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Abstract

We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where ther-
mal fluctuations are modeled by a random magnetic field whose variance is proportional to the
temperature. By rescaling the temperature proportionally to the computational cell size ∆x
(T → T ∆x/aeff, where aeff is the lattice constant) [M. B. Hahn, J. Phys. Comm., 3:075009,
2019], we obtain Curie temperatures TC that are in line with the experimental values for cobalt,
iron and nickel. For finite-sized objects such as nanowires (1D) and nanolayers (2D), the Curie
temperature varies with the smallest size d of the system. We show that the difference between
the computed finite-size TC and the bulk TC follows a power-law of the type: (ξ0/d)

λ, where
ξ0 is the correlation length at zero temperature, and λ is a critical exponent. We obtain values
of ξ0 in the nanometer range, also in accordance with other simulations and experiments. The
computed critical exponent is close to λ = 2 for all considered materials and geometries. This
is the expected result for a mean-field approach, but slightly larger than the values observed
experimentally.
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1 Introduction

Interest in nano-scale ferromagnetic objects (nanowires, nanolayers, etc.) has grown dramatically
in recent years, as these objects are integrated into many current devices with the aim of storing,
reading and writing digital information. Hence, there is a growing need for accurate numerical
simulations capable of predicting the behaviour of such objects, and possibly predict new properties
and features. Computational models of ferromagnetic materials can be roughly divided into two
families. On the one hand, atomistic models such as VAMPIRE [8] describe the magnetic interactions
microscopically, at the natural atomic length scale of the material. Although in principle very
accurate, they demand a considerable computational cost and are thus limited to relatively small
systems.

In contrast, micromagnetism describes the structure and dynamics of a ferromagnetic object at
an intermediate mesoscopic scale, averaging over a large number of atoms. Micromagnetic codes,
based on the Landau-Lifshitz-Gilbert (LLG) equation, describe the dynamics of the average mag-
netic moment m(t,x), which is a continuous function of the spatial coordinate x. Notable projects
in computational micromagnetism are the OOMMF project [7] (Object Oriented MicroMagnetic Frame-
work) for the development of a public micromagnetic program in C++, the mumax3 project [30], a
GPU-accelerated micromagnetic simulation program, or else the tetmag project, a 3D micromagnetic
finite-element simulation software [13].

Here, we will adopt the micromagnetic approach (LLG equation) to study the influence of the
temperature on some fundamental properties of both 1D (nanowires) and 2D (nanolayers) ferromag-
netic nano-objects, for which thermal effects may become important. In order to model thermal
fluctuations in the context of micromagnetics, in 1963 Brown [3] proposed to add a stochastic term
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to the LLG equation, in the form of a randomly fluctuating magnetic field with zero mean and
variance that is proportional to the temperature.

However, the Brown method suffers from a fundamental problem: while the LLG equation is
valid at a mesoscopic scale and the corresponding magnetic moment m(t,x) represents an average
over many atomic spins, thermal fluctuations occur at the atomic level. Hence, one is mixing two
different levels of descriptions in the same LLG equation: the mesoscopic level for the deterministic
terms, and the microscopic level for the stochastic terms. Then, if applied without further correc-
tions, this procedure entails that temperature effects (for instance, the numerically-calculated Curie
temperature) depend on the computational cell, which is obviously a spurious result.

Indeed, the computational cell size ∆x is noticeably larger than the physical lattice constant aeff .
Thermal fluctuations occur at the length scale aeff , but are necessarily implemented at the scale ∆x
in the micromagnetic codes. This induces an error in the computed properties, in particular near
the Curie temperature TC, which can be overestimated by one order of magnitude or more [11].

In order to mitigate this spurious effect, several strategies have been proposed. In one approach
[15, 16], the magnetization at saturation Ms is scaled with the temperature and the computational
cell size, using a Bloch-like law that is similar to the well-known temperature dependence of Ms.
By comparing the micromagnetic results to those obtained with an atomistic model, the authors of
[15, 16] obtain a difference of less than 1% in the estimation of the equilibrium magnetization, for a
temperature T = 0.38TC and a computational cell size ∆x = 1.5 nm.

Another approach [11] consists in defining a rescaled temperature to take into account the fact
that thermal averages (coarse graining) are performed on a computational cell that is larger than
the lattice constant. In particular, the effective exchange constant varies with the size of the coarse-
graining block, and this dependence should be taken into account. Grinstein and Koch [11] used
renormalization-group techniques to unravel this dependence. In the same spirit, Hahn [12] proposed
a simple scaling law between the physical temperature and a ”numerical” temperature to be used
in the micromagnetic code, which depends on the ratio between the computational cell size and the
lattice constant. This method was tested for nickel, cobalt and iron objects using the OOMMF code
[7], and yielded Curie temperature that were virtually independent on the computational cell and
very close to the experimental values.

A possible limitation of the LLG approach is that the amplitude of the local magnetic moment
|m(t,x)| remains constant in time, which is not necessarily true at high temperatures, notably near
TC. Chubykalo-Fesenko et al. [4] have investigated this issue using an atomistic time-dependent
model and indeed they found that the modulus of the magnetization varies in time (see figure 1
in [4]). However, this variation is limited to a dip during an initial transient, after which |m(t,x)|
recovers approximately its initial value. As our results are obtained by taking time-averages at longer
times, this variation should not be too significant. But indeed, when studying transient phenomena,
it may be necessary to take this effect into account, for instance by using a Landau-Lifshitz-Bloch
approach, as suggested in [4, 2].

In the present work, we adopt Hahn’s method to model thermal effects [12] and use it to study
the dependence of the magnetization law (in particular the Curie temperature) with the size of
the system under consideration. We will focus on two nano-objects, namely one-dimensional (1D)
nanowires and 2D nanolayers. Theoretical considerations [9] indicate that the Curie temperature
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follows a power-law of the type:

TC(∞)− TC(d)

TC(∞)
=

(
ξ0
d

)λ

,

where d is the smallest size of the system, TC(∞) and TC(d) are the Curie temperatures of the bulk
and of the finite system respectively, ξ0 is the correlation length at zero temperature, and λ is the
critical exponent. The main purpose of this work will be to validate the above law and obtain the
exponent and the correlation length from micromagnetic simulations with thermal effects.

