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Abstract. We prove that solitons (or solitary waves) of the Zakharov-Kuz-

netsov (ZK) equation, a physically relevant high dimensional generalization
of the Korteweg-de Vries (KdV) equation appearing in Plasma Physics, and

having mixed KdV and nonlinear Schrödinger (NLS) dynamics, are strongly

asymptotically stable in the energy space. We also prove that the sum of
well-arranged solitons is stable in the same space. Orbital stability of ZK

solitons is well-known since the work of de Bouard [10]. Our proofs follow the
ideas by Martel [30] and Martel and Merle [35], applied for generalized KdV

equations in one dimension. In particular, we extend to the high dimensional

case several monotonicity properties for suitable half-portions of mass and
energy; we also prove a new Liouville type property that characterizes ZK

solitons, and a key Virial identity for the linear and nonlinear part of the ZK

dynamics, obtained independently of the mixed KdV-NLS dynamics. This last
Virial identity relies on a simple sign condition, which is numerically tested for

the two and three dimensional cases, with no additional spectral assumptions

required. Possible extensions to higher dimensions and different nonlinearities
could be obtained after a suitable local well-posedness theory in the energy

space, and the verification of a corresponding sign condition.
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1. Introduction

We are interested in the the Zakharov-Kuznetsov (ZK) equation

(1.1) ∂tu+ ∂x1

(
∆u+ u2

)
= 0,

where u = u(x, t) is a real-valued function, x = (x1, x2) ∈ R × Rd−1, t ∈ R,

∆ =
∑d
j=1 ∂

2
xj denotes the laplacian. The ZK equation is a particular case of the

generalized Zakharov-Kuznetsov (gZK) equation

(1.2) ∂tu+ ∂x1

(
∆u+ up

)
= 0,

where p ∈ Z+ is such that 2 ≤ p <∞ if d = 1, 2 and 2 ≤ p < 1 + 4
d−2 if d ≥ 3. We

observe that when the spatial dimension d is equal to 1, equation (1.2) becomes the
well-known generalized Korteweg- de Vries (gKdV) equation.

The ZK equation was introduced by Zakharov and Kuznetsov in [22] to describe
the propagation of ionic-acoustic waves in uniformly magnetized plasma in the two
dimensional and three dimensional cases. The derivation of ZK from the Euler-
Poisson system with magnetic field in the long wave limit was carried out by Lannes,
Linares and Saut in [25]. The ZK equation was also derived by Han-Kwan [19] from
the Vlasov-Poisson system in a combined cold ions and long wave limit. Moreover,
the following quantities are conserved by the flow of ZK,

(1.3) M(u) =

∫
u(x, t)2dx,

and

(1.4) H(u) =

∫ (1

2
|∇u(x, t)|2 − 1

p+ 1
u(x, t)p+1

)
dx.

The well-posedness theory for ZK and gZK has been extensively studied in the re-
cent years. In the two dimensional case, Faminskii proved that the Cauchy problem
associated to the ZK equation is globally well-posed in the energy space H1(R2)
[13]. The local well-posedness result was pushed down to Hs(R2) for s > 3

4 by

Linares and Pastor [27] and to s > 1
2 by Grünrock and Herr [18] and Molinet and

the third author [41]. The best result for the ZK equation in the three dimensional
case was obtained last year by Ribaud and Vento [44]. They proved local well-
posedness in Hs(R3) for s > 1. Those solutions were extended globally in time
in [41]. Note however that it is still an open problem to obtain well-posedness in
L2(R2) and H1(R3) for the ZK equation. Finally, we also refer to [27, 28, 14, 45, 17]
for more well-posedness results for the gZK equation with p ≥ 3 and to [42, 6, 7]
for unique continuation results concerning ZK.

Note that if u solves (1.2) with initial data u0, then uλ(x, t) = λ2/(p−1)u(λx, λ3t)
is also a solution to (1.2) with initial data u0,λ(x) = λ2/(p−1)u0(λx) for any λ > 0.
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Hence, ‖u0,λ‖Ḣs = λ2/(p−1)+s−d/2‖u0‖Ḣs , so that the scale-invariant Sobolev space

for the gZK equation is Hsc(p)(Rd), where sc(p) = d
2 −

2
p−1 . In particular, the gZK

equation is L2-critical (or simply critical) if p = 1 + 4
d . In the sequel, we will say

that the problem is subcritical if p < 1 + 4
d and supercritical if p > 1 + 4

d .

1.1. The elliptic problem. For c > 0, equation (1.2) admits special solutions of
the form

(1.5) u(x, t) = Qc(x1 − ct, x2, · · · , xd) with Qc(x) −→ 0
|x|→+∞

,

where Qc(x) = c1/(p−1)Q(c1/2x) and Q satisfies

(1.6) −∆Q + Q− Qp = 0.

Observe that Q = Q1.
We recall the following theorem on the elliptic PDE (1.6), which follows, for

example, from the results of Berestycki and Lions [3] and Kwong [23].

Theorem. Assume that 2 ≤ p <∞ if d = 1, 2 and 2 ≤ p < 1 + 4
d−2 if d ≥ 3. Then

there exists a unique positive radially symmetric solution Q to (1.6) in H1(Rd),
which is called a ground state. In addition, Q ∈ C∞(Rd), ∂rQ(r) < 0 for all r > 0
and there exists δ > 0 such that

(1.7) |∂αQ(x)| .α e−δ|x| ∀x ∈ Rd, ∀α ∈ Zd+ .

The solutions of (1.2) of the form (1.5) with Q = Q are called solitary waves or
solitons. They were proved by de Bouard in [10] to be orbitally stable in H1(Rd) if
p < 1 + 4

d and unstable for p > 1 + 4
d . In other words, the solitary waves associated

to (1.2) are orbitally stable in the subcritical case and unstable in the supercritical
case.

In the following, for any c > 0, we will denote by Lc the operator which linearizes
(1.6) around Qc, i.e.,

(1.8) Lc = −∆ + c− pQp−1
c .

In the case c = 1, we also denote L = L1.
Next, we gather some well-known facts about the operator L (see Weinstein

[48]).

Theorem. Assume that 2 ≤ p < ∞ if d = 1, 2 and 2 ≤ p < 1 + 4
d−2 if d ≥ 3.

Then, the following assertions are true.

(i) L is a self-adjoint operator and

(1.9) σess(L) = [λess,+∞), for some λess > 0.

(ii)

(1.10) kerL = span
{
∂xjQ : j = 1, · · · , d

}
.

(iii) L has a unique single negative eigenvalue −λ0 (with λ0 > 0) associated to a
positive radially symmetric eigenfunction χ0. Without loss of generality, we choose

χ0 such that ‖χ0‖L2 = 1. Moreover, there exists δ̃ > 0 such that |χ0(x)| . e−δ̃|x|,
for all x ∈ Rd.
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(iv) Let us define

(1.11) ΛQ :=
( d
dc
Qc
)
c=1

=
1

p− 1
Q+

1

2
x · ∇Q .

Then,

(1.12) LΛQ = −Q ,

and

(1.13)

∫
QΛQ = cp,d ‖Q‖2L2 where cp,d =

1

p− 1
− d

4
.

1.2. Statement of the results. As already mentioned, de Bouard proved in [10]
that the solitary waves of the gZK equation are stable in the subcritical case in the
following sense.

Theorem (Stability). Assume that 2 ≤ p < 1 + 4
d and that the Cauchy problem

associated to (1.2) is well-posed in H1(Rd). Let c0 > 0. Then, there exists ε0 > 0
and K0 > 0 such that if u0 ∈ H1(Rd) satisfies ‖u0 −Qc0‖H1 ≤ ε ≤ ε0, the solution
u of (1.2) with u(·, 0) = u0 satisfies

sup
t∈R

inf
τ∈Rd

‖u(·, t)−Qc0(· − τ)‖H1 ≤ K0ε .

The main result of this paper is the asymptotic stability of the family of solitons
of (1.1) in the case d = 2. Then, we consider the stability of the multi-soliton case
(see Theorem 1.7 below).

Theorem 1.1 (Asymptotic stability). Assume d = 2. Let c0 > 0. For any β > 0,
there exists ε0 > 0 such that if 0 < ε ≤ ε0 and u ∈ C(R : H1(R2)) is a solution of
(1.1) satisfying

(1.14) inf
τ∈R2

‖u(·, t)−Qc0(· − τ)‖H1 ≤ ε, ∀ t ∈ R ,

then the following holds true.
There exist c+ > 0 with |c+− c0| ≤ K0ε, for some positive constant K0 indepen-

dent of ε0, and ρ = (ρ1, ρ2) ∈ C1(R : R2) such that

(1.15) u(·, t)−Qc+(· − ρ(t)) −→
t→+∞

0 in H1(x1 > βt) ,

(1.16) ρ′1(t) −→
t→+∞

c+ and ρ′2(t) −→
t→+∞

0 .

Remark 1.1. It will be clear from the proof that the convergence in (1.15) can also
be obtained in regions of the form

(1.17) AS(t, θ) :=
{

(x1, x2) ∈ R2 : x1−βt+(tan θ)x2 > 0
}
, where θ ∈ (−π

3
,
π

3
) .

Note that the maximal angle of improvement θ ≥ 0 must be strictly less than π
3 on

each side of the vertical line x1 = βt (see Figure 1). We also refer to Lemma 4.3 for
more details and a relation with the nonlinear dynamics of the equation. Moreover,
we expect the range of θ for which asymptotic stability occurs in AS(t, θ) to be
sharp. Indeed, it will be shown in Appendix C that linear plane waves of ZK exist
if and only if the velocity group vector has a negative x1-component and forms an
angle θ with x2 (as in Figure 1) satisfying |θ| ∈ [π3 ,

π
2 ].
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x1

x2

•
βt

θ

x1 = βt

x1 + (tan θ)x2 = βt

θ

AS(t, θ)

Figure 1. AS(t, θ) :=
{

(x1, x2) ∈ R2 : x1 − βt+ (tan θ)x2 > 0
}

.

Remark 1.2. The angle θ = π
3 is also related to the linear part of ZK. In [8],

Carbery, Kenig and Ziesler proved that∥∥|K(D)| 18 e−t∂x1∆ϕ
∥∥
L4
xyt
. ‖ϕ‖L2 ,

where |K(D)| 18 is the Fourier multiplier associated to the symbol |K(k1, k2)| 18 =

|3k2
1 − k2

2|
1
8 . This Strichartz estimate was used in [41] to improve the well-posed

results for ZK at low regularity. Note that the multiplier |K(k1, k2)| 18 cancels out
along the cone |k2| = tan(π3 )|k1|. We also refer to Apendix C for an interesting
relation between the angle θ = π

3 and the linear plane waves of ZK.

Remark 1.3. Our proof does not rely on the structure of the nonlinearity of (1.1)
(i.e. ∂x1(u2)) neither on the dimension d. Actually, our main theorem could be
extended to (1.1) in dimension d = 3 or to the following generalization of gZK

(1.18) ∂tu+ ∂x1
(∆u+ |u|p−1u) = 0 ,

where p is a real number 1 < p < 1 + 4
d under the following conditions:

• The Cauchy problem associated to (1.1) with d = 3 or to (1.18) is well-posed
in H1(Rd).
• The spectral condition

∫
L−1ΛQΛQ < 0 holds true. (Note that L−1ΛQ

makes sense since ΛQ is radial and orthogonal to ∇Q, and we choose
L−1ΛQ orthogonal to ∇Q.)

This spectral condition was shown in the appendix to be true in dimension d = 2
for 2 ≤ p < p2, where p2 is a real number satisfying 2 < p2 < 3.

On the other hand, in dimension d = 3, it is shown in the appendix that∫
L−1ΛQ,ΛQ > 0. Note however that in this case, one could try to verify the

more general property: the operator L restricted to the space
{

kerL,ΛQ
}⊥

is
positive definite.
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Remark 1.4. The case p = 3 in dimension d = 2 is L2 critical, so that solitons
should be unstable (see [32] for example), and the validity of Theorem 1.1 is not
clear at that level.

The proof of Theorem 1.1 is based on the following rigidity result for the solutions
of (1.1) in spatial dimension d = 2 around the soliton Qc0 which are uniformly
localized in the direction x1.

Theorem 1.2 (Nonlinear Liouville property around Qc0). Assume d = 2. Let
c0 > 0. There exists ε0 > 0 such that if 0 < ε ≤ ε0 and u ∈ C(R : H1(R2))
is a solution of (1.1) satisfying for some function ρ(t) =

(
ρ1(t), ρ2(t)

)
and some

positive constant σ

(1.19) ‖u(·+ ρ(t))−Qc0‖H1 ≤ ε, ∀ t ∈ R ,

and

(1.20)

∫
x2

u2(x1 + ρ1(t), x2 + ρ2(t), t)dx2 . e
−σ|x1| , ∀ (x1, t) ∈ R2 ,

then, there exist c1 > 0 (close to c0) and ρ0 = (ρ0
1, ρ

0
2) ∈ R2 such that

(1.21) u(x1, x2, t) = Qc1(x1 − c1t− ρ0
1, x2 − ρ0

2) .

Remark 1.5. Due to the stability result of de Bouard [10], Theorems 1.1 and 1.2
still hold true if we assume that

(1.22) ‖u0 −Qc0‖H1 ≤ ε ,

instead of (1.14) and (1.19).

Remark 1.6. Theorem 1.2 still holds true if we replace assumption (1.20) by the
weaker assumption that the solution u is L2-compact in the x1 direction, i.e.:

∀ ε > 0, ∃A > 0 such that sup
t∈R

∫
|x1|>A

u2(x+ ρ(t), t)dx ≤ ε .

We also prove a rigidity theorem for the solutions of the linearized gZK (or (1.18))
equation in spatial dimension d = 2 around Qc which are uniformly localized in the
direction x1.

Theorem 1.3. (Linear Liouville property around Qc0) Assume d = 2. There exists
2 < p2 < 3 such that for all 2 ≤ p < p2, the following holds true. Let c0 > 0 and
η ∈ C(R : H1(R2)) be a solution to

(1.23) ∂tη = ∂x1
Lc0η on R2 × R ,

where Lc0 is defined in (1.8). Moreover, assume that there exists a constant σ > 0
such that

(1.24)

∫
x2

η2(x1, x2, t)dx2 . e
−σ|x1| , ∀ (x1, t) ∈ R2 .

Then, there exists (a1, a2) ∈ R2 such that

(1.25) η(x, t) = a1∂x1
Qc0(x) + a2∂x2

Qc0(x), ∀ (x, t) ∈ R3 .
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Remark 1.7. It will be clear from the proof (c.f. Remark 2.2) that Theorem 1.3
still holds true if we replace assumption (1.24) by the weaker assumption that the
solution η is L2-compact in the x1 direction, i.e.: η ∈ Cb(R : H1(R2)) and

∀ ε > 0, ∃A > 0 such that sup
t∈R

∫
|x1|>A

η2(x, t)dx ≤ ε .

Remark 1.8. By using the scaling invariance of (1.1), it is enough to prove Theorems
1.3, 1.2 and 1.1 in the case where c0 = 1.

Recall that the first result of asymptotic stability of solitons for generalized KdV
equations was proved by Pego and Weinstein [43] in weighted spaces (see also [39]
for some refinements on the weights). In [31], Martel and Merle have given the first
asymptotic result for the solitons of gKdV in the energy space H1. They improved
their result in [34] and generalized it to a larger class of nonlinearities than the pure
power case in [35].

Their proof relies on a Liouville type theorem for L2-compact solutions around a
soliton (similar to Theorem 1.2 in one dimension). Then, it is proved that a solution
near a soliton converges (up to subsequence) to a limit object, whose emanating
solution satisfies a good decay property. Due to the rigidity result, this limit object
has to be a soliton.

It is worth noting that this technique of proof was also adapted to prove asymp-
totic stability in the energy space for other one dimensional models such as the
BBM equation [12] and the BO equation [20].

We also refer to [38, 1, 40] for stability results for KdV and mKdV in L2 and to
[4, 16] for asymptotic results for the Gross-Pitaevskii equation in one dimension. For
other results on asymptotic stability for nonlinear Schrödinger and wave equations,
see [47, 5, 24, 21] and references therein.

About the proofs. Comparison with previous results. When proving
Theorems 1.1, 1.2 and 1.3, we generalize the ideas of Martel and Merle [31, 34,
35] and Martel [30] to a multidimensional model. However, compared with these
previous results, the higher dimensional case describing the ZK dynamics presents
new challenges, that we explain in the following lines.

First of all, as far as we know, our results represent the first two dimensional
model where asymptotic stability is proved, in the energy space, and with no non-
standard spectral assumptions on the linearized dynamical operator. As we ex-
pressed before, we only need to check the numerical condition

(1.26)

∫
L−1ΛQΛQ < 0.

Obtaining a direct proof of this result seems far from any reasonable approach
because the soliton Q, and therefore, the function L−1ΛQ, have no closed and
explicit forms. This is the first difference with respect to the one dimensional case:
we work with a solitary wave that is not explicit at all.

We will see through the proofs that ZK behaves as a KdV equation in the x1

direction, and as a nonlinear Schrödinger (NLS) equation in the x2 variable. In
particular, we are able to prove monotonicity properties (see Lemma 3.3) along the
x1 direction and along a slighted perturbed cone around the x1 direction (Lemma
4.3). This last result is, to our knowledge, new in the literature and makes use of
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x1

x2

c1 < x1 < c2

x2 > c0

Figure 2. A schematic example of why no asymptotic stability
is expected to hold on the x2 direction. The band in the x2 vari-
able defined by fixed c1 < x1 < c2 has increasing and decreasing
variation of mass along time. Faster solitons are darker and more
concentrated; speed is commensurate with arrow length.

the geometrical properties of the nonlinear ZK dynamics around a solitary wave.
Remark 1.1 and the asymptotic stability result inside the set (see (1.17))

AS(t, θ) :=
{

(x1, x2) ∈ R2 : x1 − βt+ (tan θ)x2 > 0
}
, where θ ∈ (−π

3
,
π

3
),

are deep consequences of these geometrical properties. Recall that such rich folia-
tions are not present in the one dimensional case. We also complement our results
by a simple linear analysis leading to the same formal conclusions, carried out in
Appendix C.

Another barrier that appears in the higher dimensional case is the lack of L∞

control on the solution if we only assume H1 bounds. We need such a control to
ensure pointwise exponential decay around solitons at infinity for a compact part
of the solution. In the one dimensional case, the proof of this fact is direct from
the Sobolev embedding. However, since H1 is not contained in L∞ in R2, we must
prove new monotonicity properties at the H2 level (cf. Lemma 3.6), which are
obtained by proving new energy estimates.

No monotonicity property seems to hold for the x2 direction, mainly because of
the conjectured existence of trains of small solitons moving to the right in x1 but
without restrictions on the x2 coordinate. From the point of view associated to
the x2 variable, such solutions represent movement of mass along the x2 direction
without a privileged dynamics. In particular, no asymptotic stability result is
expected for a half-plane involving the x2 variable only (see Fig. 2). This is the
standard situation in many 2d models like KP-I and NLS equations. However,
here we are able to prove the asymptotic stability of ZK solitons because the KdV
dynamics is exactly enough to control the movement of mass along the x2 direction.

The second ingredient in the proofs of Theorems 1.1, 1.2 and 1.3 is a new virial
identity in higher dimensions (cf. (2.36)), which holds only for the half space
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{x1 > c0t} and for p = 2 and slightly larger. Compared with the previous works
by Martel and Merle, the additional dimensions make things harder because they
induce transversal variations that seem to destroy any virial-type inequality. In
order to overcome this difficulty, we use a different orthogonality condition for the
function v employed in the virial (see Lemma 2.3):

(1.27)

∫
vΛQ = 0.

We emphasize that this condition is somehow natural and necessary if we want to
get full control of the x2 perturbations appearing from the variations of the virial
terms. Without using this modified condition, any form of two-dimensional virial
identity is no longer true.

Here is when the nonstandard spectral condition (1.26) appears: under the or-
thogonality condition (1.27), the virial identity holds provided (1.26) is satisfied.
We prove that (1.26) holds for the case p = 2 and d = 2, as expressed by some
numerical computations obtained in Appendix A. This condition in fact generalizes
the Martel one in [30] and seems to be the natural one for the 2d case, as described
when proving the nonlinear stability result (see (3.60)-(3.61) for instance). It is
worth noting that this condition has already been used by Kenig and Martel in the
Benjamin-Ono context [20], for different reasons. For powers of the nonlinearity
which are definitely larger than 2, or just the three dimensional case for p = 2, we
have a strong instability effect at the level of the previous spectral theory, probably
associated to the dynamics around the soliton in the x2 variable, and the virial
identity seems no longer to hold.1 Once again, a good understanding of the dy-
namics for powers close the the critical case p = 3 or supercritical as in [30] needs
a deep extension of (2.36) by incorporating now the dynamics in the x2 variable,
which could be very complicated, in view of some results by del Pino et al. [11].
The extension of the ideas introduced by Martel [30] to any power of p seems a
very interesting problem.

Finally, we mention that another crucial application of the monotonicity formula
on perturbed cones, needed in the higher dimensional case, is given in Lemma 4.4.
Here, a new compact region R of the plane is introduced, outside of which we prove
exponential decay. This set is constructed in order to prove the strong convergence
of sequences of bounded solutions, thanks to the use of the Sobolev embedding
theorem.

One can also ask for the nonlinear dynamics in the remaining part of the plane,
namely the region AS(t, θ)c, see (1.17). We believe that in addition to radiation,
one can find small solitons Qc moving to the right in a very slow fashion. No finite
energy solitary waves with speed along the x2 direction are present, as shows the
following (general) definition and result. As usual, we define the symbol ∂−1

x1
∂xj by

using its corresponding Fourier representation ξ−1
1 ξjF(·).

Definition 1.4. We say that v ∈ H1(Rd), ∂−1
x1
∂x2

v, · · · , ∂−1
x1
∂xdv ∈ L2(Rd) is the

profile of a solitary wave of speeds (c1, c2, · · · , cd) ∈ Rd if

u(x1, x2, · · · , xd, t) := v(x1 − c1t, x2 − c2t, · · · , xd − cdt), v 6≡ 0,

is solution of (1.2).

1In the one dimensional case, this instability condition does not appear, see Martel [30].
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Note that such a v must satisfy the equation in Rd

(1.28) ∆v − c1v + vp −
d∑
j=2

cj∂
−1
x1
∂xjv = 0 .

Theorem 1.5. Assume that cj 6= 0 for some j ∈ {2, 3, . . . , d}. Then (1.28) has no
finite energy solutions.

We prove this result in Appendix D, using adapted Pohozahev identities.

Finally, as a consequence of the monotonicity properties associated to the linear
part of the dynamics, in particular, using Lemma 2.1, we are able to prove the
stability of the sum of N essentially non-colliding solitons.

Definition 1.6. Let N ≥ 2 be an integer and L ≥ 0. Consider N solitons with
scalings c01, . . . , c

0
N > 0 and centers ρ1,0, . . . , ρN,0 ∈ R2, where ρj,0 = (ρj,01 , ρj,02 ). We

say that these N solitons are L-decoupled if

(1.29) inf
{∣∣((c0k − c0j )t, 0) + ρk,0 − ρj,0

∣∣ | j 6= k, t ≥ 0
}
≥ L,

that is, the solitons centers remains separated by a distance of at least L for positive
times. (See Fig. 3 below.)

L-decoupled solitons can be characterized by a condition on the initial data only,
at least up to a constant in L: indeed, one can check that if, for all j 6= k, we have
either:

• |ρj,02 − ρ
k,0
2 | ≥ L, or

• c0k > c0j and ρk,01 − ρj,01 ≥ L,

then the N solitons are L-decoupled.

Theorem 1.7 (Stability of the sum of N decoupled solitons). Assume d = 2.
Consider a set of N solitons of the form

Qc01(x− ρ1,0), Qc02(x− ρ2,0), . . . , Qc0N (x− ρN,0),

where each c0j is a fixed positive scaling, c0j 6= c0k for all j 6= k, and ρj,0 =

(ρj,01 , ρj,02 ) ∈ R2. Assume that the N solitons are L-decoupled, in the sense of
Definition 1.6. Then there are ε0 > 0, C0 > 0 and L0 > 0 depending on the pre-
vious parameters such that, for all ε ∈ (0, ε0), and for every L > L0, the following
holds. Suppose that u0 ∈ H1(R2) satisfies

(1.30) ‖u0 −
N∑
j=1

Qc0j (x− ρ
j,0)‖H1 < ε.

Then there are γ1 > 0 fixed and ρj(t) ∈ R2 defined for all t ≥ 0 such that u(t),
solution of (1.1) with initial data u(0) = u0 satisfies

(1.31) sup
t≥0
‖u(t)−

N∑
j=1

Qc0j (x− ρ
j(t))‖H1 < C0(ε+ e−γ1L).

The proof of this result is obtained by adapting the ideas by Martel, Merle
and Tsai [36] for the generalized, one dimensional KdV case. Note that we do
not need strictly well-prepared initial data as in [36]. Instead, from (1.29) we just
need sufficient well-separated solitons in the x2 variable (no particular order at the
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x1

x2

L
L L

Figure 3. A schematic example of admissible initial data. Soli-
tons are represented by the disk where their mass is concentrated.

beginning), and in the case where solitons have the same x2 coordinate, we ask for
well-ordered solitons to avoid multi-collisions.

The rest of the paper is organized as follows. The linear and nonlinear Liouville
properties (Theorems 1.3 and 1.2) are proved respectively in Section 2 and 3. The
nonlinear Liouville property is used to show Theorem 1.1 in Section 4. Section 5
is devoted to the proof of Theorem 1.7. Finally, in Appendix A, we present some
numerical computations which establish the negativity of a scalar product in the
case p = d = 2. Recall that this condition is a crucial element in the proofs of the
rigidity results (Theorems 1.2 and 1.3). We also make an interesting observation
about the plane wave solutions of the linear part of ZK in Appendix C and give
the proof of Theorem 1.5 in Appendix D.

2. Linear Liouville property

This section is devoted to the proof of Theorem 1.3. According to Remark 1.8,
we will assume in this section that c0 = 1.

2.1. Monotonicity. In this subsection, we prove a monotonicity formula for the
solutions of (1.23) satisfying (1.24).

Let L denote a positive number such that L ≥ 4. We define ψL ∈ C∞(R : R) by

(2.1) ψL(y) =
2

π
arctan(ey/L),

so that limy→+∞ ψL(y) = 1 and limy→−∞ ψL(y) = 0. Note also that

(2.2) ψ′L(y) =
1

πL cosh(y/L)
and |ψ′′′(y)| ≤ 1

L2
ψ′L(y) ≤ 1

16
ψ′L(y) .

Lemma 2.1. Let t0 ∈ R, y0 > 0 and x̃1 = x1 − 1
2 (t0 − t) − y0 for t ≤ t0. Let

η ∈ C(R : H1(R2)) be a solution of (1.23) satisfying condition (1.24). Define
L0 = max{4, 1

(p−1)δ}, where δ is the positive number in (1.7). Then

(2.3)∫
(∂αη)2(x, t0)ψL(x1−y0)dx+

∫ t0

−∞

∫ (
|∇∂αη|2+(∂αη)2

)
(x, t)ψ′L(x̃1)dxdt .L e

−y0/L,
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for all multi-index α ∈ N2 and all positive number L ≥ L0.

Remark 2.1. The implicit constant appearing in (2.3) depends only on L. In par-
ticular it does not depend on y0 and t0.

Remark 2.2. It will be clear from the proof below that Lemma 2.1 and thus Theorem
1.3 still hold true if we replace (1.24) by the weaker assumption that the solution
η is L2-compact in the x1 direction, i.e.: η ∈ Cb(R : H1(R2)) and

∀ ε > 0, ∃A > 0 such that sup
t∈R

∫
|x1|>A

η2(x, t)dx ≤ ε .

Proof. First, we prove (2.3) for α = (0, 0). Fix L ≥ L0. Observe from condition
(1.24) that

(2.4) sup
t∈R

∫
η(x, t)2dx ≤ C .

By using the equation (1.23), integrations by parts and the inequality in (2.2), we
compute that

d

dt

∫
η2ψL(x̃1)dx = 2

∫
η∂tηψL(x̃1)dx+

1

2

∫
η2ψ′L(x̃1)dx

≤ −
∫ (

3(∂x1
η)2 + (∂x2

η)2
)
ψ′L(x̃1)dx− 1

4

∫
η2ψ′L(x̃1)dx

+ p

∫
η2
(
− ∂x1

(Qp−1)ψL(x̃1) +Qp−1ψ′L(x̃1)
)
dx .

(2.5)

To deal with the last term appearing on the right-hand side of (2.5), let us define

(2.6) T0(η) = p

∫
η2
(
− ∂x1

(Qp−1)ψL(x̃1) +Qp−1ψ′L(x̃1)
)
dx .

We claim that

(2.7)
∣∣T0(η)

∣∣ ≤ Ce−( 1
2 (t0−t)+y0)/L +

1

8

∫
η2ψ′L(x̃1)dx .

To prove (2.7), we argue as in Lemma 5 in [30]. Recall from (1.7) and (2.1) that∣∣∂x1
(Qp−1)ψL(x̃1)

∣∣+
∣∣Qp−1ψ′L(x̃1)

∣∣ . e−δ(p−1)|x|ψL(x̃1) . e−δ(p−1)|x1|ψL(x̃1) ,

where δ is the positive constant appearing in (1.7). Let R1 > 0 to be fixed later.
We consider the three following cases.
Case: x1 < R1. Then x̃1 < R1 − 1

2 (t0 − t)− y0, so that

e−δ(p−1)|x1|ψL(x̃1) . ψL(x̃1) ≤ ex̃1/L ≤ e(R1− 1
2 (t0−t)−y0)/L .

Case: R1 < x1 <
1
2 (t0 − t) + y0. Then, we get that

e−δ(p−1)|x1|ψL(x̃1) . e−δ(p−1)x1ψ′L(x̃1) ≤ e−δ(p−1)R1ψ′L(x̃1) ,

since ψL(x̃1) . ψ′L(x̃1) for x̃1 < 0.
Case: 1

2 (t0 − t) + y0 < x1. In this case

e−δ(p−1)|x1|ψL(x̃1) . e−δ(p−1)( 1
2 (t0−t)+y0) ≤ e−( 1

2 (t0−t)+y0)/L ,

since L ≥ 1
(p−1)δ .

We deduce then that∣∣T0(η)
∣∣ ≤ Ce(R1− 1

2 (t0−t)−y0)/L

∫
η2dx+ Ce−δ(p−1)R1

∫
η2ψ′L(x̃1)dx ,
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which yields estimate (2.7) by using (2.4) and fixing R1 large enough so that
Ce−δ(p−1)R1 ≤ 1

8 .
Thus, we conclude gathering (2.5)–(2.7) and integrating between t and t0 that∫

η2(x, t0)ψL(x1 − y0)dx+
1

8

∫ t0

t

∫ (
|∇η|2 + η2

)
(x, s)ψ′L(x̃1)dxds

. e−y0/L +

∫
η2(x, t)ψL(x1 −

1

2
(t0 − t)− y0)dx,

(2.8)

for all y0 > 0 and t < t0. To handle the second term of the right-hand side of (2.8),
we use the fact that η satisfies condition (1.24). Given ε > 0, there exists A > 0
such that

(2.9)

∫
|x1|>A

η2(x, t)dx ≤
∫
|x1|>A

e−σ|x1|dx1 ≤ ε .

On the other hand, it follows from (2.4) that

(2.10)

∫
|x1|≤A

η2(x, t)ψL(x̃1)dx ≤ ψL(A− 1

2
(t0 − t)− y0)

∫
η2(x, t)dx −→

t→−∞
0 .

Therefore, we conclude the proof of (2.3) in the case α = (0, 0) by using (2.9)–(2.10)
and sending t to −∞ in (2.8).

Next, we prove (2.3) in the general case by induction on k = |α|. Let k ∈ N be
such that 1 ≤ k ≤ k0. Assume that estimate (2.3) is true for all α̃ ∈ N2 such that
|α̃| ≤ k − 1. Let α ∈ N2 be such that |α| = k. Arguing as in (2.5), we get that

d

dt

∫
(∂αη)2ψL(x̃1)dx ≤ −

∫ (
|∇∂αη|2 +

1

4
(∂αη)2

)
ψ′L(x̃1)dx+ Tα(η) ,(2.11)

where

(2.12) Tα(η) = −2p

∫
∂x1∂

α(Qp−1η)∂αηψL(x̃1)dx .

By using the Leibniz rule and integrations by parts, we get that

Tα(η) =
∑

0≤β≤α

Cβ

∫
∂x1

(
∂β(Qp−1)∂α−βη

)
∂αηψL(x̃1)dx

=
∑

0<β≤α

Cβ

∫
∂x1

(
∂β(Qp−1)∂α−βη

)
∂αηψL(x̃1)dx

− p
∫
∂x1(Qp−1)(∂αη)2ψL(x̃1)dx+ p

∫
Qp−1(∂αη)2ψ′L(x̃1)dx .

(2.13)

On the other hand, observe from (1.7) that

(2.14) |∂β(Qp−1)ψL(x̃1)| . e−δ(p−1)|x|ψL(x̃1) .L ψ
′
L(x̃1), for all |β| ≤ k + 1 .

Indeed, it is clear in the case x̃1 ≤ 0, since ψL(x̃1) .L ψ′L(x̃1). In the case where
x̃1 > 0, then 0 < x̃1 < x1 and

e−δ(p−1)|x|ψL(x̃1) . e−δ(p−1)x1 . e−δ(p−1)x̃1 . ψ′L(x̃1),

since L ≥ 1
(p−1)δ . Therefore, we deduce gathering (2.13)–(2.14) and using Young’s

inequality that

(2.15)
∣∣Tα(η)

∣∣ . ∑
0≤β≤α

∫
(∂βη)2ψ′L(x̃1)dx .
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We integrate (2.11) between t and t0 and use (2.15) to obtain that

∫
(∂αη)2(x, t0)ψL(x1 − y0)dx+

∫ t0

t

∫
|∇∂αη|2(x, t)ψ′L(x̃1)dxdt

.
∑

0≤β≤α

∫ t0

t

∫
(∂βη)2ψ′L(x̃1)dx+

∫
(∂αη)2(x, t)ψL(x1 −

1

2
(t0 − t)− y0)dx.

(2.16)

Then, we deduce after letting t→ −∞ in (2.16) and using the induction hypothesis
that

∫
(∂αη)2(x, t0)ψL(x1 − y0)dx+

∫ t0

−∞

∫
|∇∂αη|2(x, t)ψ′L(x̃1)dxdt

. e−y0/L + lim inf
t→−∞

∫
(∂αη)2(x, t)ψL(x1 −

1

2
(t0 − t)− y0)dx.

(2.17)

To handle the second term on the right-hand side of (2.17), we use again (2.3) with
|α̃| = k − 1 to get ∫ t0

−∞

∫
(∂αη)2(x, t)ψ′L(x̃1)dxdt . e−y0/L ,

so that

(2.18)

∫ t0

−∞

∫
x1<(t0−t)/2+y0

(∂αη)2(x, t)e(x1− 1
2 (t0−t))/Ldxdt . 1 ,

since ψ′L(x̃1) & ex̃1/L for x̃1 < 0. Note that the implicit constant is independent
of y0 > 0. We deduce by passing to the limit as y0 → +∞ in (2.18) and then
multiplying by e−y0/L that

(2.19)

∫ t0

−∞

∫
(∂αη)2(x, t)ψL(x1 −

1

2
(t0 − t)− y0)dxdt . e−y0/L ,

since ψL(x1) ≤ ex1/L for x1 ∈ R. Therefore,

(2.20) lim inf
t→−∞

∫
(∂αη)2(x, t)ψL(x1 −

1

2
(t0 − t)− y0)dx = 0 ,

which combined with (2.17) implies (2.3) in the case |α| = k.
This concludes the proof of Lemma 2.1. �

In particular, we deduce from the monotonicity formula that the exponential
decay in the x1 direction of the solutions of (1.23) imply the exponential decay of
all their derivatives in the direction x1.

Corollary 2.2. Let η ∈ C(R : H1(R2)) be a solution of (1.23) satisfying condition
(1.24). Then, there exists σ̃ > 0 such that

(2.21) sup
t∈R

∫
(∂αη)2(x, t)eσ̃|x1|dx . 1, ∀α ∈ N2 .

Proof. Define σ̃ = 1
L0

where L0 is given by Lemma 2.1. Since ψL(x̃1) & eσ̃x̃1 for

x̃1 < 0, we deduce by using the inequality on the first term in (2.3) that

(2.22)

∫
x1<y0

(∂αη)2(x, t)eσ̃x1dx . 1, ∀ y0 > 0, t ∈ R .
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Thus, it follows sending y0 to +∞ in (2.22) that

(2.23) sup
t∈R

∫
(∂αη)2(x, t)eσ̃x1dx . 1 .

To obtain the exponential decay in the direction x1 < 0, we observe that η̃(x, t) =
η(−x,−t) is also a solution to (1.23) satisfying (1.24). Therefore, we deduce arguing
as above that

(2.24) sup
t∈R

∫
(∂αη)2(x, t)e−σ̃x1dx = sup

t∈R

∫
(∂αη̃)2(x, t)eσ̃x1dx . 1 .

We conclude the proof of (2.21) follows gathering (2.23)–(2.24). �

2.2. Proof of Theorem 1.3. Following Martel in [30] for the gKdV equation, we
will work with a dual problem. Let us define

(2.25) v = Lη − α0Q, where α0 =

∫
Lη(·, 0)ΛQdx∫
QΛQdx

.

Note that formula (1.13) implies that
∫
QΛQdx > 0, since we are in the subcritical

case, so that α0 in (2.25) is well-defined. Then, we deduce from (1.10), (1.23) and
the definition of v in (2.25) that v is a solution to

(2.26) ∂tv = L∂x1v + α0L∂x1Q = L∂x1v,

and v satisfies the orthogonality conditions

(2.27)

∫
v∂x1Qdx =

∫
v∂x2Qdx = 0,

and

(2.28)

∫
vΛQdx = 0 .

To verify (2.28), we first observe gathering (1.12) and (2.27) that

d

dt

∫
vΛQdx =

∫
L∂x1

vΛQdx = −
∫
v∂x1

LΛQdx =

∫
v∂x1

Qdx = 0,

so that (2.28) follows from the choice of α0 in (2.25).
Now, we infer from the monotonicity property that v ∈ C(R : H1(R2)) satisfies

(2.29)

∫
x2

v2(x1, x2, t)dx2 . e
−σ̃|x1| , ∀(x1, t) ∈ R2 .

for some σ̃ > 0. Indeed, we get from the definitions of v in (2.25), the decay
properties of Q in (1.7) and formula (2.21) with |α| ≤ 3 that

(2.30) sup
t∈R

∫ (
v2 + (∂x1

v)2
)
(x, t)eσ̃|x1|dx . 1 ,
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for some positive constant σ̃. We compute then by using the Sobolev embedding
H1(R) ↪→ L∞(R) and the Cauchy-Schwarz inequality in x2 that∥∥∥(∫

x2

v2(x, t)eσ̃|x1|dx2

) 1
2
∥∥∥
L∞x1

.
∥∥∥(∫

x2

v2(x, t)eσ̃|x1|dx2

) 1
2
∥∥∥
H1
x1

.
(∫

v2(x, t)eσ̃|x1|dx
) 1

2

+
(∫

x1

( ∫
x2
vvx1dx2

)2∫
x2
v2dx2

eσ̃|x1|dx1

) 1
2

.

(∫ (
v2 + (∂x1

v)2
)
(x, t)eσ̃|x1|dx

) 1
2

,

(2.31)

which together with estimate (2.30) implies estimate (2.29).
Next, we derive a virial identity for the solutions of (1.23). Let φ ∈ C2(R) be an

even positive function such that φ′ ≤ 0 on R+,

(2.32) φ|[0,1] = 1, φ(x1) = e−x1 on [2,+∞), e−x1 ≤ φ(x1) ≤ 3e−x1 onR+ .

(2.33) |φ′(x1)| ≤ Cφ(x1) and |φ′′(x1)| ≤ Cφ(x1) , .

for some positive constant C. Let ϕ be be defined by ϕ(x1) =
∫ x1

0
φ(y)dy. Then ϕ

is an odd function such that ϕ(x1) = x1 on [−1, 1] and |ϕ(x1)| ≤ 3. For a parameter
A (which will be fixed below), we set

(2.34) ϕA(x1) = Aϕ(x1/A) so that ϕ′A(x1) = φ(x1/A) =: φA(x1) ,

and
(2.35)

ϕA(x1) = x1 on [−A,A], |ϕA(x1)| ≤ 3A and e−|x|/A ≤ φA(x) ≤ 3e−|x|/A onR

Then, we have that

−1

2

d

dt

∫
ϕAv

2dx =

∫
φA(∂x1v)2dx+

1

2

∫
φA
(
|∇v|2 + v2 − pQp−1v2

)
dx

− 1

2

∫
φ′′Av

2dx− p

2

∫
ϕA∂x1

(Qp−1)v2dx .

(2.36)

The following coercivity property will be proved in the next subsection.

Lemma 2.3. Consider the bilinear form

(2.37) HA(v, w) =

∫
φA
(
∇v · ∇w + vw − pQp−1vw

)
dx .

Then, there exists 2 < p2 < 3 such that the following holds true for all 2 ≤ p < p2.
There exists λ > 0 and A0 > 0 such that

(2.38) HA(v, v) ≥ λ
∫
φA
(
|∇v|2 + v2

)
dx ,

for all v ∈ H1(R2) satisfying (v,ΛQ) = (v, ∂x1
Q) = (v, ∂x2

Q) = 0 and A ≥ A0.
(Recall that (f, g) :=

∫
fgdx.)
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Observe from the choice of ϕA (negative for x1 < 0 and positive for x1 > 0) that
the last on term on the right-hand side of (2.36) is nonnegative. Moreover, it follows

from (2.33) and (2.34) that |φ′′A(x1)| ≤ C/A2φA(x1). We fix A ≥ max{A0, 2
√

C
λ }.

Therefore, it follows from (2.36) and (2.38) that

(2.39) − 1

2

d

dt

∫
ϕA(x1)v2dx ≥

∫
φA(x1)

(
(∂x1v)2 +

λ

2
|∇v|2 +

λ

4
v2
)
dx .

Integrating (2.39), we deduce that

(2.40)

∫ +∞

−∞

∫
φA(x1)v2(x, t)dxdt ≤ 12

λ
A sup

t
‖v(·, t)‖2L2 < +∞ ,

which is finite from (2.29). Thus, there exists a sequence {tn} satisfying tn → +∞
such that

(2.41)

∫
φA(x1)v2(x, tn)dx −→

n→+∞
0 .

By using, the exponential decay of v in the x1 direction, we infer then that

(2.42)

∫
v2(x, tn)dx −→

n→+∞
0 .

Indeed, for all R > 0, there exists CR > 0 such that φA(x1) ≥ CR if |x1| ≤ R.
Then, we deduced from (2.29) that∫

v2(x, tn)dx =

∫
|x1|≤R

v2(x, tn)dx+

∫
|x1|>R

v2(x, tn)dx

≤ 1

CR

∫
φA(x1)v2(x, tn)dx+

2

σ̃
e−σ̃R ,

for all R > 0 which yields (2.42) in view of (2.41). We show similarly that there
exists a sequence {sn} satisfying sn → −∞ and

(2.43)

∫
v2(x, sn)dx −→

n→+∞
0 .

Therefore, we deduce after integrating (2.39) between sn and tn and using (2.42)
and (2.43) to let n→ +∞ that
(2.44)∫ +∞

−∞

∫
φA(x1)v2(x, t)dxdt ≤ 6

λ
A lim
n→+∞

(∫
v2(x, sn)2dx+

∫
v2(x, tn)2dx

)
= 0 .

Since φA is positive function, (2.44) implies that

(2.45) v(x, t) = 0 for all (x, t) ∈ R3 .

Thus (1.10), (1.12), the definition of v in (2.25) and (2.45) implies that there
exist β0 ∈ R and two bounded C1 functions α1, α2 such that

(2.46) η(·, t) = β0ΛQ+ α1(t)∂x1Q+ α2(t)∂x2Q .

By using the equation (1.23), we obtain that

(2.47)

{
α′1(t) = β0

α′2(t) = 0
⇒

 β0 = 0
α1(t) = a1

α2(t) = a2

,

for two real numbers a1, a2. This finishes the proof of Theorem 1.3.
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2.3. Coercivity of the bilinear form HA. The aim of this subsection is to prove
Lemma 2.3. We first prove a similar result for the non-localized quadratic form.

Proposition 2.4. Consider the bilinear form

(2.48) H(v, w) = (Lv, w) =

∫ (
∇v · ∇w + vw − 2Qvw

)
dx .

Then, there exists λ̃ > 0 such that

(2.49) H(v, v) ≥ λ̃‖v‖2H1 ,

for all v ∈ H1(R2) satisfying (v,ΛQ) = (v, ∂x1
Q) = (v, ∂x2

Q) = 0.

The proof of Proposition 2.4 relies on the following spectral property.

Proposition 2.5. Assume that d = 2. There exists 2 < p2 < 3 such that

(2.50)
(
L−1ΛQ,ΛQ

)
< 0 ,

for all 2 ≤ p < p2.

The proof of Proposition 2.5 is given in the appendix by using numerical methods.

Proof of Proposition 2.4. From (1.12), we have

(ΛQ,χ0) = − 1

λ0
(ΛQ,Lχ0) =

1

λ0

∫
Qχ0dx > 0 and ΛQ ∈

(
kerL

)⊥
.

Therefore, we conclude the proof of Proposition 2.4 by invoking Lemma E.1 (and
the proof of Proposition 2.9) in [48], since

(
L−1ΛQ,ΛQ

)
< 0 in our case due to

Proposition 2.5. �

To deduce Lemma 2.3 from Proposition 2.4, we follow the ideas in the appendices
of [33, 9] and first prove a technical lemma.

Lemma 2.6. There exists κ > 0 (depending on λ̃ given by Proposition 2.4) such
that

(2.51) H(v, v) =

∫ (
|∇v|2 + v2 − pQp−1v2

)
dx ≥ λ̃

2
‖v‖2H1 ,

for all v ∈ H1(R2) satisfying

(2.52)
∣∣(v, ΛQ

‖ΛQ‖L2

)∣∣+
∣∣(v, ∂x1

Q

‖∂x1Q‖L2

)∣∣+
∣∣(v, ∂x2

Q

‖∂x2Q‖L2

)∣∣ ≤ κ‖v‖H1 .

Proof. Let v in H1(R2) satisfying (2.52). We use the decomposition

(2.53) v = v1 + b0
ΛQ

‖ΛQ‖L2

+ b1
∂x1

Q

‖∂x1Q‖L2

+ b2
∂x2

Q

‖∂x2Q‖L2

= v1 + v2 ,

with (v1,ΛQ) = (v1, ∂x1
Q) = (v1, ∂x2

Q) = 0, so that (2.52) yields

(2.54) |b0|+ |b1|+ |b2| ≤ κ‖v‖H1 .

Moreover, if 0 < κ ≤ 1
2 , (2.53) and (2.54) imply that

(2.55)

√
3

2
‖v‖H1 ≤ ‖v1‖H1 ≤ ‖v‖H1 .

Now, we compute

(2.56) H(v, v) = H(v1, v1) +H(v2, v2) + 2H(v1, v2) ,
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On the one hand, it follows by (2.49) and (2.55) that

(2.57) H(v1, v1) ≥ λ̃‖v1‖H1 ≥ 3λ̃

4
‖v‖2H1 .

On the other hand, the continuity of H and (2.54) give that

(2.58) H(v2, v2) . |b0|2 + |b1|2 + |b2|2 . κ2‖v‖2H1 ≤
λ̃

8
‖v‖2H1

and

(2.59) H(v1, v2) . ‖v1‖H1‖v2‖H1 . ‖v‖H1

(
|b0|+|b1|+|b2|

)
. κ‖v‖2H1 ≤

λ̃

8
‖v‖2H1 ,

as soon as κ is chosen small enough (as a function of λ̃).
The proof of Lemma 2.6 is concluded gathering (2.56)–(2.59). �

Proof of Lemma 2.3. Let v ∈ H1(R2) be such that (v,ΛQ) = (v, ∂x1Q) = (v, ∂x2Q) =
0. Recall from (2.32) that φA is a positive function. Then, a direct computation
gives

(2.60) HA(v, v) = H(
√
φAv,

√
φAv)−

∫
(∂x1

√
φA)2v2dx−

∫
φ′Av∂x1vdx .

Thanks to the orthogonality properties on v, the definition of φA in (2.32) and
(2.34) and the decay property of Q and its derivatives (1.7)

(2.61)
∣∣∣ ∫ √φAv ∂x1

Q

‖∂x1Q‖L2

dx
∣∣∣ =

∣∣∣ ∫ (1−
√
φA)v

∂x1
Q

‖∂x1Q‖L2

dx
∣∣∣ ≤ κ‖√φAv‖L2 ,

if A is chosen large enough. Arguing similarly, we have that

(2.62)
∣∣∣ ∫ √φAv ∂x2Q

‖∂x1
Q‖L2

dx
∣∣∣ ≤ κ‖√φAv‖L2

and

(2.63)
∣∣∣ ∫ √φAv ΛQ

‖ΛQ‖L2

dx
∣∣∣ ≤ κ‖√φAv‖L2 ,

for A chosen large enough. Then, it follows from Lemma 2.6 that

(2.64) H(
√
φAv,

√
φAv) ≥ ‖

√
φAv‖2H1 .

We deduce gathering (2.60) and (2.64) that

(2.65) HA(v, v) ≥ λ̃

2

∫
φA
(
v2+|∇v|2

)
−
∫

(∂x1

√
φA)2v2dx+(

λ̃

2
−1)

∫
φ′Av∂x1

vdx.

We use (2.33) and (2.34) to control the last two terms on the right-hand side of
(2.65). It follows that

(2.66)

∫
(∂x1

√
φA)2v2dx ≤ C

A2

∫
φAv

2dx ≤ λ̃

8

∫
φAv

2dx

and

(2.67)

∫
φ′Av∂x1vdx ≤

C

2A2

∫
φA
(
v2 + (∂x1v)2

)
dx ≤ λ̃

8

∫
φA
(
v2 + (∂x1v)2

)
dx ,

if A is chosen large enough.
Therefore, we conclude the proof of (2.38) gathering (2.65)–(2.67). Observe that

we can choose λ = λ̃
4 , where λ̃ is given by Proposition 2.4.
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�

3. Nonlinear Liouville Property

In this section, we give the proof of Theorem 1.2. According to Remark 1.8, we
will assume in this section that c0 = 1.

3.1. Modulation of a solution close to the soliton Q.

Lemma 3.1. There exist ε0 > 0, δ0 > 0 and K0 > 0 such that for any 0 < ε ≤ ε0
the following is true. For any solution u ∈ C(R : H1(R2)) of (1.1) satisfying

(3.1) inf
τ∈R2

‖u(·, t)−Q(· − τ)‖H1 ≤ ε ∀ t ∈ R ,

there exist ρ =
(
ρ1, ρ2

)
∈ C1(R : R2) and c ∈ C1(R : R) such that

(3.2) η(x, t) = u(x+ ρ(t), t)−Qc(t)(x)

satisfies for all t ∈ R
(3.3) |c(t)− 1|+ ‖η(·, t)‖H1 ≤ K0ε ,

(3.4)

∫
η(x, t)∂x1

Qc(t)(x)dx =

∫
η(x, t)∂x2

Qc(t)(x)dx =

∫
η(x, t)Qc(t)(x)dx = 0

and

(3.5) |c′(t)| 12 + |ρ′1(t)− c(t)|+ |ρ′2(t)| ≤ K0

(∫
η(x, t)2e−δ|x|dx

) 1
2

.

Moreover the functions ρ and c satisfying (3.2)–(3.5) are unique.

Proof. The proof of Lemma 3.1 is a classical application of the implicit function
theorem (see for example Proposition 1 in [32] or page 225 in [31]). Note that the
non-degeneracy conditions to satisfy the orthogonality conditions (3.4) are given
by

(3.6)

∫
(∂x1

Q)2dx > 0,

∫
(∂x2

Q)2dx > 0 and

∫
QΛQdx > 0 .

The last condition in (3.6) is satisfied since we are in the subcritical case (see
formula (1.13)).

For the sake of completeness, we explain how to deduce (3.5) from (3.2)–(3.4).
In particular, the fact that |c′(t)| is bounded by a quadratic function of ‖η‖L2

is a consequence of the orthogonality of η and Qc in (3.4) and will be of crucial
importance in the proof of Theorem 1.2.

First, we derive the equation on η. Since u is a solution to (1.1), we compute
that

∂tη = −∂x1
(∆u+ u2) + ρ′ · ∇u− c′ΛQc

= ∂x1

(
Lcη − η2

)
+ (ρ′1 − c)∂x1(Qc + η) + ρ′2∂x2(Qc + η)− c′ΛQc ,

(3.7)

where Lc was defined in (1.8). Thus, we obtain by deriving the last orthogonality
condition in (3.4) with respect to the time that∫

∂x1LcηQcdx−
∫
∂x1(η2)Qcdx+ (ρ′1 − c)

∫
∂x1(Qc + η)Qcdx

+ ρ′2

∫
∂x2

(Qc + η)Qcdx− c′
∫
QcΛQcdx+ c′

∫
ηΛQcdx = 0 .

(3.8)
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Now, observe that

(3.9)

∫
∂x1

LcηQcdx = −
∫
ηLc∂x1

Qcdx = 0 ,

since ∂x1
Qc belongs to the kernel of Lc. Moreover, the orthogonality conditions in

(3.4) yield

(3.10)

∫
∂x1

(Qc + η)Qcdx =

∫
∂x2

(Qc + η)Qcdx = 0 .

Thus, we deduce from (1.7), (3.3) and(3.8)–(3.10) that

(3.11) |c′| =
∣∣ ∫ η2∂x1

Qcdx
∣∣∣∣ ∫ QcΛQcdx− ∫ ηΛQcdx

∣∣ ≤
∫
η2e−δ|x|dx∫

QcΛQcdx−K0ε0
.

Recall from formula (1.13) that
∫
QcΛQcdx > 0 since we are in the subcritical

case. Therefore, (3.11) yields the first inequality in (3.5) if ε0 and K0 are chosen
correctly. �

Lemma 3.2. Under the assumptions of Lemma 3.1. Assume moreover that there
exist σ > 0 and some function ρ̃ ∈ C(R : R2)

(3.12)

∫
x2

u2(x+ ρ̃(t), t)dx2 . e
−σ|x1| , ∀ (x1, t) ∈ R2 .

Then,

(3.13)

∫
x2

u2(x+ ρ(t), t)dx2 . e
−σ|x1| , ∀ (x1, t) ∈ R2 ,

where ρ is the function obtained from the modulation theory in Lemma 3.1.

Proof. First, we infer that there exists A > 0 such that

(3.14)
∣∣ρ1(t)− ρ̃1(t)

∣∣ ≤ A, ∀ t ∈ R .

Indeed, on the one hand we get from the triangle inequality that

‖u(·+ ρ(t), t)‖L2(|x|≤1) ≥ ‖Q‖L2(|x|≤1) − ‖Q−Qc(t)‖L2 − ‖η(·, t)‖L2 .

Then, since the function : t ∈ R 7→ Qc(t) ∈ H1(R2) is continuous, we conclude from
(3.3) that

(3.15) ‖u(·+ ρ(t), t)‖L2(|x|≤1) ≥
1

2
‖Q‖L2(|x|≤1), ∀ t ∈ R ,

if ε0 is chosen small enough. On the other hand, we deduce from (3.12) that there

exists Ã > 0 such that

(3.16)
(∫
|x1|≥Ã

u2(x+ ρ̃(t), t)dx
) 1

2

.
(∫
|x1|≥Ã

e−σ|x1|dx1

) 1
2 ≤ 1

4
‖Q‖L2(|x|≤1) .

Let us define A = Ã+ 1. Assume by contradiction that |ρ̃(t)− ρ(t)| ≥ A for some
t ∈ R. Then, (3.16) implies that

‖u(·+ ρ(t), t)‖L2(|x|≤1) ≤
(∫
|x1+ρ1(t)−ρ̃1(t)|≤1

u2(x+ ρ̃(t), t)dx
) 1

2 ≤ 1

4
‖Q‖L2(|x|≤1) .

This contradicts (3.15) and thus proves (3.14).
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Finally, we get from (3.12) that∫
x2

u2(x+ ρ(t), t)dx2 =

∫
x2

u2(x+ ρ̃(t) + (ρ(t)− ρ̃(t)), t)dx2 . e
−σ|x1+ρ1(t)−ρ̃1(t)| ,

which together with (3.14) concludes the proof of estimate (3.13).
�

3.2. Monotonicity. In this subsection, we prove monotonicity properties first for
the L2-norm of u, then for an energy in H1 associated to u and finally for the
L2-norm of ∂αu, for any α ∈ N2, by induction on |α| = k.

Let u be a solution to (1.1) satisfying (1.19). Then, by using the decomposition
in Lemma 3.1, there exists ρ = (ρ1, ρ2) ∈ C(R : R2) and c ∈ C1(R : R) satisfying
(3.2)-(3.5).

Let us define ψM be defined as in (2.1)–(2.2). For y0 > 0, t0 ∈ R and t ≤ t0, we
also define

(3.17) x̃1 = x1 − ρ1(t0) +
1

2
(t0 − t)− y0 .

We first derive the L2-monotonicity property.

Lemma 3.3. Assume that u ∈ C(R : H1(R2)) is a solution of (1.1) satisfying
(3.2)-(3.5). For y0 > 0, t0 ∈ R and t ≤ t0, let us define

(3.18) Iy0,t0(t) =

∫
u2(x, t)ψM (x̃1)dx ,

where ψM is defined as in (2.1)–(2.2) and x̃1 is defined as in (3.17). Then

(3.19) Iy0,t0(t0)− Iy0,t0(t) . e−y0/M ,

if ε0 in (1.19) is chosen small enough and M ≥ 4.
If moreover, u satisfies the decay assumption (1.20), then∫

u2(x, t0)ψM (x1 − ρ1(t0)− y0)dx

+

∫ t0

−∞

∫ (
|∇u|2 + u2

)
(x, t)ψ′M (x̃1)dxdt . e−y0/M .

(3.20)

Remark 3.1. It will be clear from the proof that (3.19) still holds true if, for any
0 < β < 1, we redefine Iy0,t0(t) by

Iy0,t0(t) =

∫
u2(x, t)ψM (x1 − ρ1(t0) + β(t0 − t)− y0)dx ,

and choose M = M(β) > 0 big enough.

Proof. Fix M ≥ 4. We compute by using (1.1) and the inequality in (2.2) that

d

dt
Iy0,t0(t) = 2

∫
u∂tuψM (x̃1)dx− 1

2

∫
u2ψ′M (x̃1)dx

≤ −
∫ (

3(∂x1
u)2 + (∂x2

u)2 +
1

4
u2
)
ψ′M (x̃1)dx+

2

3

∫
u3ψ′M (x̃1)dx .

(3.21)

We decompose the nonlinear term on the right-hand side of (3.21) as follows

(3.22)

∫
u3ψ′M (x̃1)dx =

∫
Qc(·−ρ)u2ψ′M (x̃1)dx+

∫ (
u−Qc(·−ρ)

)
u2ψ′M (x̃1)dx .
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To deal with the second term on the right-hand side of (3.22), we use the Sobolev
embedding H1(R2) ↪→ L3(R2). Then∣∣∣ ∫ (u−Qc(· − ρ)

)
u2ψ′M (x̃1)dx

∣∣∣ . ‖u−Qc(· − ρ)‖H1‖
√
ψ′Mu‖

2
H1

. K0ε0

∫ (
|∇u|2 + u2

)
ψ′Mdx ,

(3.23)

in view of (3.3) and (2.2).
Now, we treat the first term on the right-hand side of (3.22). Let R1 be a positive

number to be chosen later. In the case where |x− ρ(t)| ≥ R1, we have that

(3.24)
∣∣∣ ∫
|x−ρ(t)|≥R1

Qc(· − ρ)u2ψ′M (x̃1)dx
∣∣∣ ≤ Ce−δR1

∫
u2ψ′Mdx ,

where δ is the positive number given in (1.7).
In the case where |x− ρ(t)| ≤ R1, we observe by using (3.3), (3.5) and the mean

value theorem that

|x̃1| ≥ |ρ1(t0)− ρ1(t) + y0| −
1

2
(t0 − t)− |x1 − ρ1(t)| ≥ 1

4
(t0 − t) + y0 −R1 ,

if ε0 is chosen small enough. Thus

(3.25)
∣∣∣ ∫
|x−ρ(t)|≤R1

Qc(· − ρ)u2ψ′M (x̃1)dx
∣∣∣ ≤ eR1/Me−( 1

4 (t0−t)+y0)/M

∫
u2

0dx ,

since ψ′M (x̃1) ≤ e−|x̃1|/M and the L2-norm of u is conserved.
We deduce gathering (3.22)–(3.25), fixing the value of R1 and choosing ε0 small

enough that

(3.26)
2

3

∣∣∣ ∫ u3ψ′M (x̃1)dx
∣∣∣ ≤ 1

8

∫ (
|∇u|2 + u2

)
ψ′M (x̃1)dx+ Ce−( 1

4 (t0−t)+y0)/M .

Therefore, it follows integrating (3.21) between t and t0 and using (3.26) that

(3.27) Iy0,t0(t0)− Iy0,t0(t) +
1

8

∫ t0

t

∫ (
|∇u|2 + u2

)
(x, s)ψ′M (x̃1)dxds . e−y0/M ,

which in particular implies estimate (3.19).
Now, we assume that u satisfies the decay assumption (1.20). Then, arguing as

in (2.9)–(2.10), we get that

lim
t→−∞

∫
u2(x, t)ψM (x̃1)dx = 0 .

Therefore, we prove estimate (3.20) by passing to the limit as t → −∞ in (3.27).
This concludes the proof of Lemma 3.3. �

Next, we derive a monotonicity property for the energy.

Lemma 3.4. Assume that u ∈ C(R : H1(R2)) is a solution of (1.1) satisfying
(3.2)-(3.5). For y0 > 0, t0 ∈ R and t ≤ t0, let us define

(3.28) Jy0,t0(t) =

∫ (
|∇u|2 − 2

3
u3
)
(x, t)ψM (x̃1)dx ,

where ψM is defined as in (2.1)–(2.2) and x̃1 is defined as in (3.17). Then

(3.29) Jy0,t0(t0)− Jy0,t0(t) . e−y0/M ,

if ε0 in (1.19) is chosen small enough and M ≥ 4.
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If moreover u satisfies the decay assumption (1.20), then∫
|∇u|2(x, t0)ψM (x1 − ρ1(t0)− y0)dx

+

∫ t0

−∞

∫ (
|∇2u|2 + |∇u|2 + u4

)
(x, t)ψ′M (x̃1)dxdt . e−y0/M .

(3.30)

Remark 3.2. It will be clear from the proof that (3.29) still holds true if, for any
0 < β < 1, we redefine Jy0,t0(t) by

Jy0,t0(t) =

∫ (
|∇u|2 − 2

3
u3
)
(x, t)ψM (x1 − ρ1(t0) + β(t0 − t)− y0)dx ,

and choose M = M(β) > 0 big enough.

Proof. Straightforward computations using (1.1) and (2.2) show that

d

dt

∫
|∇u|2ψM (x̃1)dx

≤ −
∫ (
|∇2u|2 +

1

4
|∇u|2

)
ψ′M (x̃1)dx+ 2

∫
u|∇u|2ψ′M (x̃1)dx

− 2

∫ (
(∂x1

u)3 + ∂x1
u(∂x2

u)2
)
ψM (x̃1)dx ,

(3.31)

and

− 2

3

d

dt

∫
u3ψM (x̃1)dx

= −
∫
u4ψ′M (x̃1)dx+

∫ (
6u(∂x1

u)2 + 2u(∂x2
u)2
)
ψ′M (x̃1)dx

+
1

3

∫
u3
(
ψ′M (x̃1)− 2ψ′′′M (x̃1)

)
dx+ 2

∫ (
(∂x1u)3 + ∂x1u(∂x2u)2

)
ψM (x̃1)dx .

(3.32)

Observe that the last terms on the right-hand side of (3.31) and (3.32) cancel out.
Therefore, it follows by adding (3.31) and (3.32) and using (2.2) again that

d

dt
Jy0,t0(t) ≤ −

∫ (
|∇2u|2 +

1

4
|∇u|2 + u4

)
ψ′M (x̃1)dx+ C

∫
u3ψ′M (x̃1)dx

+ 4

∫ (
2u(∂x1

u)2 + u(∂x2
u)2
)
ψ′M (x̃1)dx .

(3.33)

We deduce arguing exactly as in (3.22)–(3.26) that the last two terms on the right-
hand side of (3.33) are bounded by

1

8

∫ (
|∇2u|2 + |∇u|2 + u2

)
ψ′M (x̃1)dx+ Ce−( 1

4 (t0−t)+y0)/M ,

if ε0 is chosen small enough. Thus after integrating (3.33) between t and t0, we get
from (3.27) that
(3.34)

Jy0,t0(t0)− Jy0,t0(t) +
1

8

∫ t0

t

∫ (
|∇2u|2 + |∇u|2 + u4

)
(x, s)ψ′M (x̃1)dxds . e−y0/M ,

which in particular implies estimate (3.29).
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Now, we assume moreover that u satisfies the decay assumption (1.20). On the
one hand, by using the Sobolev embedding H1(R2) ↪→ L3(R2) and the fact that u
is bounded in H1 we get that

(3.35) Jy0,t0(t) ≤
∫ (

u2 + |∇u|2
)
(x, t)ψM (x̃1)dx .

On the other hand, we deduce by using the second inequality in (3.20) and arguing
exactly as in (2.18)–(2.20) that

lim inf
t→−∞

∫ (
u2 + |∇u|2

)
(x, t)ψM (x̃1)dx = 0 .

It follows then by letting t→ −∞ in (3.34) that

(3.36) Jy0,t0(t0) +
1

8

∫ t0

−∞

∫ (
|∇2u|2 + |∇u|2 + u4

)
(x, s)ψ′M (x̃1)dxds . e−y0/M .

Next, observe that∫
|∇u|2(x, t0)ψM (x1 − ρ1(t0)− y0)dx

≤ Jy0,t0(t0) +
2

3

∫
u3(x, t0)ψM (x1 − ρ1(t0)− y0)dx .

Thus, we use the decomposition in (3.22), the Sobolev embedding H1(R2) ↪→
L3(R2), (3.3) and the first inequality in (3.20) to get that∫

|∇u|2(x, t0)ψM (x1 − ρ1(t0)− y0)dx . Jy0,t0(t0) + e−y0/M ,

which yields estimate (3.30) in view of (3.36). �

Corollary 3.5. Let u ∈ C(R : H1(R2)) be a solution of (1.1) satisfying (3.2)-(3.5)
and the decay assumption in x1 (1.20). Assume that ε0 in Lemma 3.1 is chosen
small enough, then, there exists σ̃ > 0 such that

(3.37) sup
t∈R

∫
|∇u|2(x+ ρ(t), t)eσ̃|x1|dx . 1 .

Moreover, there exists M0 ≥ 4 such that

(3.38)

∫ t0

−∞

∫ (
|∇2u|2 + |∇u|2 + u2

)
(x, t)ex̃1/M . e−y0/M ,

for all M ≥M0, t0 ∈ R, y0 > 0 and where x̃1 is defined in (3.17).

Proof. Estimate (3.37) follows from the first inequality in (3.30) arguing exactly as
in the proof of Corollary 2.2.

Now, we prove estimate (3.38). Since ψ′M (x̃1) & ex̃1/M for x̃1 < 0, it follows
from (3.20) and (3.30) that∫ t0

−∞

∫
x1<ρ1(t0)− 1

2 (t0−t)+ỹ0

(
|∇2u|2+|∇u|2+u2

)
(x, t)e(x1−ρ1(t0)+ 1

2 (t0−t))/Mdxdt . 1 ,

for all ỹ0 > 0. This yields (3.38) by passing to the limit as ỹ0 → +∞ and multiplying
the result by e−ỹ0/M . �
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Due to the failure of the Sobolev embedding H1 ↪→ L∞ in two dimensions, we
are not able at this point to derive monotonicity properties for (∂αu)2 at any order
of |α| by induction as it was done for the KdV equation in [26]. We need first to
derive a monotonicity property in H2, which in turn will implies that the solutions
of (1.1) close to a soliton are bounded in H3.

Lemma 3.6. Assume that u ∈ C(R : H1(R2)) is a solution of (1.1) satisfying
(3.2)-(3.5) and the decay property (1.20). If ε0 in Lemma 3.1 is chosen small
enough, then there exists M0 ≥ 12 such that∫

|∇2u|2(x, t0)ψM (x1 − ρ1(t0)− y0)dx

+

∫ t0

−∞

∫ (
|∇2u|2 +

∑
|α|=3

(∂αu)2
)
(x, t)ψ′M (x̃1)dxdt . e−y0/M .

(3.39)

for M ≥ M0, y0 > 0, t0 ∈ R and t ≤ t0 where ψM is defined as in (2.1)–(2.2) and
x̃1 is defined as in (3.17).

Proof. Arguing as previously, we get that

(3.40)
d

dt

∫
(∂αu)2ψM (x̃1)dx ≤ −

∫ (
|∇∂αu|2 +

1

4
(∂αu)2

)
ψ′M (x̃1)dx+ Nα(u) ,

for all multi-index α ∈ N2, where

(3.41) Nα(u) = 2

∫
∂α∂x1

(u2)∂αuψM (x̃1)dx .

Here, we explain how to handle Nα when |α| = 2. We will only look at the
nonlinearity N(2,0)(u) since the other nonlinearities Nα(u) with |α| = 2 could be
treated similarly. Integrations by parts and the Leibniz rule give that

N(2,0)(u) = −20

∫
u∂3

x1
u∂2

x1
uψM (x̃1)dx− 24

∫
u(∂2

x1
u)2ψ′M (x̃1)dx

=: −20N1
(2,0)(u)− 24N2

(2,0)(u) .

(3.42)

To deal with N1
(2,0)(u), we use the decomposition

(3.43) N1
(2,0)(u) = N1.1

(2,0)(u) + N1.2
(2,0)(u) .

where

N1.1
(2,0)(u) =

∫
Qc(· − ρ)∂3

x1
u∂2

x1
uψM (x̃1)dx ,

and

N1.2
(2,0)(u) =

∫ (
u−Qc(· − ρ)

)
∂3
x1
u∂2

x1
uψM (x̃1)dx .

Integrating by parts and arguing as in (2.14), we get that

(3.44) N1.1
(2,0)(u) = −1

2

∫
(∂2
x1
u)2∂x1

(
Qc(· − ρ)ψM (x̃1)

)
dx .

∫
(∂2
x1
u)2ψ′M (x̃1)dx .

On the other hand, it follows from Young’s inequality that

N1.2
(2,0)(u) ≤ 1

32

∫
(∂3
x1
u)2ψ′M (x̃1)dx

+ C

∫ (
u−Qc(· − ρ)

)2
(∂2
x1
u)2ψM (x̃1)2

ψ′M (x̃1)
dx .

(3.45)
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Applying Young’s inequality again, we bound the second term on the right-hand
side of (3.45) by

C

∫ (
u−Qc(· − ρ)

)4
(∂2
x1
u)2ψ′M (x̃1)dx+ C

∫
(∂2
x1
u)2ψM (x̃1)4

ψ′M (x̃1)3
dx .

Now, since

ψM (x̃1)4

ψ′M (x̃1)3
. ψ′M (x̃1), for x̃1 ≤ 0 and

ψM (x̃1)4

ψ′M (x̃1)3
. e3x̃1/M , for x̃1 > 0 ,

we deduce from the Sobolev embedding H1(R2) ↪→ L6(R2) and (3.3) that

N1.2
(2,0)(u) ≤ 1

16

∫ (
(∂3
x1
u)2 + (∂2

x1
u)2
)
ψ′M (x̃1)dx

+ C

∫
(∂2
x1
u)2
(
ψ′M (x̃1) + e3x̃1/M

)
dx ,

(3.46)

assuming ε0 is chosen small enough. Now, arguing as in (3.22)–(3.23), we obtain
that

(3.47) N2
(2,0)(u) ≤ 1

16

∫ (
(∂3
x1
u)2 + (∂2

x1
u)2
)
ψ′M (x̃1)dx+ C

∫
(∂2
x1
u)2ψ′M (x̃1)dx .

Therefore, we deduce gathering (3.40)–(3.41) for |α| = 2 and arguing as in
(3.42)–(3.44), (3.46) and (3.47) that

d

dt

∫
|∇2u|2(x, t)ψM (x̃1)dx+

1

8

∑
|α|=3

∫
(∂αu)2(x, t)ψ′M (x̃1)dx

.
∫
|∇2u|2

(
ψ′M (x̃1) + e3x̃1/M

)
dx ,

which implies (3.39) by integrating between t and t0, letting t → −∞ and using

(3.30) and (3.38) with M̃ = M/3. �

Corollary 3.7. Assume that u ∈ C(R : H1(R2)) is a solution of (1.1) satisfying
(3.2)-(3.5) and the decay property (1.20). If ε0 in Lemma 3.1 is chosen small
enough, then u is bounded in H3.

Proof. We follow the strategy of [26]. Arguing as in the proof of Corollary 3.5, we
deduce from (3.39) that

(3.48)

∫ t0

−∞

∫ (
|∇2u|2 +

∑
|α|=3

(∂αu)2
)

(x, t)ex1−ρ1(t0)+ 1
2 (t0−t)/Mdxdt . 1 ,

for any M ≥ 12. Moreover, it follows from (3.3), (3.5) and the mean value theorem
that ρ1(t)− ρ1(t0) + 1

2 (t0 − t) ≥ − 3
4 (t0 − t) ≥ − 3

4 if t ∈ [t0 − 1, t]. Thus we deduce
from (3.38) and (3.48), (after applying the same argument to v(x, t) = u(−x,−t)),
that

(3.49)

∫ t0

t0−1

∫ (
u2 + |∇u|2 + |∇2u|2 +

∑
|α|=3

(∂αu)2
)

(x+ ρ(t), t)e|x1|/Mdxdt . 1 .

In particular, we deduce from (3.49) that there exists θ > 0 such that

(3.50)

∫ t0

t0−1

∫ (
u2 + |∇u|2 + |∇2u|2 +

∑
|α|=3

(∂αu)2
)

(x, t)dxdt ≤ θ ,
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for all t0 ∈ R. Thus, u(·, t) ∈ H3(R2) at least for some t ∈ R and the persistence
property of the well-posedness result implies that u ∈ C(R : H3(R2)).

On the other hand, direct energy estimates using the equation (1.1) give

d

dt
‖u‖2H3 . ‖∇u‖L∞x ‖u‖

2
H3 .

Then, we deduce from Gronwall’s inequality that

‖u(·, t0)‖2H3 ≤ eC
∫ t0
t1
‖∇u(·,s)‖L∞x ds‖u(·, t1)‖2H3 ,

for all t1 < t0. Therefore, it follows from (3.50) and the Sobolev embedding
H2(R2) ↪→ L∞(R2) that

(3.51) ‖u(·, t0)‖2H3 ≤ eC(t0−t1)
1
2 θ‖u(·, t1)‖2H3 ,

for all t1 < t0.
Now, fix some t0 ∈ R. From (3.50), there exists t1 ∈ (t0 − 1, t0) such that

‖u(·, t1)‖2H3 ≤ θ. Thus, we infer from (3.51) that

‖u(·, t0)‖2H3 ≤ eCθθ ,

which finishes the proof of Corollary 3.7, since θ does not depend on t0. �

The H3 bound obtained in Corollary 3.7 allows us to derive a monotonicity
properties for (∂αu)2 at any order of |α|.

Lemma 3.8. Assume that u ∈ C(R : H1(R2)) is a solution of (1.1) satisfying
(3.2)-(3.5) and the decay property (1.20). Let k ∈ N be given. If ε0 in Lemma 3.1
is chosen small enough, then, u is bounded in Hk+1 and∫

(∂αu)2(x, t0)ψM (x1 − ρ1(t0)− y0)dx

+

∫ t0

−∞

∫ (
|∇∂αu|2 + (∂αu)2

)
(x, t)ψ′M (x̃1)dxdt . e−y0/M .

(3.52)

for any multi-index α ∈ N2 with |α| = k, M ≥ 12, y0 > 0, t0 ∈ R and t ≤ t0 where
ψM is defined as in (2.1)–(2.2) and x̃1 is defined as in (3.17).

Proof. We know from Lemmas 3.3, 3.4 and 3.6 that (3.52) holds true for k = 0, 1, 2.
To prove (3.52) for the general case, we argue by induction on k . Let k ∈ N be

given such that k ≥ 3. Assume that (3.52) is true for any α̃ ∈ N2 with |α̃| ≤ k− 1.
Let α ∈ N2 with |α| = k.

Recalling estimate (3.40), we need to control Nα(u) defined in (3.41). By using
the Leibniz rule, we have that
(3.53)

Nα(u) =
∑

0<β<α

Cβ

∫
∂x1

(
∂βu∂α−βu

)
∂αuψM (x̃1)dx+4

∫
∂x1

(
u∂αu

)
∂αuψM (x̃1)dx .

We only treat the last term appearing on the right-hand side of (3.53) which is the
most difficult. After integrating by parts, we get that∫
∂x1

(
u∂αu

)
∂αuψM (x̃1)dx =

1

2

∫
∂x1

u(∂αu)2ψM (x̃1)dx− 1

2

∫
u(∂αu)2ψ′M (x̃1)dx .
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Thus, the Sobolev embedding H2(R2) ↪→ L∞(R2) and the H3-bound obtained in
Corollary 3.7 imply that

(3.54)

∫
∂x1

(
u∂αu

)
∂αuψM (x̃1)dx ≤ C

∫
(∂αu)2

(
ψM (x̃1) + ψ′M (x̃1)

)
dx .

Estimate (3.52) follows then by integrating (3.40) between t and t0, using (3.53)–
(3.54) and the induction hypothesis to control the term corresponding to Nα(u) and
letting t→ −∞ as previously. Finally, the Hk+1-bound can be deduced from (3.52)
arguing as we did in the proof of Corollary 3.7. �

Arguing as in the proof of Corollary 3.5, we finally deduce from Lemma 3.8 the
exponential decay in the x1-direction at any order.

Corollary 3.9. Let u ∈ C(R : H1(R2)) be a solution of (1.1) satisfying (3.2)-(3.5)
and the decay assumption in x1 (1.20). Assume that ε0 in Lemma 3.1 is chosen
small enough, then there exists σ̃ > 0 such that

(3.55) sup
t∈R

∫
(∂αu)2(x+ ρ(t), t)eσ̃|x1|dx . 1 ,

for any α ∈ N2.

3.3. Proof of Theorem 1.2. We first decompose u by using the modulation the-
ory in Lemma 3.1. Then, we can assume that there exist ρ =

(
ρ1, ρ2

)
∈ C1(R : R2)

and c ∈ C1(R : R) such that

(3.56) η(x, t) = u(x+ ρ(t), t)−Qc(t)(x)

satisfies (3.3)–(3.5). Moreover, due to Lemma 3.2, u still satisfies the exponential
decay assumption (1.20) in the x1 direction.

Introduction of a dual problem. Following Martel and Merle [35], we will work on a
dual problem. Let us define

(3.57) v = Lcη − η2 = −∆η + cη − 2Qcη − η2 .

By using the equation satisfied by η in (3.7), we get that

∂tv = Lc∂tη − 2η∂tη + c′η − 2c′ΛQcη

= Lc∂x1
v + (ρ′1 − c)Lc∂x1

η + ρ′2Lc∂x2
η + c′Qc

− 2η∂x1
v − 2(ρ′1 − c)η∂x1

(Qc + η)− 2ρ′2η∂x2
(Qc + η) + c′η .

Now, direct computations give that

Lc∂x1
η = ∂x1

Lcη + 2η∂x1
Qc = ∂x1

v + 2η∂x1
η + 2η∂x1

Qc

and similarly

Lc∂x2
η = ∂x2

v + 2η∂x2
η + 2η∂x2

Qc .

Thus, the equation satisfied by v writes

(3.58) ∂tv = Lc∂x1v − 2η∂x1v + (ρ′1 − c)∂x1v + ρ′2∂x2v + c′(Qc + η) .

Almost orthogonality conditions. We have from the definition of v in (3.57) and
(1.10) that∫

v∂xiQcdx =

∫
ηLc∂xiQcdx−

∫
η2∂xiQcdx = −

∫
η2∂xiQcdx ,
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for i = 1, 2, so that

(3.59)
∣∣∣ ∫ v∂xiQcdx

∣∣∣ ≤ ‖∂xiQc‖L∞‖η‖2L2 i = 1, 2 .

In a similar way, it follows from formula (1.12) and the third orthogonality condition
in (3.4)

(3.60)

∫
vΛQcdx =

∫
ηLcΛQcdx−

∫
η2ΛQcdx = −

∫
ηQcdx−

∫
η2ΛQc ,

so that

(3.61)
∣∣∣ ∫ vΛQcdx

∣∣∣ ≤ ‖ΛQc‖L∞‖η‖2L2 .

It was proved in [48] that the bilinear form H(v, v) = (Lcv, v) is coercive under
the orthogonality conditions (3.4). Thus, there exists λ1 > 0 such that

(v, η) = (Lcη, η)− (η2, η) ≥ λ1‖η‖2H1 −
∫
η3dx .

The Sobolev embedding H1(R2) ↪→ L3(R2) and (3.3) implies then that

(v, η) ≥ (λ1 − C‖η‖H1)‖η‖2H1 ≥ (λ1 −K0ε0)‖η‖2H1 ≥
λ1

2
‖η‖2H1 ,

provided ε0 is chosen small enough. Therefore, we deduce from the Cauchy-Schwarz
inequality that

(3.62) ‖η‖H1 ≤ 2

λ1
‖v‖L2 .

Exponential decay in the x1 direction. It is a consequence of the monotonicity prop-
erty that there exists σ̃ > 0 such that

(3.63)

∫
x2

v2(x1, x2, t)dx2 . e
−σ̃|x1|, ∀ (x1, t) ∈ R2 .

Indeed, we get from the definition of v in (3.57), the decay properties of Q in (1.7)
and formula (3.55) with |α| ≤ 3 that

(3.64) sup
t∈R

∫ (
v2 + (∂x1

v)2
)
eσ̃|x1|dx . 1 .

Estimate (3.63) is then deduced from estimate (3.64) just as in the linear case (see
(2.29)).

Virial type estimate. Let A be a positive number to be chosen later. We define
ϕA = ϕA(x1) and φA = φA(x1) as in (2.32)–(2.34). Then φA and ϕA satisfy the
properties in (2.35).

By using (3.58), a direct computation gives that

−1

2

d

dt

∫
ϕAv

2dx = −
∫
ϕALc∂x1

vvdx+ 2

∫
ϕAη∂x1

vvdx− (ρ′1 − c)
∫
ϕA∂x1

vvdx

− ρ′2
∫
ϕA∂x2

vvdx− c′
∫
ϕA(Qc + η)vdx
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Then, arguing as in (2.36), we deduce that

−1

2

d

dt

∫
ϕAv

2dx =

∫
φA(∂x1

v)2dx+
1

2

∫
φA
(
|∇v|2 + v2 − 2Qcv

2
)
dx

− 1

2

∫
φ′′Av

2dx−
∫
ϕA∂x1Qv

2dx+ RA(η, v) ,

(3.65)

where

RA(η, v) = −
∫
φAηv

2dx−
∫
ϕA∂x1

ηv2

+
ρ′1 − c

2

∫
φAv

2dx− c′
∫
ϕA(Qc + η)vdx .

(3.66)

The following lemmas will be proved in the next subsection.

Lemma 3.10. Consider the bilinear form

(3.67) HA(v, w) =

∫
φA
(
∇v · ∇w + vw − 2Qcvw

)
dx .

Then, there exists λ2 > 0 and A2 > 0 such that

(3.68) HA(v, v) ≥ λ2

∫
φA
(
|∇v|2 + v2

)
dx ,

for all functions v defined in (3.56)–(3.57) provided A ≥ A2 and ε0 > 0 is chosen
small enough.

Lemma 3.11. There exist K3 > 0 and A3 > 0 such that

(3.69)
∣∣∣RA(η, v)

∣∣∣ ≤ K3A‖η‖H1

∫
φA
(
|∇v|2 + v2

)
dx ,

for all (η, v) defined as in (3.56)–(3.57) provided A ≥ A3.

By fixing A = max{A2, A3, 2
√
C/λ2} (where C is the positive constant appear-

ing in (2.33)), we deduce using (3.3), (3.65), (3.68), (3.69) and arguing as in (2.39)
that

(3.70) − 1

2

d

dt

∫
ϕA(x1)v2dx ≥ λ2

8

∫
φA(x1)

(
|∇v|2 + v2

)
dx ,

provided ε0 is small enough. Then, we conclude by using (3.63) and arguing as in
(2.40)–(2.45) that v(x, t) = 0 for all (x, t) ∈ R3. This implies in view of (3.56) and
(3.62) that

(3.71) η(x, t) = 0 ⇒ u(x+ ρ(t), t) = Qc(t)(x) ∀ (x, t) ∈ R3 .

Moreover, (3.5) yields

c(t) = c(0), ρ1(t) = ρ1(0) + c(0)t and ρ2(t) = ρ2(0) ,

which concludes the proof of Theorem 1.2.
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3.4. Coercivity of the bilinear form HA(v, v). The aim of this subsection is to
prove Lemmas 3.10 and 3.11. We begin first with a technical lemma.

Lemma 3.12. There exists K4 > 0 and A4 such that

(3.72) ‖
√
φAη‖H1 ≤ K4‖

√
φAv‖L2 ,

if A ≥ A4 and ε0 small enough.

Proof. A direct computation shows that∫
φAvηdx = HA(η, η) +

∫
φ′′Aη

2dx−
∫
φAη

3dx .

Since η satisfies the orthogonality conditions (3.4), we deduce from Lemma 2.3,
(2.33) and the Sobolev embedding H1(R2) ↪→ L3(R2) that

‖
√
φAv‖L2‖

√
φAη‖L2 ≥ λ

∫
φA
(
|∇η|2+η2

)
dx− C

A2

∫
φAη

2dx−‖η‖H1‖
√
φAη‖2H1 ,

which implies (3.72) in view of (3.3) if we choose A ≥ A5 =
√

2C
λ and ε0 is chosen

small enough. �

Proof of Lemma 3.10. The proof of Lemma 3.10 follows the lines of the one of
Lemma 2.3. In order to use Lemma 2.6, we need to verify that

√
φAv satisfies

(2.52).
By using the definition of v in (3.57), we compute for i = 1, 2,

(3.73)
∣∣∣ ∫ √φAv∂xiQcdx∣∣∣ ≤ ∣∣∣ ∫ √φALcη∂xiQcdx∣∣∣+

∣∣∣ ∫ √φAη2∂xiQcdx
∣∣∣

On the one hand, by using the Cauchy-Schwarz inequality, (3.3) and (3.72), we
have that

(3.74)
∣∣∣ ∫ √φAη2∂xiQcdx

∣∣∣ ≤ ‖∂xiQc‖L∞‖η‖L2‖
√
φAη‖L2 ≤ κ

2
‖
√
φAv‖L2 ,

if ε0 is chosen small enough. On the other hand, it follows from (1.10) that∣∣∣ ∫ √φALcη∂xiQcdx∣∣∣ ≤ ∣∣∣ ∫ (√φA)′′η∂xiQcdx∣∣∣+ 2
∣∣∣ ∫ (√φA)′η∂2

x1xiQcdx
∣∣∣

Thus, (2.33) and (3.72) yield

(3.75)
∣∣∣ ∫ √φALcη∂xiQcdx∣∣∣ . 1

A
‖
√
φAη‖H1 ≤ κ

2
‖
√
φAv‖L2 ,

if A is chosen large enough. Hence, we deduce gathering (3.73)–(3.75) that

(3.76)
∣∣∣ ∫ √φAv∂xiQcdx∣∣∣ ≤ κ‖√φAv‖L2 ,

if ε0 is small enough and A is large enough, where κ is the small positive number
given by Lemma 2.6.

Arguing as above, we get that

(3.77)
∣∣∣ ∫ √φAvΛQcdx

∣∣∣ ≤ ∣∣∣ ∫ √φAηLcΛQcdx∣∣∣+
κ

2
‖
√
φAv‖L2 .
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To deal with the first term on the right-hand side of (3.77), observe from (1.12)
and (3.4) that

(3.78)

∫ √
φAηLcΛQcdx =

∫
1−
√
φA√

φA
Qc
√
φAηdx .

Moreover, we infer from the decay property of Qc (c.f. (1.7)) and the definition of
φA that ∣∣∣1−√φA√

φA
Qc

∣∣∣ . e 3
2
|x1|
A e−c

1
2 δ|x|χ|x1|≥A . e

−c
1
2 δ

2 |x|χ|x|≥A ,

if A is chosen large enough. Hence, we deduce from the Cauchy-Schwarz inequality,
(3.72) and (3.78) that

(3.79)
∣∣∣ ∫ √φAηLcΛQcdx∣∣∣ . ‖e−c 1

2 δ
2 |x|χ|x|≥A‖L2‖

√
φAη‖L2 ≤ κ

2
‖
√
φAv‖L2 ,

provided A is large enough. Thus (3.77) and (3.79) imply that

(3.80)
∣∣∣ ∫ √φAvΛQcdx

∣∣∣ ≤ κ‖√φAv‖L2 .

With (3.76) and (3.80) in hand, we conclude the proof of Lemma 3.10 following
the arguments in the proof of Lemma 2.3. �

Proof of Lemma 3.11. The Sobolev embedding H1(R2) ↪→ L3(R2) yields

(3.81)
∣∣ ∫ φAηv

2dx
∣∣ . ‖η‖H1‖

√
φAv‖2H1 . ‖η‖H1

∫
φA
(
|∇v|2 + v2

)
dx .

Moreover, we deduce from (3.5) and (3.72) that there exists A3 > 0 such that

|c′(t)| 12 + |ρ′1(t)− c(t)| . ‖
√
φAη‖L2 . ‖

√
φAv‖L2 ,

if A ≥ A3. Now we fix A ≥ A3. Thus,

(3.82) |ρ′1 − c|
∫
φAv

2dx+ |c′|
∣∣∣ ∫ ϕA(Qc + η)vdx

∣∣∣ . ‖η‖H1

∫
φA
(
|∇v|2 + v2

)
dx .

Finally, in addition to (2.32)–(2.33), we can assume that |ϕA(x1)| ≤ CA|φA(x1)|
for some positive constant C. Then, it follows from Hölder’s inequality and the
Sobolev embedding H1(R2) ↪→ L4(R2) that

(3.83)
∣∣∣ ∫ ϕA∂x1

ηv2dx
∣∣∣ ≤ CA∫ ∣∣φA∂x1

ηv2
∣∣dx . A‖η‖H1‖

√
φAv‖2H1 .

We conclude the proof of (3.69) gathering (3.66) and (3.81)–(3.83). �

4. Proof of the asymptotic stability result

This section is devoted to the proof of Theorem 1.1. According to Remark 1.8,
we will assume in this section that c0 = 1. We follow the arguments of Martel and
Merle in [31, 34, 35] for the gKdV equations. The heart of the proof is the following
proposition which states that a solution in a neighborhood of a soliton converges
(up to a subsequence) to a limit object, whose emanating solution satisfies a good
decay property in the x1 direction. Then, due to the rigidity theorem proved in
Section 3, this limit object has to be a soliton.
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Proposition 4.1. Assume d = 2. There exists ε0 > 0 such that if 0 < ε ≤ ε0 and
u ∈ C(R : H1(R2)) is a solution of (1.1) satisfying

(4.1) inf
τ∈R2

‖u(·, t)−Q(· − τ)‖H1 ≤ ε, ∀ t ∈ R ,

then the following holds true.
For any sequence tn → +∞, there exists a subsequence {tnk} and ũ0 ∈ H1(R)

such that

(4.2) u(·+ ρ(tnk), tnk) −→
k→+∞

ũ0 in H1(x1 > −A) ,

for any A > 0 and where c(t) and ρ(t) are the functions associated to the decompo-
sition of u given by the modulation theory in Lemma 3.1.

Moreover, the solution ũ of (1.1) corresponding to ũ(·, 0) = ũ0 satisfies

(4.3) ‖ũ(·+ ρ̃(t))−Q‖H1 . ε, ∀ t ∈ R

and

(4.4)

∫
x2

ũ2(x+ ρ̃(t), t)dx2 . e
−σ̃|x1| , ∀ (x1, t) ∈ R2 ,

for some positive constant σ̃, where c̃(t) and ρ̃(t) are the functions associated to the
decomposition of ũ given by the modulation theory in Lemma 3.1. Note also that
ρ̃(0) = 0.

First we give the proof of Theorem 1.1 assuming Proposition 4.1.

Proof of Theorem 1.1. Let u be a solution of (1.1) satisfying the hypotheses of
Theorem 1.1. Assume moreover that ε0 is chosen small enough so that Theorem
1.2 and Proposition 4.1 hold true.

From Proposition 4.1, for any sequence {tn} with tn → +∞, there exist a sub-
sequence {tnk}, c̃0 > 0 and ũ0 ∈ H1(R) such that

(4.5) c(tnk) −→
k→+∞

c̃0 and u(·+ ρ(tnk), tnk) −→
k→+∞

ũ0 in H1(x1 > −A) ,

for any A > 0. Moreover, the solution ũ of (1.1) satisfying ũ(·, 0) = ũ0 satisfies
(4.3)–(4.4) and it holds that c̃(0) = c̃0 and ρ̃(0) = 0.

Thus, we deduce applying Theorem 1.2 to ũ that there exist c1 close to 1 and
ρ1 = (ρ1

1, ρ
1
2) ∈ R2 such that

(4.6) ũ(x1, x2, t) = Qc1(x1 − c1t− ρ1
1, x2 − ρ1

2) .

The uniqueness of the decomposition in Lemma 3.1 implies that ρ1 = ρ̃(0) = 0 and
c1 = c̃0. Then, we deduce from (4.5) and (4.6) that u(·+ρ(tnk), tnk)−Qc(tnk ) tends

to 0 as k tends to +∞ in H1(x1 > −A). Since this is true for any sequence {tn}
such that tn → +∞, we conclude that

(4.7) u(·+ ρ(t), t)−Qc(t) −→
t→+∞

0 in H1(x1 > −A) ,

for any A > 0. Then, if we define η̃(x, t) = u(x, t) − Qc(t)(x − ρ(t)), (4.7) implies
that

(4.8) lim
t→+∞

∫ (
|∇η̃|2 + η̃2

)
(x, t)ψM (x1 − ρ1(t) + y0)dx = 0 ,

for all y0 > 0.
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To prove the convergence of the scaling parameter c(t) as t tends to +∞, we use
Lemma 4.9. Thus, for any α > 0 and M ≥ 4, there exists y1 > 0 such that

(4.9)

∫
u2(x, t)ψM (x1 − ρ1(t) + y0)dx ≤

∫
u2(x, t′)ψM (x1 − ρ1(t′) + y0)dx+ α ,

for all t ≥ t′ and y0 > y1. On the other hand, it follows from (1.7) and (4.7) that
there exist y2 = y2(α) > 0 and T0 = T0(α) > 0 such that

(4.10)
∣∣∣ ∫ u2(x, t)ψM (x1 − ρ1(t) + y0)dx−

∫
Q2
c(t)(x)dx

∣∣∣ ≤ α ,
if t ≥ T0 and y0 > y2. Hence, we deduce combining (4.9) and (4.10) that∫

Q2
c(t)(x)dx ≤

∫
Q2
c(t′)(x)dx+ 3α ,

whenever t ≥ t′ ≥ T0. Since α > 0 is an arbitrarily small number, this im-
plies that

∫
Q2
c(t)(x)dx has a limit as t tends to +∞. Then, since

∫
Q2
c(t)(x)dx =

c(t)
2
p−1−

d
2
∫
Q2(x)dx and we are in the case p = d = 2, which is subcritical, we

conclude that there exists c+ > 0 such that

(4.11) |c+ − 1| ≤ K0ε and c(t) −→
t→+∞

c+ .

Now, we improve the convergence result following the arguments in the proof of
Proposition 3 in [34]. Fix 0 < β < 1. Observe that u(−x,−t) is still a solution of
(1.1) satisfying (1.14). Then, we deduce applying (3.19), (3.29), Remarks 3.1, 3.2
to u(−x,−t), using the property ψM (−x) = 1−ψM (x) and the conservation of the
L2-norm that∫ (

|∇u|2 + u2
)
(x, t2)ψM

(
x1 − ρ1(t1)− β

2
(t2 − t1) + y0

)
dx

≤
∫ (
|∇u|2 + u2

)
(x, t1)ψM

(
x1 − ρ1(t1) + y0

)
dx+K1e

−y0/M ,

(4.12)

for all t1 ≤ t2 and y0 > 0 if M = M(β) is chosen big enough. Moreover, we observe
from the third orthogonality condition in (3.4) that∣∣∣ ∫ η̃(x+ ρ(t), t)Qc(t)(x)ψM (x1 + y0)dx

∣∣∣
=
∣∣∣ ∫ η̃(x+ ρ(t), t)Qc(t)(x)

(
1− ψM (x1 + y0)

)
dx
∣∣∣ . e−y0/2M ,

(4.13)

if M is chosen large enough such that M ≥ 1
2δ , where δ is the positive constant

appearing in (1.7), and ε0 > is chosen small enough. Therefore by using (4.12),
(4.13) and the decomposition η̃2(x, t) = u2(x, t)−2η̃(x, t)Qc(t)(x−ρ(t))−Q2

c(t)(x−
ρ(t)), we deduce that∫

η̃2(x, t2)ψM
(
x1 − ρ1(t1)− β

2
(t2 − t1) + y0

)
dx

≤
∫
η̃2(x, t1)ψM

(
x1 − ρ1(t1) + y0

)
dx+ ‖Q‖2L2

∣∣c(t2)− c(t1)
∣∣+Ke−y0/M .

(4.14)

For t > 0 large enough, we define 0 < t′ < t such that ρ1(t′) + β
2 (t− t′)− y0 = βt.

Then, observe that t → +∞ as t′ → +∞. Moreover, we deduce applying (4.14)
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with t2 = t and t1 = t′ that∫
η̃2(x, t)ψM

(
x1 − βt

)
dx ≤

∫
η̃2(x, t′)ψM

(
x1 − ρ1(t′) + y0

)
dx

+ ‖Q‖2L2

∣∣c(t)− c(t′)∣∣+Ke−y0/M .

Thus, it follows from (4.8) and (4.11) that

lim sup
t→+∞

∫
η̃2(x, t)ψM

(
x1 − βt

)
dx ≤ Ke−y0/M ,

for any y0 > 0, which yields

(4.15)

∫
η̃2(x, t)ψM

(
x1 − βt

)
dx −→

t→+∞
0 .

Arguing similarly, we get that

(4.16)

∫
|∇η̃|2(x, t)ψM

(
x1 − βt

)
dx −→

t→+∞
0 .

Therefore, we conclude the proof of (1.15) gathering (4.11), (4.15) and (4.16).
Finally, we prove (1.16) gathering (1.7), (3.5), (4.7) and (4.11). �

Finally, it remains to prove Proposition 4.1.

Proof of Proposition 4.1. By applying Lemma 3.1, there exist c ∈ C1(R : R) and
ρ = (ρ1, ρ2) ∈ C1(R : R2) such that

‖u(·+ ρ(t), t)−Q‖H1 ≤ ‖u(·+ ρ(t), t)−Qc(t)‖H1 + ‖Q−Qc(t)‖H1 ≤ 2K0ε ,

if ε0 is small enough.
Let {tn} be a sequence such that tn → +∞. Since {u(·+ ρ(tn), tn)} is bounded

in H1, there exist a subsequence extracted from {tn} (still denoted by {tn}) and
ũ0 ∈ H1(R2) such that

(4.17) u(·+ ρ(tn), tn)
w−→

n→+∞
ũ0 in H1(R2) .

Moreover,

‖ũ0 −Q‖H1 ≤ lim inf
n→+∞

‖u(·+ ρ(tn), tn)−Q‖H1 ≤ 2K0ε .

Let ũ be the solution of (1.1) corresponding to ũ(·, 0) = ũ0. Note from the global
well-posedness result for ZK in H1 in [13] that ũ ∈ C(R : H1(R2)). Thus, de
Bouard’ stability result in [10] implies that

(4.18) sup
t∈R
‖ũ(·+ ρ̃(t), t)−Q‖H1 ≤ K̃0ε,

where ρ̃ is the corresponding modulation function defined in Lemma 3.1. We split
the proof of Proposition 4.1 into several lemmas.

Step 1: monotonicity properties for u on the right. Recall the definition of ψM in
(2.1)–(2.2) and fix M ≥ 4. First, we deduce from Lemmas 3.3 and 3.4 a mono-
tonicity property in the x1 direction.
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Lemma 4.2. Let M ≥ 4. Then, we have that

(4.19) lim sup
t→+∞

∫ (
u2 + |∇u|2

)
(x+ ρ(t), t)ψM (x1 − y0)dx . e−y0/M ,

for every y0 > 0.

Proof. Given ε > 0, there exists R1 > 0 such that
∫
x1>R1

u2
0dx ≤ ε. Thus, with the

notations of Lemma 3.3, we have that

(4.20) Iy0,t(0) ≤ ε+ ψM (R1 − ρ1(t) +
1

2
t− y0)

∫
u2

0dx .

Now, observe from (3.5) that limt→+∞ ψM (R1−ρ1(t)+ 1
2 t−y0) = 0 , which together

with (4.20) yields

(4.21) lim sup
t→+∞

Iy0,t(0) = 0 .

Arguing similarly we get that

(4.22) lim sup
t→+∞

Jy0,t(0) = 0 ,

where Jy0,t is defined in Lemma 3.4.
Therefore, we conclude the proof of estimate (4.19) gathering (3.18), (3.28),

(4.21), (4.22) and using the same arguments as in (3.22)–(3.24) with ψM instead of
ψ′M . �

We will also need to derive a monotonicity property along the lines in a cone
around x1 in order to recover the strong convergence on the right in L2.

Recall the definition of ψM in (2.1)–(2.2) and fix M ≥ 4. For y0 > 0, t0 ∈ R,
and θ0 ∈ (−π3 ,

π
3 ) and t ≤ t0, we define

(4.23) Iy0,t0,θ0(t) =

∫
u2(x, t)ψM

(
x1 + (tan θ0)x2 − ρ1(t0) +

1

2
(t0 − t)− y0

)
dx .

Lemma 4.3. Let θ0 ∈ (−π3 ,
π
3 ). Assume that ε0 is chosen small enough. Then, it

holds that

(4.24) Iy0,t0,θ0(t0)− Iy0,t0,θ0(t) . e−y0/M ,

for every y0 > 0, t0 ∈ R and t ≤ t0, and

(4.25) lim sup
t→+∞

∫
u2(x+ ρ(t), t)ψM (x1 + (tan θ0)x2 − y0)dx . e−y0/M ,

for every y0 > 0.

Remark 4.1. Note that the angle π
3 in the previous result determines the validity

of Theorem 1.1 as expanded in Remark 1.1. We believe that this result is sharp for
the strong energy norm. For a formal proof of this fact, see Appendix C. We also
expect that this a general result in any dimensions.

Proof. We briefly sketch the proof of (4.24), since it is very similar to the one of
Lemma 3.3. Define x̃ = x1 + tan(θ)x2 − ρ(t0) + 1

2 (t0 − t)− y0. Then, we compute
by using (1.1) that, for all t ≤ t0,

d

dt
Iy0,t0,θ0(t) = −2

∫
u∂3

x1
uψM (x̃)dx− 2

∫
u∂3

x1x2x2
uψM (x̃)dx

+
2

3

∫
u3ψ′M (x̃)dx− 1

2

∫
u2ψ′M (x̃)dx .

(4.26)
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We observe integrating by parts that

−2

∫
u∂3

x1
uψM (x̃)dx = −3

∫ (
∂x1u

)2
ψ′M (x̃)dx+

∫
u2ψ′′′M (x̃)dx .

and

−2

∫
u∂3

x1x2x2
uψM (x̃)dx = −

∫ (
∂x2u

)2
ψ′M (x̃)dx− 2 tan θ0

∫
∂x1

u∂x2
uψ′M (x̃)dx

+ tan2 θ0

∫
u2ψ′′′M (x̃)dx .

Now, we get applying Cauchy-Schwarz and Young’s inequalities that

2
∣∣ tan θ0

∫
∂x1u∂x2uψ

′
M (x̃)dx

∣∣ ≤ ∫ (κ2
0 tan2 θ0 (∂x1u)2+

1

κ2
0

(∂x2u)2
)
(x, t)ψ′M (x̃)dx ,

for some κ0 > 0 satisfying 1 < κ2
0 < 3

tan2 θ0
, which is possible since |θ0| < π

3 .

Therefore, we deduce from (2.2) that

d

dt
Iy0,t0,θ0(t) ≤ −

∫ (1

8
u2 + (3− κ2

0 tan2 θ0)(∂x1
u)2 + (1− 1

κ2
0

)(∂x2
u)2
)
(x, t)ψ′M (x̃)dx

+
2

3

∫
u3ψ′M (x̃)dx

(4.27)

for all t ≤ t0.
To handle the second term on the right-hand side of (4.27), we argue exactly as

in (3.22)–(3.26) and deduce that

2

3

∣∣∣ ∫ u3ψ′M (x̃)dx
∣∣∣ ≤ K0ε0

∫ (
u2 + |∇u|2(x, t)ψ′M (x̃)dx+ Cε0e

−( 1
4 (t0−t)+y0)/M ,

(4.28)

where Cε0 is a positive constant depending on ε0.
Hence, we conclude the proof of (4.24) gathering (4.27) and (4.28), integrating

between t and t0 and choosing ε0 small enough.
The proof of (4.25) follows exactly as the one of (4.19). �

Step 2: Strong L2-convergence of u(·+ ρ(tn), tn) to ũ0 on the right.

Lemma 4.4. We have that

(4.29) u(·+ ρ(tn), tn) −→
n→+∞

ũ0 in L2(x1 > −A) ,

for all A > 0.

Proof. Let A > 0 and ε > 0. From (4.25), there exists Rπ
4
> 0 such that

(4.30) ‖ũ0‖L2(x1+x2>Rπ
4

) + ‖ũ0‖L2(x1−x2>Rπ
4

) ≤ ε

and
(4.31)

lim sup
n→+∞

(
‖u(·+ ρ(tn), tn)‖L2(x1+x2>Rπ

4
) + ‖u(·+ ρ(tn), tn)‖L2(x1−x2>Rπ

4
)

)
≤ ε .

Let us denote by R the compact region of R2 (see Fig. 4) defined by

R =
{

(x1, x2) ∈ R2 : x1 ≥ −A, x1 + x2 ≤ Rπ
4
, x1 − x2 ≤ Rπ

4

}
.
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x1

x2

•
−A

•
Rπ

4

•
Rπ

4

•
−Rπ

4

R

π
4

−π4

Figure 4. R is a compact set of R2.

Since the embedding H1(R) ↪→ L2(R) is compact, we deduce from (4.17) that

(4.32) lim
n→+∞

‖u(·+ ρ(tn), tn)− ũ0‖L2(R) = 0 .

Therefore, we conclude the proof of (4.29) gathering (4.30)–(4.32) and using the
triangle inequality. �

Step 3: Exponential decay of ũ on the right on finite time intervals.

Lemma 4.5. Let M ≥ 4 be given. Then,

(4.33)

∫ (
ũ2

0 + |∇ũ0|2
)
(x)ψM (x1 − y0)dx . e−y0/M ,

for all y0 > 0.
Moreover, for all t0 ≥ 0, there exists K(t0) > 0 such that

(4.34) sup
t∈[0,t0]

∫ (
ũ2 + |∇ũ|2

)
(x, t)ex1/Mdx ≤ K(t0) .

Proof. Observe from (4.17) that u(·+ρ(tn), tn)
√
ψM (·1 − y0)

w−→ ũ0

√
ψM (·1 − y0)

in H1(R2). Thus,

‖ũ0

√
ψM (·1 − y0)‖H1 ≤ lim inf

n→+∞
‖u(·+ ρ(tn), tn)

√
ψM (·1 − y0)‖H1 ,

which combined with (4.19) yields (4.33).
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Now, we turn to the proof of (4.34). Fix t0 > 0 and y0 > 0. Since ũ is a solution
to (1.1), we obtain after some integration by parts that

d

dt

∫
ũ2(x, t)ψM (x1 − y0)dx

≤ −
∫ (

3(∂x1
ũ)2 + (∂x2

ũ)2
)

(x, t)ψ′M (x1 − y0)dx

+

∫
ũ2(x, t)ψM (x1 − y0)dx+

2

3

∫
ũ3(x, t)ψ′M (x1 − y0)dx .

(4.35)

To deal with the last term on the right-hand side of the above expression, we use
the decomposition ũ3 = Q(·− ρ̃(t))ũ2 +

(
ũ−Q(·− ρ̃(t))

)
ũ2, the Sobolev embedding

H1(R2) ↪→ L3(R2) and estimate (4.18). Thus,

2

3

∫
ũ3(x, t)ψ′M (x1 − y0)dx

. K0ε0‖ũ
√
ψ′M (·1 − y0)‖H1 +

∫
ũ2ψ′M (x1 − y0)dx .

(4.36)

which implies that

d

dt

∫
ũ2(x, t)ψM (x1 − y0)dx .

∫
ũ2(x, t)ψM (x1 − y0)dx ,

by choosing ε0 small enough. Hence, Gronwall’s inequality and (4.33) yields

(4.37) sup
t∈[0,t0]

∫
ũ2(x, t)ψM (x1 − y0)dx ≤ K(t0)e−y0/M ,

for some positive constant K(t0) depending only on t0.
Now, by using (1.1) and integrating by parts as in (3.31)–(3.32), we get that

d

dt

∫ (
|∇ũ|2 − 2

3
ũ3
)
ψM (x1 − y0)dx

= −
∫ (

3(∂2
x1
ũ)2 + 4(∂2

x1x2
ũ)2 + (∂2

x2
ũ)2 + ũ4

)
(x, t)ψ′M (x1 − y0)dx

+

∫ (
|∇ũ|2 − 2

3
ũ3
)
(x, t)ψ′′′M (x1 − y0)dx

+ 4

∫
ũ
(
2(∂x1 ũ)2 + (∂x2 ũ)2

)
(x, t)ψM (x1 − y0)dx .

Thus, it follows using (2.2) and arguing as in (4.36) that

d

dt

∫ (
|∇ũ|2 − 2

3
ũ3
)
ψM (x1 − y0)dx

.
∫
|∇ũ|2ψ′M (x1 − y0)dx+

∫
ũ2ψM (x1 − y0)dx ,

if ε0 is choosen small enough. Hence, we infer from (4.35) that

(4.38)
d

dt

∫ (
|∇ũ|2 − 2

3
ũ3 +K1ũ

2
)
ψM (x1 − y0)dx .

∫
ũ2ψM (x1 − y0)dx ,

for some positive constant K1. Therefore, we conclude integrating (4.38) between
0 and t and using (4.36)–(4.37) that

sup
t∈[0,t0]

∫ (
ũ2 + |∇ũ|2

)
(x, t)ψM (x1 − y0)dx ≤ K̃(t0)e−y0/M ,
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which yields (4.34) since ψM (x1 − y0) & e(x1−y0)/M for x1 − y0 ≤ 0. �

Step 4: Strong L2-convergence of u(·+ ρ(tn), tn + t) to ũ(·, t) on the right.

Lemma 4.6. We have that

(4.39) u(·+ ρ(tn), tn + t) −→
n→+∞

ũ(·, t) in L2(x1 > −A) ,

for all A > 0, t ∈ R and

(4.40) u(·+ ρ(tn), tn + t)
w−→

n→+∞
ũ(·, t) in H1(R2) ,

for all t ∈ R. Moreover,

(4.41) ρ(tn + t)− ρ(tn) −→ ρ̃(t) and ρ̃(0) = 0 ,

for all t ∈ R, where ρ̃ is the C1-function associated to the decomposition of ũ in
Lemma 3.1.

Proof. Let us define vn(x, t) = u(x+ ρ(tn), tn + t)− ũ(x, t). Then, it follows from
(4.29) that

(4.42)

∫
vn(x, 0)2ψM (x1)dx −→

n→+∞
0 .

Moreover an easy computation using (1.1) shows that

(4.43) ∂tvn + ∂x1
∆vn + ∂x1

(
2ũvn + v2

n

)
= 0 .

Next, we infer that for all t0 > 0 and M ≥ 8, there exists K1(t0) > 0 such that

(4.44) sup
t∈[0,t0]

∫
vn(x, t)2ψM (x1)dx ≤ K1(t0)

∫
vn(x, 0)2ψM (x1)dx ,

which together with (4.42) yields (4.39) for any t ≥ 0. The weak convergence in
(4.40) for any t ≥ 0 follows then by uniqueness of the weak limit in H1.

Now, we prove (4.44). Fix t0 > 0 and M ≥ 8. By using (4.43) and arguing as
previously, we get that

d

dt

∫
v2
nψM (x1)dx = −

∫ (
3(∂x1vn)2 + (∂x2vn)2

)
ψ′M (x1)dx+

∫
v2
nψ
′′′
M (x1)dx

+ 2

∫ (
2ũvn + v2

n

)
∂x1

(
vnψM (x1)

)
dx ,

(4.45)

for all t ∈ [0, t0]. Observe that the last term on the right-hand side of the above
formula can be rewritten as∫ (

2ũvn + v2
n

)
∂x1

(
vnψM (x1)

)
dx

=

∫ (2

3
vn + ũ

)
v2
nψ
′
M (x1)dx−

∫
∂x1

ũv2
nψM (x1)dx .

(4.46)



42 R. CÔTE, C. MUÑOZ, D. PILOD, AND G. SIMPSON

By using the Gagliardo-Nirenberg inequality ‖f‖L4 . ‖f‖
1
2

L2‖f‖
1
2

H1 in two dimen-
sions, we get that

∣∣∣ ∫ (2

3
vn + ũ

)
v2
nψ
′
M (x1)dx

∣∣∣ . (‖vn‖L2 + ‖ũ‖L2

)
‖vn
√
ψ′M (x1)‖L2‖vn

√
ψ′M (x1)‖H1

≤ K
∫
v2
nψ
′
M (x1)dx+

1

32

∫
|∇vn|2ψ′M (x1)dx ,

(4.47)

where K is a positive constant depending on ‖u0‖L2 and ‖ũ0‖L2 . To estimate the
second term on the right-hand side of (4.46), we observe arguing as above that∣∣∣ ∫ ∂x1 ũv

2
nψM (x1)dx

∣∣∣ . ∥∥∂x1 ũ
ψM (x1)

ψ′M (x1)

∥∥
L2‖vn

√
ψ′M (x1)‖L2‖vn

√
ψ′M (x1)‖H1 .

Now, since

ψM (x1)2

ψ′M (x1)2
. 1, for x1 ≤ 0 and

ψM (x1)2

ψ′M (x1)2
. e2x1/M , for x1 ≥ 0 ,

we deduce from (4.34) that

(4.48)
∣∣∣ ∫ ∂x1 ũv

2
nψM (x1)dx

∣∣∣ ≤ K̃(t0)

∫
v2
nψ
′
M (x1)dx+

1

32

∫
|∇vn|2ψ′M (x1)dx ,

where K̃(t0) is a positive constant depending on ‖ũ0‖H1 and K(t0). Hence, it
follows from (2.2) and (4.45)–(4.48) that
(4.49)
d

dt

∫
v2
n(x, t)ψM (x1)dx+

∫
|∇vn|2(x, t)ψ′M (x1)dx ≤ K̃(t0)

∫
v2
n(x, t)ψM (x1)dx ,

for all 0 ≤ t ≤ t0, which together with Gronwall’s inequality implies (4.44).
To prove that (4.39) and (4.40) also hold for t ≤ 0, we fix some t̃1 < 0. Since

{u(·+ ρ(tn), tn + t̃1)} is bounded in H1(R2), there exists a subsequence extracted
from {tn} (still denoted {tn}) and ũ1,0 ∈ H1(R2) such that

(4.50) u(·+ ρ(tn), tn + t̃1)
w−→

n→+∞
ũ1,0 in H1 .

Let ũ1 ∈ C(R : H1(R2)) be the solution of (1.1) satisfying ũ1(·, 0) = ũ1,0. By
reproducing the above analysis on ũ1, we obtain that

u(·+ ρ(tn), tn + t̃1 + t)
w−→

n→+∞
ũ1(·, t) in H1(R2) ,

u(·+ ρ(tn), tn + t̃1 + t) −→
n→+∞

ũ1(·, t) in L2(x1 > −A) ,
(4.51)

for all A > 0 and t ≥ 0. In particular, we deduce from (4.51) with t = −t̃1 and
(4.17) that ũ1(·,−t̃1) = ũ0. Thus the uniqueness of the Cauchy problem associated
to (1.1) in H1(R2) implies that ũ1(·, t − t̃1) = ũ(·, t), for all t ∈ R. We conclude
from (4.51) that (4.39)–(4.40) still hold true for t ≥ t̃1 and then for t ∈ R, since
t̃1 < 0 was chosen arbitrarily.

Finally, we prove (4.41). By extracting another subsequence if necessary, we can
assume from (3.3) and (3.5) that for all t ∈ R, there exist d(t) ∈ R and β(t) ∈ R2

such that

(4.52) c(tn + t) −→
n→+∞

d(t) and ρ(tn + t)− ρ(tn) −→
n→+∞

β(t) .
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Observe that β(0) = 0. Let us define

ηn(·, t) = u(·+ ρ(tn + t), tn + t)−Qc(tn+t) and η̃(·, t) = ũ(·+ β(t), t)−Qd(t) .

It follows then from (3.4) that∫
ηn(x, t)Qc(tn+t)(x)dx =

∫
ηn(x, t)∂xiQc(tn+t)(x)dx = 0, i = 1, 2 .

Therefore, we deduce letting n→ +∞ and using (4.40) and (4.52) that

(4.53)

∫
η̃(x, t)Qd(t)(x)dx =

∫
η̃(x, t)∂xiQd(t)(x)dx = 0, i = 1, 2 .

This implies by the uniqueness of the decomposition of ũ in Lemma 3.1 that d(t) =
c̃(t) and β(t) = ρ̃(t), for all t ∈ R, which concludes the proof of (4.41). �

Step 5: Exponential decay of ũ on the right.

Lemma 4.7. Let M ≥ 4. Then,

(4.54)

∫ (
ũ2 + |∇ũ|2

)
(x+ ρ̃(t), t)ψM (x1 − y0)dx . e−y0/M ,

for all y0 > 0 and t ∈ R.
Moreover,

(4.55)

∫
x2

ũ2(x+ ρ̃(t), t)dx2 . e
−x1/M , ∀ (x1, t) ∈ R2 .

Proof. