motivates the introduction of this basis, is the following. Let m = w + 1 € S? with 7 small:
if one decomposes
1 = pWsx + VN + PPx,

then p is quadratic in 7, whose norm is thus equivalent to that of v and p. This is pointwise in z, and it can be globalized or
localized.
The precise statement is as follows.
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Lemma 3.13. There exists 03 > 0 and Cy > 0 such that the following holds. Let w, = w¢ for some o = (01,02) € {£1}2 be a
domain wall. Let m = w, +n: R — S? and xo > 0 be such that

171l £r2 (= 20,00)) < T3-
We decompose 1) in the (W, N, i) basis pointwise in x:
N = pWy + Ny + ppsx Where p=1n Wy, V=10 Ny, pP=10"Px.

Then i, v, p € H*((—xq,00)), with

1
2
||N||H1((_mo,oo)) < 02||77||H1((—z0,oo))7 62”77“1{1((_10,00)) <, P)“Hl((—xo,oo)) < CQ”n”Hl((—ato,oo))' (3-8)

Moreover, as soon as xo > R, there also holds

1
||/~L||H1(¢Rdx) < C2||77||H1(¢Rdm)H77||H1(supp¢R)a EllnHHl(wRdI) < (v, P)HHl(wRdI) < CZ||77‘|H1(¢RC1I)~ (3.9)

In particular, u = %\77|2 = O2(n). If furthermore 1 € H?, then p,v,p € H* and

1% P)lz2( 00 < Collnll 2 anroo

Last, there also hold )
psind, =n- (e1 Awy), o1sinf,v = ﬁn-arw* — - (e1 A wy) (3.10)

Proof. The proof is similar to the first step of the proof of [4, Proposition 4.16]. First, the relations between p, v, p and 1 along
with Lemma 3.10] give

H/’LHH’V‘((faJO,oo)) + ||V||H’C((fa:g,oo)) + ||p||Hk((fa:0,oo)) S ||77||H’€((7m0,oo))'

On the other side, n = pw, + vn. + pp. and therefore
1011 275 ((—0,00)) S BN Erk ((—20,00)) F 1V (2 0,00)) F 112N E75 (= 26,00)) -

= %\n|2 comes from the expansion of |w, -+ n|> = 1, which gives the first inequality of (3-3) with Lemmam As soon as
IIn]] H ((—0,00)) is small enough the second inequality is then straightforward. In a similar way, we also get 9, = 1 - 0,7, and
the ﬁrst.inequal~ity of 3:9) .is then easi.ly Proved. If supp ¢r C (=0, 00), then ||| 71 (gupp ) < I3 from the assumption and the
second inequality of (3.9) is proved similarly.

Eventually, the last equality comes from the formulas (see (I.8) for the first one)

Opw, = IZsin 0. (o114 + YDi ), e1 A wy = sin 0,p.. O

With this result, the magnetization can be decomposed in a similar way when it is close to a 2-domain wall structure (with the
two domain walls far away enough).

Lemma 3.14. There exists 65 > 0 and Lo > R such that the following holds. Let L > Lg, g* = (y*, ¢*) such that g* € G~ 1,

and g~ € Ge_1. Letm = wt +w™ + ey + ¢ € H for some wt = g+l and w— = g‘.wfl’(jé), with e € H'. Define

also
0t = (—gF)m—wi = (—g%).(wF +e1 +¢).

nT can be decomposed in the (wE,n™, p*) basis associated to w :
+ +, + +, + +, +
N = pTWe VTN + TP

Finally, define ¢t (x) = Yr(£x — y*). Then, for any k € {0,1,2}, if m € H* and ||¢|| ;1 < &b, there hold

17 W e amy < 7 i upp ) < N1l g+ Cem =0T, (3.11)
lell g < Hn+HHk'(qu%(x) aw) T Hn_HH’“(wg(m) an + C(eF(R—y+) + eF(R—&-y*))_ (3.12)
Moreover, there also holds
1
6||(V:t7p:t)”Hk(supp1[;}j{f) < ||ni||H’€(suppw}j§) < CH(V:‘:’pi)HH’C(suppw;)’ (313)
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Remark 3.15. This lemma shows that, as soon as ||¢|| ;. is small enough, estimating ||| is equivalent to estimating both
|(vE, p*) | £ (supp o) and eT(R£y™) This property will be intensively used in the following.
R

Proof. The first inequality of (3.11)) comes from the fact that 0 < wﬁ < 1. The second one can be easily deduced from the
following computation :

Hn+||H’€(supp1/1R H w tete HHk(supp'L/;;) = "w_+61+6|‘Hk(supp1/;R)
< Hw + elHHk (supp¥'r) + ||€||Hk(SUPP1/’R)
<|lg™-(wy +ex HHk “Roo)) T el gz
S ||w* + 61||H’“((7R7y_700)) =+ ||€||Hk7
and the conclusion with Lemma The computations for ™~ are similar. We also have
2 2 2
el g = HEHHk(wR(z) do) T ||€||H’V(1pR(fx)dz)’
and, similarly,
||5||H’€(¢R(x) dz) — Hg "7 —(w” + el)HHk(’l[)R(l')dlE)
<llg*m HH’“(wR(x) az) Jw™ + elHHk(wR(m) dz)
< Hn+HH’V(¢;(z)dx) + H’U)_ + elHHk(suppl/JR)
< H’7+||Hk(w;(x)dx) + Cel Uy,
Once again, the computation for ||| 7y, (— ) a 18 Similar and symmetric. Eventually, (3.T3) comes from Lemma and the
fact that supp ZZJE C [-R—y",00) and supp ¢ C (—o0, R —y~|. O

The goal is to use the previous lemma with the decomposition provided by Lemma 2.T] However, the localisation function
will still remain in the integrals we compute. Therefore, we won’t be able to get the same vanishing integrals as in [4] when we
apply Lemma[3.TT] However, the integrals we will obtain are still small enough : the reminiscence of the localisation function
gives only negligible terms, as shown in the following lemma.

Lemma 3.16 (Almost orthogonality). With the same assumptions and notations as in Lemma . define n*, p®, vE, p and i &

as in Lemmal3.14) Then there holds
+ ’/\/ iuisine*dx

‘/ ﬁpi sin 0, dz

Proof. From (3.10), we get
/ Ij%:pisma dx—/ (e1 A wyj )dx,

0'1/\/1,/)RV sinf,dr = = / i - Og widx— / w (61 /\wf)dm.

On the other hand, by the expression of n*,

/ wﬁni (ey AwE)de = / VUr(Ez) (gTwF +e1) - (e1 Agtawd)de + / VUr(Ex)e - (e1 A gtawd)d.

For the first term, we can estimate by using the fact that R < L < min (yT, —y~) and with Corollary

‘/ VUr(gTwg +e1) - (er Agtaw)da

_ +
< C(aly* = y) + el 2" FF00)

oo
§/ ’g_.w*_—i—elHel /\g+.wﬂdx
-R

SO +y"—y )e T ),

For the second term, by using the orthogonality conditions (2.T)), we get
‘/ Vgre - (er A gtaw) de /(\/1/13 — 1)€~ (ex AgTawl)dx

R
< / leller A gt wf | da < Cllell p2e" B,
— 00

Similar estimates hold for / \/¥rn~ - (e1 Aw, ) da and for / ﬁni - OpwF d, and thus does the conclusion. O
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4. LOCALISED ENERGIES

In this section, we prove Proposition[2.2] For this, we localise the energy thanks to the localisation 1z, which is a classical
technique to study multi-solitons for nonlinear dispersive equations.
We define the localised energies :

E*t(m) = %/(\@;mﬁ + 2v0:m - (ex Am) + (1 — mf))m:g(x) dz,

E~(m) = ; /(|8@<m|2 +2y0,m - (e Am) + (1 — m%))wR(—x) dz

By the properties of 1), we know that ET + E~ = E. Then, we define the following modified energies :

B¥(m) = B (ryom) = / (18emf? + 250m - (ex Am) + (1= m3) )7 () da

where ¢} == 7_,+ g = Yr(z +yT), and

1

Ei(m) =E"(ry-m) = 2 /(‘8Tm|2 —27y0;m - (ex Am) + (1 — m%))l/)]_%(x) de,

where 15, = 7_,~hr(~x) = Yr(~z + 7).

4.1. First estimate on the localised energies

First, we want to expand the localised energies defined previously. For this, we define n*, and then p*, v* and p* like in
Lemma[3.14] With similar computations as in [4]], we show that, up to some additional negligible terms, the expansion of the
localised energies gives no term of order 1 and nice terms of order 0 and 2.

Proposition 4.1. Let the assumptions of Lemma be satisfied. Then,

- 1 _
\Eﬂm) — [BE ) + 5 ((Eev v) s + Lot 05) 1 )| ’ < O|llels + gz llela + v 4 2]

1
72|
Proof. The pointwise estimate of steps 2 and 3 of the proof of [4, Proposition 4.16] still hold, both for 7 and 5. In particular,
we have :

SE(nT) = 03(nF) £ 2(02,0,0F + 0,0.0,v  )wy + (02,0 + TvF)ny + (—05,0" +TpF)ps, (4.1

1
0 SEwE) = Byt - wE =~ [t 42)
nE - SE(nT) = 03(nF) — vEO2 vE + T2 (vF)? — p=02,p™ + T?(pF)? (4.3)

Moreover, even if ET consists only in quadratic terms of m, it is not invariant under translation due to the localisation term
r(£x), and one should also take care about the integrations by part, so that the relations of the step 4 of the proof of [4]
Proposition 4.11] are different :

= B wd) ¢ [t SB @) ot g [0t SE0H )R @) ds
= [t owwtovhe)de - 5 [ o* - omto,uka) do
oy [ nuouE ) o
Using both (#@.2)) and (#.3)) along with Lemma[3.10 we get
E*(m) = E*(w¥) = O[n* |31 (upp o))
=5 [ Bt PoR@ et 5 [((-Ot 4 Tt 0kt 4 T k(o) do

1
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We now use the fact that

1 = G0 4 05+ (507 = 2+ (00 + ]

Then we also use the fact that
— B, =T%(cos? 0, — sin?4,), 4.4

so that
=5 [ Bl PR o+ g [ ((COt st (gt 4 r%i)pi)w?;(m) dz
:%((pri,V )y i—&-(Lrp ,pE —*/5* i‘ V(e
Moreover, using (3:2), we get
[ 00,00 a] < it ) 105 it
2V 2V

C
'/ el /\’LU ) aﬂ/’ﬁ(x)dx < EHniHLQ(suppame

2 C 2
)/|ni| 8§Lw§(l‘)dx < ﬁ”niHLQ(suppazwg)'

)||el +w HL2(bupp8 IZJR)7

Therefore, there holds

’Ei - {Ei(wi) + %((pri,yi)wﬁ + (Lppi,pi)wﬁ)}

3 1
— C[HniHHl(suppwg) + EHniHL?(suppamwﬁ)||8mw*i||L2(supp6zw§)

2
lex + 0| auupp o, v ﬁ“"iHLQ(suppazw%J’

+
+ EHn HLQ(suppamwﬁ)|
and the conclusion comes from (3.T1)) and Lemma 3.1} O

However, in the previous lemma, E* (wF) is not a constant : it still depends on the localisation 1/)1%, and therefore on y*. The

following lemma estimates how far this quantity is from the constant F(w.) == E(w}).

Lemma 4.2. There exists C > 0 such that, for any y* such that +y* — R > 0, there holds
)Ei(wf) ~ E(w,)| < 0 2 EF),
Proof. By the properties of w® and 1/)1%, we have

]Ei(wi) — B(w,)

< Oflws + 61”?{1(11)’

=[5 [ (02 20000 (ex nwd) 4 in0.) 1 = (o)

where I == (—00, R —y¥)and I_ == (—R — y~, 00), and the conclusion follows from Lemma[3.1] O

As for the quadratic terms in Proposition 4.1} we can estimate them by applying Lemma to v+ and p*. Applying also
Lemma [3.14] the following estimates hold.

Corollary 4.3. Under the assumptions of Proposition there holds

£ % (2 + 2 C 2 20 (R+yT
(LFV ) i>4)‘0”V HHl(wfg(x)dz) /\/ 7™ sin(0 ) _?(”5”L2+6 (Fexy ))7
2 O -
<L > (WE(z)dz) ~ (/ \/ ¥rp* sin(6 ) *ﬁ(”d\ifreﬂmiy )),
LevEv® ) <ol + 125 (Il + s
v, v " Villar (gt @) aey T g2 \I€llL2 T € ;
R

(LFp:t7 p:t

> 4ol o*|[7

+|2 c¢ 2 2T (R+yT
. <2p ||H1(¢g(z)dx)+ﬁ(||€”1;2+6 (Fy ))v

IH
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Putting everything together, we get bounds by below and above for E+(m).

Corollary 4.4. Under the assumptions of Lemma[2.1|and assuming L1 > R, there exists C > 0 such that the following holds.
With same notations as in the conclusion of Lemma forallt € 10,7,

2 2 ot _
23|I s azy + C (el + T ED 4 X ERD) > B2 (m) - B(w,)

, 2o

1 n _
3 2 — —
17 st amy = C (el + Tl + 72 R 4 2D,

Proof. We use Proposition .1 whose assumptions are satisfied thanks to the conclusion of Lemma[2.1] Thus, we get for all
te[0,T]

~ 1 3 1 2 _ ot -
B (m) — B (w¥) > 5 (LovE,v%) s + (Lop®,05) 2 )| = C[lellin + 5 llellfe + €2 E0) 4 2],

From this inequality, we can substitute E= (w¥) into E(w, ) thanks to Lemma Then, both (Lrv*, vF) px and (Lrp*, pT) "
can be estimated by below by using Corollary 4.3] Moreover, the terms

2 2
/\/ Ij-tfz/ sin(6 ) /\/ Ijgp sin(# )
are controlled by the "almost-orthogonality” estimates of Lemma[3.16] From this estimate, we have
q(y+ _ y—)2 < Ce—31"(y+—y7)/2 < (;ve—Ql—‘yJr + Cve2I‘y*7

and thus the conclusion. The estimate by above is obtained with similar computations. O

Proposition [2.2] follows by taking the sum of the two estimates of Corollary 4.4 and applying (3.12)) from Lemma[3.14]

5. EVOLUTION OF THE ENERGY

In this section, we prove Proposition[2.3] The evolution of the energy is already known from [4]]. We recall it here.

Lemma 5.1 ([4, Theorem 4.1]). Define the dissipation term

D)= [ - fm- 5Em)[*) d,
and the forcing term
F(t) = /(m ANep) - (mASE(m))de.
Then there holds the energy dissipation equality:

d

SE(m(1) = —aD(t) + ah() F (1), G.1)

5.1. Localisation

Proceeding as before, we localise each of these terms :
D) = [ (BB ~ m 3B (m) )on(0) ds
FE(m) = /(m Ner) - (mASE(m))Yr(tr)de

Therefore, we have F' = F'* + '~ and D = D™ + D~. We also define, in a similar way as previously,
D*(m) = D*(r,2m) = /(|6E(m)|2 — |m - SE(m)?)iE (x) da

FE(m) = F¥(r,4om) = /(m Aer) - (m A SE(m))E(x) de
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5.2. Estimates on the localised terms

5.2.1. Dissipation term. First, we show that the dissipation term is positive and can be estimated up to some negligible terms.

Lemma 5.2. Under the assumptions of Proposition there exists C' > 0 such that, if ||e|| ;1 < 1,

2 2 2 ¥ T
[DE(m) = (| Lo [ay ay + 1E00% [ any )| £ € (lelalell g + P 4 STED) . (52)

Proof. First, we recall that
m=g".(n" +wl) =g .(n" +wy),
so that R
D*(m) = D*(n* +wy)

Once again, the pointwise estimate of the steps 3 and 5 of the proof of [4, Proposition 4.16] still holds here, so that we get:
BE(™ + w¥)| - [§E(w)|* = 28.wF - 6E(m™) + [Em®)|,
2
|0 +wi) - GE(* + wd)|* — [wE - SBw)|” = 282u* + 25*w§f SE(n®) + 28.0% - SE(n*)
2
+ |wE - SE(m®)|” + OF(n™) + 01 (n™®),
wE - SE(E)|? = (2020, + 20,0.0,0%)% + 03 (n*) + 04 (nF),
[SEG)|” = (202,0.0% +20,0.0,%)? + (=020 + T%%)? + (=02, +T2%%)? + 03 (%) + 04 (n*).

We also recall that p* = —1((v%)% + (p*)?) — §|17i|4 and that [0 E(w})| = wE - SE(w¥) = B.. Therefore:

D*(m) = / [(—amvi +T%0% = Bv®)? 4 (=0pap™ + T2 = Bup™)® + OF(n™) + Oi(nﬂ]w?é(:c) da
Using (#4) and Lemma[3.10} we get
D)~ [[ |20 + e uh o) aa
+ +112 412 +112
:O(H?7 HHl(suppriz)H"7 HH2(supp'L/1§)>—’_O(H17 ||H1(supp1/)§)||77 HHz(suppriz))'

The conclusion follows from (3.11)) and the fact that both ||| ;;» < 1 and P(R—y*) < 1, O

Once again, the localisation remains in the quadratic terms of the left-hand side. Applying Lemma to both v+ and p*,
along with Lemma [3.14] we obtain the following estimates:

Corollary 5.3. Under the assumptions of Proposition.1] there exists C, \s > 0 such that, for R > 1,

2 2 yF
D% 2 Mo |ln g awy — € (el el o + #4974 RQ

- — /\/Ey sin(f / ZpE sin(0 )dx)2,

) + ezr(Rigﬁ))

1 _
D 2 s ela = O (llelfpa el + "7 4 eI 4 2o 4 Ty 200D
1 L Lo
W E{Zi} l:(/w/’(/}Rl/ sin(6,) d ) (/\/ L sin(6 dx) } . (53)

5.2.2. Forcing term. In a second step, we show that the forcing term is negligible enough with respect to the dissipation term.

Proposition 5.4. Under the assumptions of Proposition there exists C' > 0 such that, if ||e|| ;1 < 1,

.
|F=(m)| < O(lelzp + X7,
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Proof. Similarly, we have ~
F*(m) = F(7* + w?).
Again, we will take advantage of the pointwise computations of [4].
(" +wi) Aer) - (0 +wi) ASE(* +w))) = (Wi Aer) - (wi ASE(WE)) + (0" Aer) - (w) ASE(w))
+ (Wi Aer) - (07 AOE(wE) +wE ASE(T)) + O3(n*) + O3 ().

Since wF A JE(wF) = 0, the first two terms are 0. Then, observe that w A e; = sin(6,)pF and nf A wf = —pF, thus

(wk Aer) - (n* ASB(wE)) = sin(0.)p - (7 A Bw) = B, sin b0,
(¥ Aer) - (wE ASE(m*)) = sinb. (~92,05 + T2%) + 03(n*).

Using @.4), we obtain
(" +wi) Aer) - (" +wi) ASE(n™ +wy)) = sin.(Lrv™) + O3 (™) + O3 (™).

Moreover, we know that L (sin 6, ) = 0, therefore
/sin 0. LrvEyd(x) de = 2 / D, (sin 0. )vE0,9% () da + /sin 0,002, (x) d

Estimating these terms by using the fact that supp 811&1% C [-y* — R, —y™ + R] (and the same for 8§xw§), we get

‘/ Or (sin 0.)v* 0,75 () dw’ < ol

< C||3z1/’||Loo er(Riﬁ)HyiHU

+
19 5100l 2y~ 1 17 2yt -y )

(—y*—R,—y=+R))’
’/sm@ ViaQ ( ’ H wHLN [[sin 6] HyiH
*NL2((-y*—R,~y*+R)) H'((-y*-R,~y*+R))

I m¢|| ~
< CTLeF(Riy;)Hyi’|H1((_yi_R7_yi+R))'

Thus, we obtain

C
[ sino.zevup)ae] < g (5 ooy + €7 0),

and the conclusion follows in the same way, using again Lemma [3.10] O

By summing for « = £1, we get an estimate for F'.

Corollary 5.5. Under the assumptions of Proposition there exists C' > 0 such that, if ||e|| ;1 < 1,
[F(m)| < C(llelff + V) 4 2 0H0) (5.4)

5.3. Dissipation estimate

Now, we prove Proposition [2.3] thanks to the previous lemmas.
Recall the energy dissipation equation (5.1)). From the estimates of Corollaries[5.3|and [5.5]on D and F respectively, we get

d

2 2 ot - 1
S B(m) + sl < Calelf (el + TV 4 L ED 4 1) (o) el

+ Ca‘h(t”(ezr(myﬂ i ezF(R+y_)) + )\% Z {(/ Vbt sin(o*)dx)2 + (/ Vb sin(&)dx)j .

ve{£}
The conclusion follows by applying Lemma [3.16]to the last terms of the right-hand side.
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6. PROOF OF THE DECOMPOSITION OF THE MAGNETIZATION

In this section, we prove Lemma [2.T] which decomposes the magnetization with two nice gauges. This result is a consequence

of the implicit function theorem; in order to take into account the constraint that the magnetization is S 2_valued, it is used here in
the context of Banach manifolds.

For g* € G such that +y* > 0, we define the profile

Pys g~ =gt wl + g w, +e.
We also call Py ;- = Po,0),4- -

6.1. Definition and properties of the functional

We start with defining and studying the appropriate functional: let
F:(L*4+L®°)xG? > R?

fm g 6 w )da:
Lo Jm- (e /\ wi))dz

(m7g » g ) = fm )dx
fm- (e /\ g wy ) dx

and
F: H'xG*-R?
f& g".0, w+) dx
(m,g*g™) Je- el/\ g Taw)))dz

fe wy)dz |7
Je- 61/\ g wy ) dx

where £ :=m — P+ ,- € H', sothat F(m,g",97) = F(m — P+ 4,97, g~ ). Remark also that (-, g*, g~ ) is linear.

Proposition 6.1. There exists C > 0 such that there holds for all m € X and all g* € G

| F(m,g%,97)] < Clim| x,
for X = L? or L.

Proof. The result easily follows the fact that both 9,wF and e; A w¥ are bounded and decay exponentially at infinity due to
Lemma3.1]

O
Corollary 6.2. There exists C' > 0 such that there holds for all m,m’ € H' and all g* € G
|F(m,g*,97) = F(m',g%,97)| < Cllm —m/] «,
[Fm, g% g7)| < Clim = Pyr - s
for X = L? or L*™°.
Proof. Those estimates can be easily deduced from Proposition [6.1]and the definition of F, which gives in particular
F(m,g",97) = F(m',g",97)=F(m—m',g",97). O

Similarly, we prove a similar property for the partial differential D+

g_f, which is represented by a 4 x 4 matrix, endowed
with a norm denoted || - ||

Lemma 6.3. There exists C' > 0 such that there holds for all m € X and all g* € G

|’D9+,9*?(m’g+597)|| < O||mHX7
for X = L? or L.
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Proof. From the definition of F, we see that

—fm~ (¢7.02, w)dx fm'(el A (gT.0,w])) dx
= _ - “(e1 A (gT.0,wi))d = _ “(er Aer A (ghaw])))d
Oy+ F(m,g*,g7) = Jm- (e (()g NN ana 0, FlmgtogT) = Jm- (e <610 (g7 w))) de
0 0

Therefore, since 92w, ey A 8zwjjnd e1 N\ zij decay exponentially at infinity thanks to Lemma we get the conclusion for
these two differentials. As for 0,,- F and J,,- F, the same arguments give the conclusion. O

Let also define Fo(¢*,¢™,97,97) = F(Pr+¢-,g9",g) forany ¢*,¢* € G, and

0
21—y -1 0 0
r{o o 1 v

0 0 -y -1
We point out that A is invertible as soon as 72 < 1.
Lemma 6.4. For all g* € G, there holds

D¢t o~ Folg™,97.97.97) + Al < Caly™ —y7).
Proof. From the definition of Fy and by noting ¢* = (z*, a*), we know that
az+f0(<+v C_vg+ag_) = ‘T(aer (P(:+,C*)7g+ag_) = _‘T(<+'aww:7g+7g_)'

Therefore, taking (* = g* and applying Lemma[3.4] we get

1 0
2 _
+ gt =—=| 7| =
9o+F0l97,97.9797) =~ | ¢ [ gt.0,wt (~2) - (97 .0pwy) dz
0 [ 9T 0pwl (=) - (e1 A (g7 wy)) dz

The last term can be estimated thanks to Corollary @ Then, there also holds
Oat Fo(CT¢,9%,97) = FO4+ (Pev - )97 ,97) = Flee ACTwl g%, g7).

Thus, applying Lemma [3.4]again,

¥ 0
21 -1 0
o gt oy 2 _
6a+.7:0(9 9 .9 ,9 )_ F 0 fel/\g+w:~(7x)(gfatw;)dx )
0 [erngtawf(—z)- (e1 A (g7 wy))de

and the last term can be estimated again with Corollary 3.3}
Similar computations for 9,- Fo(g9%, g7, 9", 97) and 0,- Fo(97, 97,9, 97) give the conclusion. O

Lemma 6.5. For any m € H' and any g% € G, there holds
[Dg+ g~ F(m, g™, g7) = Al < O(Hm — Py g-|lx +aly™ ~ y‘)),
for X = L? or L*™.
Proof. From the definition of F and F, there holds
F(m,g",97) =F(m,g*,g7) = F(Pyr -9 97).

Therefore, using the fact that 7 (-, g%, g™) is linear and then so is D+ ,~ F(-,g*, g™), we obtain

Dyt g-F(m,g*,97) = Dg+ g~ F(m,g", g7 ) = Dyt g~ F(Pys g9, 97 ) — De+ o~ FolgT 97,97, 97)
= Dyt g~ F(m — Py+ g—,97,97) = Dev - Folgt, 97,97, 97).

The conclusion is reached by applying Lemma [6.3]to the first term of the right-hand side and Lemmal[6.4]to the second term. [
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6.2. Construction of the gauges

We are now in a position to apply the implicit function theorem, except for lipschitz type estimate on F. We will need an

intermediate result for Py+ - in the same context as Lemma@ as follows.

Lemma 6.6. For all i1, g1, gB3! g!4 € G, there holds

|| gll gl2l — g[s ,gl4] ||H1 > C’(‘gm —9[3]‘ + ’9[2] - 9[4]’)

Moreover, let yy > 0 be such that (—1)iy[i] > yo fori € {1,2,3,4}. Then there also holds

o st — gt ||| 4 g7 — gz ||| < Py g — Py [0 + Ca2a0).
Proof. By using Lemma [3.5]and the fact that
Py gt — Pyar gy = (9w} — g¥lw) + (g% ws — gw)),
we get the first estimate. As for the second one, we expand
2

P — Py g% = g — g 1?2 — gl
g1l ,gl2] gl31,gl4l || g1 g W, W || g Wy, — g Wy

H
+2(gMwf — gPlwt, g,
From Lemma assuming for instance y!*! < 3 and y¥ < 4I, we have for j € {0,1}

3yl —2)
)

& g wi () — aﬁ;g[?’]wj(gg)’ < O max (0.2-y!

8;9[2]10; (JZ) _ 65;9[4]10; (J;)‘ < O€7F max (O,mfy[2]7y[4]7x).

Then, a computation as in Corollary [3.2] shows that

w, — g[4].w

v JHL-

e~ T(x=yo) ifx > yo
09w (@) - 198wt (2)|og s (—o) — Bglwr (~a)| < Ce2 x 41 if 2 € [~y0, 0]
el'(z=vo) ifz < —yp
Therefore, we obtain as in Corollary [3.3|
(gt = gt (9% T = gwl ) (=2)han| < Ca2po),

and the conclusion follows.

Lemma 6.7. 1. There exists C > 0, L} > 1 and 8 > 0 such that, for all m € H' and go € G satisfying yo < —L} and

0:=|lm = Pogoll g <01,

there exist unique G~ € G such that
g —go| < Cdand|g| < C6,
< Co,

. }'(m,g , g ):O.

Moreover, (g, g~) does not depend on g.

2. The map
{mee +H' inf [m—Pogll; <d}— G
yo<—Lj
— (g7, )asinl)

is €™ with respect to the H' topology.
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Proof. Step 1. Existence and uniqueness First, remark that F(m,g",g~) = 0 is equivalent to p = p — A~ F(m,p) where
p= (97,9 ). Wedefine G(m,p) = p — AL F(m,p) for any p € G* and we look for a fixed point for this function. Moreover,
there holds D,G(m,p) = I, — A~'D,F(m,p). By applying Lemma we get
DG (m, p)|| < [[A7 ||| DpF (m p) — Al
—1
< ClA™H[(al™ =) + m = Pyr g [l )

Therefore, if we take p € By, (€) (ball in G? centered at p of radius &, where po == ((0,0), go)) for some £ > 0 to be defined
later, and assuming £ < 1 < L, we get due to Lemmal6.6}

DG (m,p)l < C||[A™|(a(yo) + 0+ |g7 |+ |97 — 90])
< Ol A7 (alyo) + 6 +€).

Hence, || D,G(m,p)|| < £ as soon as
1
Clla 1”( a(yo +5+£) 6.1)
On the other hand, we know that | F(m, po)| < C|lm — Py, || ;1 thanks to Lemma Thus,
1G(m,po) — pol < [[AH||F(m,po)| < C||A™H]|6.

Moreover, by assuming (6-1) so that || D,G(m, .)|| < & on By, (£), we get for all p € By, (£),

l\D\M

1G(m,p) —G(m,po)| < 5 \p po| <

which yields
G0m,p) —pol < A5+ 5.
This means that G(m, p) € By, (£) as soon as C||A~||6 + % <¢ ie.

€
cllaTte < 3 6.2)

From the previous computations, we conclude that G(m, -) is a contraction on B,,, (§) as soon as (6.1) and (6.2) hold.
Let 52 > 0and L} > 1/T be so large that that

Cll A (a(Lh) + (1 +2C|A7H)5}) <

l\.')\n—\

and fix ¢ = 2C||A~"||6}. Then for yo > —L} and & < &}, (&) and (6:2) holds and G admits a unique fixed point in
By, (20| A7} Héb In particular, the conclusion of 1. follows.

Step 2. Dependence on g
Let 61 to be fixed later, and assume that there exists go and g in G such that yo, y;, < —L} and ||m — Py g |, ||m — Po.g,

51. Then, there holds

1Po.55 = Pogoll 72 < [[m = Po.g

g HIm = Pogoll < 261

On the other hand,
B

96 — Po.go = 9wy — go-wy
therefore, as soon as 47 is small enough, we can apply Lemma 3.5|and get
|96 — 90| < C¥y.
Now Step 1 provides (g*,g~) and (g*’, g ') satisfying 1. and so
7+ 15 =gl |77 + |77 — 96| < Cdn,

Therefore, ~
9"+ 137" — 90| < Céy.

Taking 6; > 0 small enough, we get that (g%, ¢g~') € By, (2C||A*1H5§). By uniqueness of (g7, ¢™) in this ball, we get
(697 =(g%97).

26



We therefore set 6] = min(5§, 61).

Step 3. Regularity of the map
In Step 1, we only considered p such that
1Dy F(m,p) ~ Al < 5
m,p) — S oA
: 2|1

and thus D, F (m, p) is invertible since
ATID,F(m,p) = Is — (Is = A7 D, F(m, p)),
with
|12~ A7 Dy ()| 0 < 1A~ 1D, F(m,p) — Al < 3.
This is in particular true for (g, g™ ). Therefore, the regularity of the application at m can be deduced from the implicit function

theorem applied on F (which is a "> function since 9w’ and e; A w; are H) at the point (m, g+, g~ ). O

6.3. Decomposition near a 2-domain wall under the flow

We consider here the decomposition of a magnetisation defined on the interval [0, T'] for some T > 0; the case of [0, +00)
being completely similar.

Lemma 6.8 (Continuous in time decomposition near a 2-domain wall). There exist 51 > 0 and Ly > 0 such that the following
holds. Let L > Ly, T > 0 and m € €([0,T], H') satisfying, for some yo > L1,

0= sup inf ||m(t) — P+ ,- < 6
Jup - nt el e
g €G_p

Then there exists G = (3, 3') € €([0,T),G) for . = + and ¢ € €([0,T], H') such that, for all t € [0, T),
gty > L—1,
« m(t) =g+ (t)wf +7 (t)w; + e +e(t),
* F(m(t),g",97) = F(e(t),5737) =0,
s el < C(0+a@* ~77))-

Moreover, if m is €' ([0, T, H") (resp. W5.>°([0, T, H")), then both G* are €1 ([0, T)) (resp. locally Lipschitz).
As before, a similar statement with 7" = +oo with the obvious modifications holds.

Proof. As m € %([0,T],H'), m is uniformly continuous on [0, 7] (in the case [0, +00), one argues on any compact subin-
terval): We can thus find 0 = ¢ty < t; < -+ < ¢ty = T such that, forall 0 < 0 < N — 1 and t € [tg, tg+1], there holds
|m(t) — m(tx)|| g2 < 6. Then, for any k, we can find g}, € G (¢ = %1) such that y}, > y, and

< 26.
H1

Hm(t) - Pg;,g{

) P

+ - —P4+ _
Ik+19k+1 Ik 9k

In particular, for all &,

< 56.
Hl

From Lemmal[6.6] we thus get
9wt — gl |5+ [|gisws — g5 wi || 5 < 256% + Ca(2y0).

Therefore, if we assume that § is small enough and yq large enough, we can apply [4, Claim 4.12] and get integers nz pandng
such that, by noting 1t = 6 + 1/q(2yo),

’91@1 +(0,2mn444) — 91:‘ < CHg,‘cH.wi - glbc'wiHHl <Cp.
We can then change every ¢}, by adding 27n},’ for some well chosen n}," € Z such that, for all k,

|9kt1 — gk| < Cp.
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Consider now g affine on each segment [tk tk+1] such that g§ (tx) = gy, for k = 0,..., N, and then consider smooth functions
g such that ||g§ — §i||<g( o,77) < #- Thus we get for any ¢ € [tk, tk+1] by applying Lemma

191 (8)ws = gi (tr) will gn < Cl1(t) — Gi(te)] < Cli(trr1) — 1 (k)| < Ca,

and therefore, by using Lemma 6.6]

Hm(t)—Pgmm;m o S ”m(t)‘m(tkWHl+Hm(tk)‘Pgr<m,g;<tk> .

T ’ Pitw.arw ~ Datw.as (t)H

a1 (te), 37 (tr) P~*(t),_Lz1

<§+25+Cu+Cu<Cp

By assuming i small enough, i.e. § small enough and yg large enough, we can assume

~+ !
H(—go ()-m(t) = By Gy (0)+35 (t)HH1 Hm ~ Pyt y.a0 (t)HH1 <9

where §] is given in Lemma and %’r = (95, &8_) gives (QJ)/ = (g(‘}‘, —(;33'). Moreover, for any ¢t € [tg, trx+1], we have
136(t) — 91| < Cp, which gives

LiE(t) >ty —Cu>yo—Cu and G (t) — G (t) > 2y0 — O > L1,

for 1 small enough and yq large enough (L] is given in Lemma . . These conditions define 4; > 0 small and L; > 1 large.
Then, we can apply Lemmato (=gq (t)).m(t), which gives some g (t), g, (t) € G for any ¢ € I such that

g0 ()~ (@)®) + 35 (1))| < Cuwand [5(0)] < Cn,
= @)mt) = Py 5| <cm

* F((=gg (1)-m(t),95,95) = 0.
Then, define

9 =0 +9, T =g — (%)
These gauges satisfy F(m(t), g (¢),g (t)) = 0, and also [g*(t) — g4(¢)| < Cu, which means that
W zgy—Cuzy—Cpzyo—1,

(for 11 small enough, up to modifying the choices of §; and L;) and where g* =: (7", 5’) Moreover, since g; is smooth, (— ga' ).m
has the same regularity as m. Therefore, if m is € ([0, T], H1), then the regularity result of Lemmal6.7]gives that g € € ([0, T7)
and so are g*. Similar arguments when m € W1°°([0, 7], H!) give the conclusion. O

Lemma 6.9 (Evolution equations of the gauges). Up to further reducing §; > 0 and increasing L1 > 1, if m € €([0, T|, H?) is
a solution of (CLQ)), then both g* given by Lemmaare Lipschitz and satisfy, for a.e. t € [0,T),

70 =3 0] < CU®lm +a@" ) -7 ),

Proof. Let assume first that m € %'([0, T], H?). From (CLG), we get 9;m € €([0,T], H'). Therefore, both g* given by Lemma
[6.8]are €1 ([0, 7). Then, we can compute using the fact that e € € ([0, 7], H'):

B = B — TG Oyt + B e AGTwF — TG Bewl +6 e AT
Then, § F is linear and § E(w) = B,wE, so
H(m) = -g".(Baw") =7 .(Bw;) — 6E(e) + h(t)e,
with §E() = O (¢). Then, we also have
m A H(m) = h(t) [g*.wj ANer+7g wy A el}
— (7 wr +e) AT B + @t +e) A (g7 (BeD) )|
Fh(te Aep —e A [ (Buw?) + g—.(ﬁ*w;)} — Py - AOE(e) — e ASE(e)
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= h(t) [g*.wj ANer+7g wy Aer| +O(fy+ 5- () + O3(e) + O3 (e),

by using Corollary 3.2]and where

e~ T—y") ifx >yt
fyt g~ (2) = e T v {1 ifyely,y"].

Last, there also holds
m A (m A H(m) = h(t) [g7.(wl A (w} Aer) +97.(wI A wF Aea)| +Ofyr - () + 03(e) + O3 () + O3().
Hence,
e =7t Dewt — B (el AGH ) 4T (7 Oewl) =B e A (T wl)
+ (1) [gFwl Aer 7wl Aea] = ah(®) [ (wi A (Wl Aen) 47 (D A (w] Aer))
+ O(fy+ - () + 03(e) + 03(e) + O3 (e). (6.3)

From this equation, we can derive the first order of ?L. First, recall that F(¢,g",g~) = 0. By differentiating with respect to ¢, we
thus get for example

/(‘lg (g0, wl)dz = —/E 0y (gT.0,w}) dx
4 ~+
=5 /6 (gT.02wh)dr — ¢ /s- (ex A gT.0,w})dx = M () <y+> ,
¢

where the 2 x 2 matrix M, (¢) satisfies | M1 (¢)|| < C||e]| 1. More generally, we obtain
Floe,g,57) = Mo(e) | 7 | (64

with a 4 x 4 matrix M () such that || My(e)|| < C|l€]|;7:- On the other hand, we can also compute F(d;e,g", g~ ) with the
relation (6.3)), and use Lemma for the zeroth order terms, Corollary for the terms involving both w}™ and w; ", Proposition
for the terms in O( fy+ 5 (x)) and [4} Claim 4.9] for O4(e). For example, one of the terms involving both w; and wy is

/ (7 .00wT) - (700w} da,

and from Corollary[3.3] we can estimate

From this, we obtain

-+
ir -y +all
—= o 2 1) 2h(t 1 ST 3
FOeghg ) =B+ Bo) | |+ 75 | Cop | HOWE =7+ llelln +lel), (6.5)
e 1
¢
where
1 ¥ 0 0
|- -1 0 0| _ (By 0 (1 v
b= 0 0 1 ¥ _<02 B,)’ By = -y -1
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and By is a 4 x 4 matrix which satisfies || Bo|| < Cq(y™ — 3~ ). Hence, (6.4) and (6.3)) imply

-+
g+ -y +al
~ 1 _ __
B+B) |2 | =) | L 0@ 7+ el ).
U T
s - 1
¢

with
| Bol| < ¢ (a@ —77) + lellan ) < C(a(2y0) +9)-

We know that B, is invertible because 72 < 1, with inverse F‘QBW, and thus B is also invertible. Therefore, as soon as ¢(2yg) +
is small enough, B + By is invertible with inverse

~ 1 (B 0
-1 _ % 2 —+ J—
BB = 5 (0 57)+ 0l 7+ elp)
which leads to N
- - . - . R 3
G .9 )= (059)=0@ =77 )+ el +llelz),
hence the conclusion for the 3 case. We point out that this estimate only depends on the H! norm of e. Therefore, for the general

case m € €([0,T],H?), we can use a limiting argument: we refer to the proof of Proposition 4.11 (step 4) in [4] for further
details. O

Lemma 2.1 gathers the content of the above Lemmas [6.8]and [6.9]
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INDEX OF NOTATIONS

Constants F, F: related to modulation,
A: leading order matrix of the differential of F with D¥: localized dissipation term, with transition not far
respect to the gauges, [23] from a domain wall, 20]
L: (half) minimal distance between the domain walls, F¥: localized force term, with transition not far from a
L> LM domain wall, 20]
Lo, dg: in the main theorem, E*: localized energy, with transition not far from a
L1, 61, C1: related to modulation, |§| domain wall, [T§]
Lo, 92, C5: related to coercivity of the energy, Functions
L3, 03, Cs: related to energy dissipation, P+ 4-: two domain wall profile, @
M : main large bootstrap constant, B2
T4, T': main bootstrap exit times, T' < 711, |Z| €: modulated error, |§|
I, nT: error related to one domain wall w,
d: size of the perturbation at time 0; 6 < do, ] K, [
W, v, p: coordinates of 7 in the adapted frame, [I3]
Functionals pr, vE, p*: coordinates of T in the adapted frame,
D: dissipation term, 20| 1, Yg: localization functions,
D=*: localized dissipation term, with transition around 1p: translated localization function,
0,20 z/%: gauge translated localization functions,
E: energy, 1] Fo: functional F evaluated at a given 2 domain wall
E™*: localized energy with transition around 0, profile P and gauge g,[23]
F: force term related to the field h, 20] 0.,
F#: localized force term, with transition around 0, g%, yF, = modulated gauge, [f]
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Gse» Yses qb*i: domain wall gauge, Lt: main linearized operator, E]
gF: gauge of the two separating domain walls,

N4, Px: coordinates of the adapted frame, E] Spaces
¢: interaction function, 4] G gauge group,
w*: modulated domain wall, E] Gsr1, G<_r: gauges with large translation parameter
w: the two separating domain walls, v,
w?: domain wall, [2] Oi( f): polynomial terms of degree ¢ with at most k
derivatives, T3]
Operator H, H*: energy spaces,
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