From an experimental point of view, several works considered this problem. Early studies on
thin nickel films, cobalt films and Co1Ni9 alloys yielded critical exponents λ = 1.25, 1.34 and 1.39,
respectively [28, 14], while measurements on nickel films [21] revealed an exponent λ = 1.4. Later
work on nickel nanowires [29], with diameters ranging from 30nm to 500nm, yielded ξ0 = 2.2 nm
and λ = 0.94. More recent works [33, 31] mention larger values for the exponent, up to λ = 2.8.

On the theory front, statistical estimations based on a first-principles-based Monte Carlo ap-
proach yielded a critical exponent λ = 1.47 for Pb(Zr0.5Ti0.5O3) (PZT) thin films [1]. Similar
values were obtained using other approaches [32]. These exponents should be compared to the
theoretical values predicted by the 3D Heisenberg and Ising models (respectively, λ = 1.4 and
λ = 1.58). In contrast, an atomistic mean-field model [25] yielded larger values, close to λ = 2
(range: λ ∈ [1.82− 2.17]), for magnetite nanoparticles of different shapes and sizes. As we shall see,
our own work suggests a critical exponent close to λ ≈ 2, for both nanowires (1D) and nanolayers
(2D). The observed correlation length is found to be ξ0 ≈ 3 nm for nanowires and ξ0 ≈ 1.6 nm for
nanolayers.

We further note that our results are obtained using a time-dependent model, in contrast to
statistical and Monte Carlo approaches used in other studies [1]. In other words, we solve the time-
dependent LLG equation with thermal effects and, once a fluctuating equilibrium is reached, we
measure the relevant magnetic properties by performing ensemble averages over many realizations
and/or time averages over a certain duration. This approach is less computationally expensive than
fully atomistic simulations. In addition, it is amenable to investigating the dynamical properties of
magnetism, such as the propagation of domain walls and other transient effects, which will make the
object of future work. Here, we have used this time-dependence to show that statistical fluctuations
explose near TC, confirming the presence of a phase transition at that temperature.

The present paper is organized as follows. Section 2 details the mathematical setting, namely
the LLG equation at finite temperature. After recalling the various terms involved in the effective
magnetic field in Sec. 2.1, the following subsections are devoted to the modelling of thermal effects
through a stochastic magnetic field (Sec. 2.2) and to the implementation of the temperature scaling
[12] (Sec. 2.3). Section 3 contains the details of the numerical scheme. Section 4 is devoted to the
validation of the numerical code with several test cases (Sec. 4.1), clearly proving that the Curie
temperature does not depend on the computational cell size or the time step (Sec. 4.2). The validity
of the Bloch law (at low temperatures, T ≪ TC) and Curie law (at T ≲ TC) are also tested (Sec. 4.3).
Finally, Section 5 contains the main results of this work, namely the size dependence of the Curie
temperature for two types of nano-objects: 1D nanowires and 2D nanolayers. Conclusions are drawn
in Section 6.
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2 Micromagnetic model at finite temperature

The present numerical study focuses on a ferromagnetic domain modeled either as an infinite
nanowire along the ex axis, where (ex, ey, ez) is the canonical orthonormal basis in R3, or an infinite
nanolayer in the (ex, ey) plane. For all times t ≥ 0 and positions x ∈ R3, let m(t,x) ∈ S2 =
{m ∈ R3, ∥m∥ = 1} be the magnetic moment vector field normalized to the saturation magneti-
zation Ms. Here, S2 is the unit sphere. The precession dynamics of m(t,x) is described by the
Landau-Lifshitz-Gilbert (LLG) equation:

∂m

∂t
= −γ0m×Heff − γ0αm× (m×Heff) , (1)

where Heff is the effective magnetic field. Here, γ0 = γµ0 > 0 is the scaled gyromagnetic ratio, with
γ = e/2m (where e > 0 and m are the charge and mass of the electron, respectively), and α > 0 is
the dimensionless damping constant [10]. Table 1 lists all the physical variables used in this work,
their units, and their numerical values.

2.1 Effective magnetic field Heff

The effective magnetic field Heff results from the sum of the exchange field Hexch and the anisotropy
field Hani:

Heff = Hexch +Hani .

The exchange field is due to the Heisenberg exchange interaction and is written as

Hexch =
2A

µ0Ms
∆m, (2)

with A > 0 the exchange constant and µ0 > 0 the vacuum permeability (see Table 1).

The anisotropy field is due to the existence of preferred directions in the magneto-crystalline
structure of the material. Throughout the following, two cases of anisotropy field will be considered:
uniaxial anisotropy (for cobalt systems) and cubic anisotropy (for nickel and iron systems), whose
expressions are given below:

Hani, uniaxial =
2K

µ0Ms
(ex ·m)ex, (3a)

Hani, cubic = − 2K

µ0Ms

∑
(i,j,k)∈I

(
(ej ·m)2 + (ek ·m)2 + (ej ·m)2(ek ·m)2

)
(ei ·m)ei, (3b)

where I = {(x, y, z), (y, z, x), (z, x, y)} and K > 0 is the anisotropy constant (assumed identical in
all three directions of space for the cubic case), see Table 1.

In the following, we will assume that the ferromagnetic domain is not subjected to any external
magnetic field, so that no Zeeman energy is present. The demagnetizing field (due to the magnetic
field generated by the nanowire or nanolayer itself) and the dipolar interactions are also not taken
into account.
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Universal constants

γ gyromagnetic ratio 1.76× 1011 rad s−1T−1

µ0 vacuum permeability 4π × 10−7 NA−2

γ0 rescaled gyromagnetic ratio γµ0 mA−1s−1

kB Boltzmann constant 1.38× 10−23 JK−1

Magnetic bulk parameters Cobalt Iron Nickel

A exchange constant 3× 10−11 Jm−1 2.1× 10−11 Jm−1 9× 10−12 Jm−1

K anisotropy constant 5.2× 105 Jm−3 4.8× 104 Jm−3 −5.7× 103 J.m−3

Ms saturation magnetization 1.4× 106 Am−1 1.7× 106 Am−1 4.9× 105 Am−1

aeff lattice constant 0.25 nm 0.286 nm 0.345 nm
Hani anisotropy field uniaxial cubic cubic
TC Curie temperature 1388 K 1043 K 627 K
α Damping parameter 0.5 0.5 0.5

Table 1: Top: Values of the universal constants used in this work. Bottom: Magnetic parameters
for bulk cobalt, iron, and nickel. Sources: [17, 6, 23].

2.2 Thermal fluctuations

The deterministic LLG equation considered above is valid in the zero-temperature regime. However,
thermal effects obviously influence the magnetic properties, first and foremost by cancelling out the
spontaneous magnetization of a ferromagnetic material above a certain critical temperature (Curie
temperature TC). The material then goes from a ferromagnetic to a paramagnetic state when TC is
crossed.

In order to model thermal fluctuations, an additional random field is added to the effective
magnetic field, following the idea of W.F. Brown [3], so that we have:

Heff = Hexch +Hani +Hstocha .

The random thermal field Hstocha is an isotropic Gaussian white-noise vector process of variance
ν2 ∈ R. More precisely, Hstocha may be written as: Hstocha(t)dt = ν dW (t), where W (t) =(
W1(t),W2(t),W3(t)

)T
is a classical time-continuous Wiener process.

Wiener process. The main properties of the stochastic field W (t) (and so Hstocha(t)) are listed
below, denoting ⟨·⟩ = E(·) the statistical average [19, 5, 26]:

• Space homogeneity: W only depends on t and not on x,

• Continuous time random process: W (t),∀t ≥ 0,

• Null mean: ⟨W (t)⟩ = 0,∀t ≥ 0,

• Decorrelated spatial components and vanishingly small autocorrelation time: ⟨Wi(t)Wj(t
′)⟩ =

δijδ(t− t′), ∀i, j ∈ {1, 2, 3} (the indices of spatial components) and t, t′ ∈ R+. Here, δ(·) is the
Dirac distribution and δij is the Kronecker symbol.
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Variance. The standard deviation ν (and thus the variance ν2) is directly related to the tem-
perature T thanks to the following relation, obtained by the fluctuation-dissipation theorem [3, 26]
adapted here to the expression of Eq. (1):

ν2 =
2αkBT

γ0µ0MsV
, (4)

where kB is the Boltzmann constant (see Table 1) and V stands for a characteristic volume that
depends on the internal crystalline structure of the material (which can be a Face-Centered Cubic
lattice (FCC) as in the case of nickel, a Body Centered Cubic lattice (BCC) as in iron, or a Hexagonal
Close-Packed lattice (HCP) for cobalt). Following the notation of [12], the shorter lattice distance
is called the lattice constant aeff and the corresponding characteristic volume is V = a3eff.

Stochastic Landau-Lifshitz-Gilbert equation. Consequently, the Landau-Lifshitz-Gilbert equa-
tion (1) is modified to take the form of a stochastic partial differential equation (SPDE)

dm = −γ0m× (Heffdt+ νdW )− γ0αm× [m× (Heffdt+ νdW )] . (5)

All physical constants used in the forthcoming simulations are summarized in Table 1.

In order to preserve the constraint that the magnetic moment m be on the unit sphere, i.e.
∥m(t,x)∥ = 1, ∀x ∈ R3 and t ≥ 0, we interpret the above stochastic LLG equation in the
Stratonovich sense; see [20] for the issues posed by using Itô’s approach.

2.3 Temperature scaling with the computational cell size

The variance of the stochastic magnetic field used to model thermal effects depends not only on the
temperature T , but also on the characteristic volume V , see Eq. (4). In principle, this volume is
related to the lattice constant, i.e. V = a3eff, but in practice aeff is much smaller than the spatial
step ∆x used in the simulations. However, if one takes instead V = ∆x3, the simulation results will
depend on the computational cell size, which is not an acceptable situation. At a fundamental level,
this is due to the fact that the effective exchange constant varies with the size of the coarse-graining
block [11].

In order to suppress this unwanted numerical effect, we follow the procedure recently suggested
by Hahn [12], which relies on a scaling of the temperature with the spatial step ∆x. The argument
goes as follows: near the Curie temperature, the ferromagnetic behaviour disappears because the
energy density of the thermal fluctuations kBT/V , which favor random orientations of the spin,
becomes similar to the energy density of the exchange interactions A|∇m|2, which favor magnetic
order. Hence, we write:

kBT

a3
∼ A|m|2

a2
, (6)

where a is a characteristic length that can be either the lattice constant aeff or the computational
cell size ∆x. From Eq. (6) it is clear that, in order for the magnetic moment to be independent on
the averaging volume a3, the temperature must scale as T ∼ a.

Therefore, we define a ”numerical” temperature as

Tnum =
∆x

aeff
T.
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According to the above considerations, taking a volume V = ∆x3 together with the temperature
Tnum should give results that are independent on ∆x and identical to those obtained using the
“physical” volume V = a3eff and the real temperature T . This approach was recently tested by
Hahn [12], who indeed observed near independence of TC on the cell size up to ∆x = 4 nm for
ferromagnetic thin films. Following this procedure, the numerical variance of the fluctuating field is
defined as

ν2num =
2αkB

∆x
aeff

T

γ0µ0Ms∆x3
, (7)

which replaces Eq. (4) in the simulations. This expression may also be interpreted as meaning that
the numerical characteristic volume to be taken into account is V = aeff∆x2.

3 Computational method

The stochastic LLG equation (5) is solved numerically using a Python code.1 The simulations are
performed on the time interval [0, tf ], with tf the final time, and on a 3D finite domain [0, Lx] ×
[0, Ly]× [0, Lz]. To mimic a 1D nanowire, this numerical domain is taken with a small square cross-
section in the (ey, ez) plane: [0, Lx]× [0, d]× [0, d], with d ≪ Lx. To mimic a 2D nanolayer, the 3D
domain is taken with a small thickness in the ez direction: [0, Lx]× [0, Ly]× [0, d], with d ≪ Lx, Ly.
Figure 1 illustrates those two geometries. All numerical parameters are listed in Table 2.

Figure 1: Illustration of the two generic geometries coresponding to a 1D nanowire (left) and a 2D
nanolayer (right)

Discretization. Numerically, let ∆t > 0 and ∆x = ∆y = ∆z > 0 be the time step and the space
steps in each space direction, respectively. We define time-discrete and space-discrete points with
N = ⌊ tf

∆t⌋, Jx = ⌊ Lx
∆x⌋, Jy = ⌊ Ly

∆x⌋, Jz = ⌊ Lz
∆x⌋

tn = n∆t, 0 ≤ n ≤ N

and
(xi, yj , zk) = (i∆x, j∆x, k∆x), 0 ≤ i ≤ Jx, 0 ≤ j ≤ Jy, 0 ≤ k ≤ Jz.

The numerical solution mn
i,j,k approximates the exact one m(tn, xi, yj , zk) on each discrete point.

As the LLG equation (1) is valid at mesoscopic – and not atomistic – length scales, the spatial
steps ∆x, ∆y, ∆z are each much larger than the lattice constant aeff, and the continuous mag-
netic moment vector filed m(t,x) actually represents an average of the atomic spins over a volume
∆x∆y∆z.

1Available at: https://gitlab.math.unistra.fr/llg3d/llg3d
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Discretization time and space parameters

∆t time step 10 fs
tf final time of the simulation 50 ps
N number of time iterations 5000
n time index 0 ≤ n ≤ N

∆x = ∆y = ∆z space size of the meshes 1.0 nm
d small size parameter 11.0 nm ≤ d ≤ 41.0 nm
Lx, Ly, Lz size of the ferromagnetic ob- nanowire (Lx = 6000 nm, Ly = Lz = d nm)

ject nanolayer (Lx = Ly = 600 nm, Lz = d nm)

Jx, Jy, Jz number of mesh points nanowire (Jx = 6000, Jy = Jz = ⌊d⌋)
nanolayer (Jx = Jy = 600, Jz = ⌊d⌋)

i, j, k space indices 0 ≤ i ≤ Jx, 0 ≤ j ≤ Jy, 0 ≤ k ≤ Jz

Numerical variables

m0 initialization of the magnetic mo-
ments

1
0
0

 for all points (xi, yj , zk)

m1(t) spatial average of one realization
1

LxLyLz

∫
[0,Lx]×[0,Ly ]×[0,Lz ]

m1(t,x)dx

τ transient time behavior of m1(t) 40 ps

Mtot total magnetization
(spatial and stochastic averages at tf )

1

tf − τ

∫ tf

τ

1

LxLyLz

∫
[0,Lx]×[0,Ly ]×[0,Lz ]

m1(t,x)dxdt

tconv convergence time for m1(t) to reach
its plateau state Mtot

inf
t∈[0,tf ]

|m1(t)−Mtot| < 0.1

Table 2: Numerical parameters used in the Python code
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Time evolution: Heun method. For consistency with the continuous problem, the stochastic
LLG equation (5) must be discretized using a numerical method whose solution converges to the
Stratonovich continuous solution. For this purpose, the modified Heun method [27] is chosen for
the time integration and a second-order finite difference method is used for the discretization of the
Laplacian operator.

Following [18], for further simplicity, we rewrite Eq. (5) as

dm = F (m, t)dt+
∑

j∈{1,2,3}

Gj(m) ν dWj(t), (8)

with
F (m, t) = −γ0m×Heff − γ0αm× (m×Heff)

being the deterministic part and Gj =

G1,j

G2,j

G3,j

 the factor term of the stochastic process, with

Gi,j = γ0mkϵi,j,k − γ0α(mimj − δij),

where ϵi,j,k is the Levi-Civita symbol.

After initializing the magnetization at the initial time t = 0: m0
i,j,k =

m1

m2

m3

0

i,j,k

= m(0, xi, yj , zk),

the (stochastic) Heun method consists in the following steps to go from the time step n to the time
step n+ 1:

• Generate a random vector Rn ∈ R3 according to a reduced centered normal distribution, using
a pseudo-random number generator. Define ∆W n =

√
∆tRn;

• Compute νnum, the numerical version of the standard deviation ν (more details are given
below);

• Define κ1 = F (mn, tn) and s1,j = Gj(m
n);

• Define κ2 = F (mn +∆tκ1 +
∑

j∈{1,2,3} s1,jνnum∆Wn
j , t

n +∆t) and s2,j = Gj(m
n +∆tκ1 +∑

j∈{1,2,3} s1,jνnum∆Wn
j );

• Update mn+1 = mn +
(
1
2κ1 +

1
2κ2

)
∆t+

∑
j∈{1,2,3}

(
1
2s1,j +

1
2s2,j

)
νnum∆Wn

j ;

• Renormalize the magnetic moment: mn+1 = mn+1

∥mn+1∥ , so that it remains on the unit sphere S2.

A mid-point numerical technique would be also possible alternative to the Heun method, see
[5, 26].

The choice of a time-explicit discretization of the Laplacian operator induces a restrictive condi-
tion on the time step ∆t and the space step ∆x to ensure the stability of the scheme: ∆t ≲ ∆x2/2
(Courant-Friedrichs-Lewy condition).

At the domain boundaries, we take the usual Neumann condition: ∂m/∂n = 0, where n is the
outgoing normal vector.
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4 Numerical code validation

In the forthcoming simulations, three types of ferromagnetic materials will be considered: (i) nickel
with a FCC lattice and cubic anisotropy, (ii) iron with a BCC lattice and a cubic anisotropy, and (iii)
cobalt with a HCP lattice and uniaxial anisotropy. For each case, we shall study both 1D nanowires
and 2D nanolayers. All physical parameters are listed in Table 1.

Here, we will perform several tests to validate our numerical code. In the following sections, we
will focus on the scaling of the Curie temperature with the size of the system, for each type of nano-
object. We recall that our code relies on the time-dependent LLG equation. We solve numerically
this equation with a fully magnetized initial condition, where m(t = 0) is uniform and directed
along the ex axis, and a given temperature. Then, we wait that magnetic moment relaxes to a lower
value under the effect of the temperature and determine its value by averaging over a sufficiently
long period of time.

4.1 Test-case details

Except for the following Sec. 4.2 – where the independence of the results on the space and time dis-
cretizations are tested on a 3D cube – all numerical simulations are preformed on three ferromagnetic
materials (cobalt, iron and nickel) and two geometries (see Figure 1):

• 1D nanowire with small square cross-section in the (ey, ez) plane: [0, Lx] × [0, d] × [0, d] with
Lx = 6000 nm and 11 nm ≤ d ≤ 41 nm;

• 2D nanolayer with small thickness in the ez axis: [0, Lx]× [0, Ly]× [0, d] with Lx = Ly = 600
nm and 11 nm ≤ d ≤ 41 nm.

The numerical parameters are always fixed to (see Table 2):

∆t = 10 fs, tf = 50 ps, N = 5000, ∆x = ∆y = ∆z = 1 nm.

The initialization of the magnetic moments m0 is chosen uniform and directed along the ex axis in

all test cases: m0
i,j,k =

1
0
0

 for all i, j, k.

With the choice of initialization, the magnetization is initially equal to 1 (when the magnetic
moments are all aligned and have a norm equal to 1), then falls to zero at the Curie temperature
(when the magnetic moments are randomly aligned due to the thermal noise). Since Eq. (5) is
stochastic, the average of the magnetic moments m over the entire ferromagnetic domain may differ
from one realization to another, so this average should be calculated over several realizations. Since
the initialization is oriented along the ex axis and in the absence of any external magnetic field,
the average of m along this direction, i.e. m1, is enough to characterize the magnetic state of the
system. Hence, we define the total (in space) magnetization

Mtot =

〈
1

LxLyLz

∫
[0,Lx]×[0,Ly ]×[0,Lz ]

m1(tf ,x)dx

〉
, (9)
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with ⟨·⟩ denoting the statistical average over many realizations. In order to simplify this calculation,
we assume that the stochastic process of Eq. (5) is ergodic, so that the statistical average may be
replaced by the time average for a single, sufficiently long realization. In practice, we plot several
realizations, look at the time τ after which the transient regime gives way to the stationary regime,
and finally take the time average from this transient time τ up to the final time tf . Thus, the total
magnetization is now defined as

Mtot =
1

tf − τ

∫ tf

τ

1

LxLyLz

∫
[0,Lx]×[0,Ly ]×[0,Lz ]

m1(t,x)dxdt =
1

tf − τ

∫ tf

τ
m1(t)dt. (10)

Figure 2 illustrates the spatial average of the x component of the magnetic moment m1(t) =
1

LxLyLz

∫
[0,Lx]×[0,Ly ]×[0,Lz ]

m1(t,x)dx for one statistical realization, for cobalt (top), iron (middle)

and nickel (bottom). Two geometries of nanowire are tested: [0, 1680]× [0, 11]× [0, 11] with ∆x = 1
nm (left column) and [0, 120] × [0, 41] × [0, 41] with ∆x = 1 nm (right column). Other numerical
parameters ∆t, tf and N are defined in Table 2. Different temperatures are used (represented with
different colors) and lead to the same conclusion for all test cases: τ = 0.8 tf = 40 ps is a correct
choice both for reaching the stationary state and for having enough time left for a representative
average (this choice represents a time average over the last 1000 time steps, and tf − τ = 10 ps in
Eq. (10)).

In practice, the Curie temperature is determined numerically by plotting Mtot as a function of
the temperature T , and defining TC as the temperature for which Mtot is smaller than a certain
threshold, fixed to 0.1: TC := argmin

T
Mtot(T ) < 0.1.

4.2 Dependence on the numerical parameters

Here, we show that our results do not depend on either the time step ∆t or the computational cell
size ∆x.

Figure 3 shows the total magnetization Mtot as a function of the temperature for different cell
sizes, going from 1 nm to 5 nm, for a cubic object of dimensions 50 nm× 50 nm× 50 nm, for cobalt,
iron and nickel. All other parameters are identical (∆t = 10 fs, tf = 50 ps, N = 5000 and τ = 40.0
ps). The results are indeed independent on ∆x, and the computed Curie temperatures are very close
to the experimental values for the bulk materials (see Table 1). A slight discrepancy starts occurring
for iron at ∆x = 5 nm.

Figure 4 shows the dependence of the numerical results with respect to the time step ∆t, again
for cubic nano-objects of side 50 nm, with computational cell size ∆x = 1 nm. The final time is
always tf = 50 ps, so that the number of time steps is N = 5 × 103 for ∆t = 10 fs (blue curve),
N = 104 for ∆t = 5 fs (red curve), and N = 2 × 104 for ∆t = 2.5 fs (green curve). According
to the value of ∆t, the time-averaged Mtot in Eq. (10) includes the last 1000, 2000 or 4000 time
iterations. The computed Curie temperature varies only slightly with the time step, and appears to
have converged for ∆t = 5 fs.
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Figure 2: Spatially averaged x component of the magnetic moment m1(t) for one statistical re-
alization, as a function of time t for a ferromagnetic nanowire. Colors correspond to different
temperatures, as indicated on the figure. Top panels: cobalt; middle panels: iron; bottom panels:
nickel. The left column corresponds to nanowires with dimensions (in nm): 1680×11×11, the right
column to nanowires with dimensions (in nm): 120× 41× 41.
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Figure 3: Total magnetization Mtot, from Eq. (10), as a function of the temperature, for cubic cobalt
(left panel), iron (right panel) and nickel (middle panel) nano-objects with dimensions 50 nm ×
50 nm × 50 nm. The different symbols and colors stand for different computational cell sizes ∆x,
going from 1 nm to 5 nm. The black vertical dash-dotted lines represent the bulk Curie temperatures
as given in Table 1.

4.3 Magnetization curve: Bloch’s law and Curie’s law

In this section, we check that the numerically calculated magnetizationMtot(T ) satisfies the standard
Bloch’s and Curie’s laws, respectively at low temperatures T ≪ TC and near the Curie temperature,
T ≲ TC. As we have already verified that the spatial and temporal steps do not influence the result,
∆t and ∆x will be fixed as specified in Table 2, i.e. ∆t = 10 fs and ∆x = 1 nm.

Figure 5 illustrates the behavior of the magnetization curve Mtot(T ) for the two geometric con-
figurations considered here (nanowires and nanolayers), for iron (red triangles), cobalt (blue circles)
and nickel (green crosses). Results are in broad agreement with the expected magnetization curves,
and the computed Curie temperatures are close to the experimental values found in the literature
for bulk materials [17], see Table 1.
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Figure 4: Total magnetization Mtot, from Eq. (10), as a function of temperature, for a cobalt
(left), iron (right) or nickel (middle) nanowire with dimensions 50 nm×50 nm×50 nm. The different
symbols stand for different time steps ∆t = 2.5 fs (green crosses), 5 fs (red circles), and 10 fs (blue
crosses). The computational grid size is ∆x = 1 nm. The black vertical dash-dotted lines represent
the bulk Curie temperatures as given in Table 1.

Bloch’s law states that total magnetization Mtot(T ), for low temperatures, behaves as follows:

Mtot(T ) ∼
T→0

1−
(

T

TC

)3/2

,

which can be rewritten as: log(1−Mtot) ∼ 3
2 log (T/TC). Figure 6 checks this behaviour on a log-log

scale, for a nanowire (left) and a nanolayer (right), with sizes corresponding to the two extreme
cases in Table 3, i.e. d = 11nm and 41 nm. The theoretical 3/2 slope is represented as a solid black
line and matches the numerical results quite well.

Next, we check the Curie law, valid near TC:

Mtot(T ) ∼
T→

<
TC

(
1− T

TC

)1/2

,

which may be rewritten as: log(Mtot) ∼ 1
2 log

(
1− T

TC

)
. Figure 7 shows the behavior of the magne-
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Figure 5: Total magnetization Mtot (10) with respect to temperature with numerical parameters
detailed in Table 2. The Curie temperature corresponds to the first temperature at which magneti-
zation falls to zero. Simulation results are represented by dots, the solid curves are an interpolation
based on cubic splines.

Figure 6: Bloch’s law. Behavior of 1 − Mtot(T ) as a function of T/TC in logarithmic scale. The
materials are represented by different colors: iron (red), cobalt (blue) and nickel (green). The left
panel corresponds to nanowires and the right panel to nanolayers, with sizes d = 11 nm (crosses)
and d = 41 nm (dots). Each curve was multiplied by a multiplicative factor for easier reading. The
black solid lines represent the theoretical 3/2 slope.

tization Mtot as a function of 1− T/TC in logarithmic scale, for the same cases as those of Figure 6.
Again, the numerical results match rather well the theoretical 1/2 slope.
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Figure 7: Curie’s law. Behavior of Mtot(T ) as a function of 1 − T/TC in logarithmic scale. The
materials are represented by different colors: iron (red), cobalt (blue) and nickel (green). The left
panel corresponds to nanowires and the right panel to nanolayers, with sizes d = 11 nm (crosses)
and d = 41 nm (dots). Each curve was multiplied by a multiplicative factor for easier reading. The
black solid lines represent the theoretical 1/2 slope.

5 Finite-size effects on the Curie temperature

This section is devoted to the study of the influence of size effect on the magnetization curve and Curie
temperature for nanometric objects, both in 1D (nanowires) and 2D (nanolayers). The objective is
to vary the cross-section of the nanowire or the thickness of the nanolayer and study the variations
induced in the Curie temperature. Throughout this section, numerical parameters are chosen as
listed in Table 2.

5.1 Size effects on the magnetization curve

For all tested geometries, the computed Curie temperatures are close enough to the experimental
values reported in the literature. This is achieved thanks to the scaling of the fluctuating thermal
field as detailed in Sec. 2.3. Nevertheless, we observe small variations with the size parameter d,
which corresponds to the side of the square cross-section of a nanowire or the thickness of a nanolayer.
Figure 8 (for nanowires) and Figure 9 (for nanolayers) show the magnetization curves Mtot(T ), and
illustrate how the Curie temperature increases with increasing size d. The computed values of TC

are summarized in Table 3. We also observe greater variability in Mtot(T ) for nanowires than for
nanolayers. Size effects then appear to be stronger for lower-dimensional structures.

5.2 Power-law scaling of the Curie temperature

Theoretical considerations [9] indicate that the Curie temperature should vary with the size d fol-
lowing a power-law of the type:

TC(∞)− TC(d)

TC(∞)
=

(
ξ0
d

)λ

, (11)
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Figure 8: Total magnetization Mtot(T ) as a function of the temperature for nanowires of different
materials, with cross-section sizes going from d = 11 nm to d = 41 nm. Top panels: cobalt; middle
panels: iron; bottom panels: nickel. The right column is a zoom near the Curie temperature.

where λ is the critical exponent, ξ0 is the correlation length at zero temperature, TC(∞) is the
Curie temperature of the bulk, and TC(d) the Curie temperature of a finite nano-object of size
d. This type of power-law has been observed in many experiments [28, 14, 21, 29, 33, 31] and
numerical simulations [1, 25]. Experimental works yielded correlation length ξ0 of the order of a few
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Figure 9: Total magnetization Mtot(T ) as a function of the temperature for nanolayers of different
materials, with thiknesses going from d = 11 nm to d = 41 nm. Top panels: cobalt; middle panels:
iron; bottom panels: nickel. The right column is a zoom near the Curie temperature.

nanometers, with critical exponents in the range λ ∈ [1− 1.6]. In contrast, an atomistic mean-field
model [25] yielded larger values, close to λ = 2 (range: λ ∈ [1.82−2.17]), for magnetite nanoparticles
of different shapes and sizes. These values are also to be compared to those obtained from the 3D
Heisenberg model (λ = 1.4) and the 3D Ising model (λ = 1.58).
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Nanowire Lx × d× d with Lx = 6000 nm Nanolayer Lx × Ly × d with Lx = Ly = 600 nm
d [nm] Cobalt Iron Nickel d [nm] Cobalt Iron Nickel

41 1427.26 1090.05 579.62 41 1433.91 1095.33 582.39
36 1423.74 1087.57 578.13 36 1432.20 1093.41 581.67
31 1421.56 1085.81 577.23 31 1430.68 1092.13 581.01
26 1414.62 1082.05 573.87 26 1428.68 1091.49 579.81
21 1406.83 1076.85 571.05 21 1422.79 1087.65 578.07
20 1401.23 1072.13 569.31 20 1421.75 1087.25 577.71
19 1397.04 1073.01 568.05 19 1421.27 1087.49 577.41
18 1395.52 1069.65 566.91 18 1419.85 1085.01 576.33
17 1391.72 1069.17 564.45 17 1416.14 1083.41 575.61
16 1385.55 1062.61 561.69 16 1415.10 1082.05 574.71
15 1382.13 1062.45 560.67 15 1413.20 1080.53 573.63
14 1375.19 1053.65 558.15 14 1410.35 1080.13 572.73
13 1360.18 1045.89 552.69 13 1406.55 1076.37 570.87
12 1352.11 1043.65 549.33 12 1400.37 1072.21 568.95
11 1342.04 1036.53 544.83 11 1398.09 1071.33 567.33

Table 3: Curie temperatures (in Kelvin) obtained from the numerical simulations, for nanowires
(left) and nanolayers (right) of different sizes and different materials.

In the analysis of our simulation results, the Curie temperature of the bulk TC(∞) is in fact
replaced by the Curie temperature of the largest structure that we consider TC(dmax), that is dmax =
41nm, see Table 3. Figure 10 (for nanowires) and Figure 11 (for nanolayers) illustrate this power-
law behaviour for the three materials considered here, both on a linear scale (left panels) and on
a logarithmic scale (right panels). Blue circles correspond to the numerical results TC(d) extracted
from Table 3. The red solid lines correspond to the theoretical power-law (11). The exponent λ is
deduced by fitting a log-log straight line through the numerical points using a least-square method,
and then ξ0 is obtained by finding the intercept λ log ξ0 of this line with the vertical axis. The last
two or three points further to the right deviate from the power-law, and were therefore discarded in
the fitting procedure.

The computed values of the correlation length ξ0 and the critical exponent λ are reported on each
figure. For nanowires, ξ0 ranges from 2.77 nm to 3.02 nm, while for nanolayers it varies from 1.55 nm
to 1.82 nm. In both cases, the smallest value is found to be for iron, whereas the largest values is
for nickel. These values are broadly in good agreement with those observed in the experiments.

As to the critical exponent, we obtain λ = 2.12 − 2.14 (a range that is probably within the
numerical uncertainty) for all three materials in the case of nanowires. For nanolayers, we obtain
λ = 1.90, 1.92 and 2.00, for cobalt, iron and nickel, respectively. It is remarkable that all exponents
are close to λ = 2, which is also the value observed in atomistic mean-field simulations [25].

5.3 Nonequilibrium properties

Although we have used our code to study steady-state phenomena, such as the dependence of
the magnetization curve and Curie temperature with size, our approach is fundamentally time-
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Figure 10: Behavior of the Curie temperature as a function of the cross-section size d, for nanowires of
different materials: cobalt (top panels), iron (middle panels) and nickel (bottom panels). Numerical
results are shown as blue dots, while the solid blue and red lines represent the theoretical power-law
of Eq. (11). The left column shows results on a linear scale, while the right column on a log-log scale.
The correlation length ξ0 and critical exponent λ can be read on each figure of the right column as:
(ξ0/d)

λ.
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Figure 11: Behavior of the Curie temperature as a function of the thickness d, for nanolayers of
different materials: cobalt (top panels), iron (middle panels) and nickel (bottom panels). Numerical
results are shown as blue dots, while the solid blue and red lines represent the theoretical power-law
of Eq. (11). The left column shows results on a linear scale, while the right column on a log-log scale.
The correlation length ξ0 and critical exponent λ can be read on each figure of the right column as:
(ξ0/d)

λ.
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Figure 12: Evolution of the spatially-averaged x component of the magnetic moment m1(t) for a
nickel nanowire of cross-section d = 11 nm, for three different temperatures, T = 510 K, T = 587 K
and T = 650 K. The corresponding convergence times (tconv = 1.9 ps, 6.2 ps, and 11.2 ps) are shown
on the figure. We also show the transient time τ = 40 ps, which is the same for all simulations (time
used to average the total magnetization Mtot).

dependent. Indeed, to obtain our results we solved numerically the time-dependent LLG equation
(with thermal effects) and then deduced steady-state quantities through time and/or ensemble av-
erages. However, the code could be used to investigate nonequilibrium properties, such as transient
behaviors, the motion of domain walls, instabilities, etc. Over more commonly used statistical meth-
ods, this dynamical approach has the further advantage of being well-suited to study the fluctuations
that appear in the vicinity of phase transitions. These fluctuations play a key role in finite systems,
particularly when their dimensionality is low. This vast realm is left to future investigations. Here,
we conclude our work by searching for a signature of the phase transition occurring at TC in the
dynamical behaviour of the magnetization. We do this by looking at the convergence time towards
the equilibrium state.

In Figure 2, we observed that the convergence time to the plateau state depends on the temper-
ature. More precisely, we define the convergence time as the first time at which the x component of
the spatially-averaged magnetic moment m1(t) becomes sufficiently close to the total magnetization
Mtot (which corresponds to its plateau):

tconv = inf
t∈[0,tf ]

|m1(t)−Mtot| < ε, (12)

with the tolerance parameter ε fixed to 0.1. Figure 12 illustrates schematically this convergence
time tconv, and also shows the transient time τ , which is the time used to compute the average
magnetization, see Eq. (10).

Figure 13 shows the convergence time, as a function of the temperature, for nanowires of size
6000 nm×d nm ×d nm and nanolayers of size 600 nm×600 nm ×d nm, for two values of d. First, we
note that the convergence time tconv is always smaller than the transient time τ taken to compute
the average Mtot (tconv has a maximum value around 20 ps, which is always smaller than τ = 40
ps). This confirms that convergence to the plateau state takes place before τ and hence that the
calculation of Mtot is correct.
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This figure also shows that the convergence time peaks near the Curie temperature [22]. This is a
dynamical signature that large fluctuations near TC translate into longer times taken by the system
to relax to its equilibrium state. The rapid increase of the relaxation time close to TC is known as
critical slowing down [24, 4], an effect which is characteristic of second-order phase transitions.

Moreover, Figure 13 illustrates the effect of size on this phase transition. The structures with
the smallest size (d = 11 nm, blue curves) have longer convergence times tconv and larger widths
than the larger structures (d = 41 nm, orange curves). Also, the convergence times and the widths
are larger for 1D nanowires than for 2D nanolayers. One can deduce that fluctuations near the
transition temperature TC are stronger for smaller and lower-dimensional structures.

6 Conclusion

In this work, we developed a computational code (written in Python) that solves the LLG equation
of micromagnetism, including finite-temperature effects. By adopting an appropriate temperature
scaling with the computational cell size ∆x [12], it was possible to recover magnetization curves
and Curie temperatures that match closely the experimental ones for cobalt, nickel and iron nano-
objects. Compared to fully atomistic simulations, our micromagnetic approach has the advantage of
being less computationally expensive, as it relies on a mesoscopic description at a scale ℓ much larger
than the lattice constant: ℓ ≫ ∆x ≫ aeff. It is also more easily amenable to dynamical simulations
to study, for instance, the motion of domain walls or other time-dependent phenomena.

Using this accurate computational tool, we investigated the size-dependence of the Curie tem-
perature for 1D nanowires and 2D nanolayers, by varying the smallest size d of the system. We
confirmed that the difference between the computed finite-size TC and the bulk TC follows a power-
law of the type: (ξ0/d)

λ, where ξ0 is the correlation length at zero temperature and λ is a critical
exponent. We obtained values of ξ0 in the nanometer range, also in accordance with other simu-
lations and experiments. The computed critical exponent was found to be close to λ = 2 for all
considered materials and geometries, which is the expected result for a mean-field approach, but
slightly larger than the values observed experimentally. Finally, the time-dependent model devel-
oped here represents an effective tool for studying thermal fluctuations near the ferromagnetic phase
transition.

All in all, the behaviour of 1D and 2D ferromagnetic nano-objects, as a function of both tem-
perature and size, was recovered with good precision and a relatively low computational cost in
comparison to fully atomistic simulations. This computational tool may therefore be applied in the
future to more complex configurations, involving for instance 3D structures and dynamical effects.
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panels), iron (middle panels) and nickel (bottom panels). Left column: nanowire geometry with 6000
nm×d nm×d nm; right column: nanolayer geometry with 600 nm×600 nm×d nm. Two values of d
are considered: d = 11 nm (blue solid curve) and d = 41 nm (orange dash curve). The vertical lines
correspond to the numerical Curie temperatures reported in Table 3, for d = 11 nm (blue vertical
line) and d = 41 nm (orange vertical line).

25



thorough reading of the manuscript and many insightful comments.

References

[1] E. Almahmoud, I. Kornev, and L. Bellaiche. Dependence of Curie temperature on the thickness
of an ultrathin ferroelectric film. Physical Review B, 81:064105, 2010.

[2] U. Atxitia, D. Hinzke, and U. Nowak. Fundamentals and applications of the Landau-Lifshitz-
Bloch equation. Journal of Physics D: Applied Physics, 50(3):033003, 2016.

[3] W. F. Brown. Thermal fluctuations of a single-domain particle. Physical Review, 130:1677,
1963.

[4] O. Chubykalo-Fesenko, U. Nowak, R. W. Chantrell, and D. Garanin. Dynamic approach for
micromagnetics close to the Curie temperature. Physical Review B, 74:094436, 2006.

[5] M. d’Aquino, C. Serpico, G. Coppola, I. D. Mayergoyz, and G. Bertotti. Midpoint numer-
ical technique for stochastic Landau-Lifshitz-Gilbert dynamics. Journal of Applied Physics,
99:08B905, 2006.

[6] W. P. Davey. Precision Measurements of the Lattice Constants of Twelve Common Metals.
Physical Review, 25:753–761, 1925.

[7] M. Donahue and D. Porter. OOMMF User’s Guide, Version 1.0, Interagency Report 6376.
Technical report, National Institute of Standards and Technology, Gaithersburg, 1999.

[8] R. F. L. Evans, D. Meilak, A. Naden, and A. Biternas. VAMPIRE, User Manual. Technical
report, Department of Physics, The University of York, Heslington, York, 2018.

[9] M. E. Fisher and M. N. Barber. Scaling Theory for Finite-Size Effects in the Critical Region.
Physical Review Letters, 28:1516–1519, 1972.

[10] T. Gilbert. A phenomenological theory of damping in ferromagnetic materials. IEEE Transac-
tions on Magnetics, 40(6):3443–3449, 2004.

[11] G. Grinstein and R. Koch. Coarse Graining in Micromagnetics. Physical Review Letter,
90(20):207201, 2003.

[12] M. B. Hahn. Temperature in micromagnetism : cell size and scaling effects of the stochastic
Landau–Lifshitz equation. Journal of Physics Communications, 3:075009, 2019.

[13] R. Hertel. tetmag. https://github.com/R-Hertel/tetmag, Aug. 2023.

[14] F. Huang, G. J. Mankey, M. T. Kief, and R. F. Willis. Finite-size scaling behavior of ferromag-
netic thin films. Journal of Applied Physics, 73(10):6760–6762, 1993.

[15] M. Kirschner, T. Schrefl, F. Dorfbauer, G. Hrkac, D. Suess, and J. Fidler. Cell size corrections
for nonzero-temperature micromagnetics. Journal of Applied Physics, 97:10E301, 2005.

[16] M. Kirschner, T. Schrefl, G. Hrkac, F. Dorfbauer, D. Suess, and J. Fidler. Relaxation times and
cell size in nonzero-temperature micromagnetics. Physica B: Condensed Matter, 372(1):277–
281, 2006. Proceedings of the Fifth International Symposium on Hysteresis and Micromagnetic
Modeling.

26

https://github.com/R-Hertel/tetmag


[17] C. Kittel and P. McEuen. Introduction to solid state physics. John Wiley & Sons, 2018.

[18] G. Klughertz. Ultrafast magnetization dynamics in magnetic nanoparticles. PhD thesis, Uni-
versity of Strasbourg, 2016.

[19] G. Klughertz, P. A. Hervieux, and G. Manfredi. Autoresonant control of the magnetization
switching in single-domain nanoparticules. Journal of Physics D: Applied Physics, 47:345004,
2014.
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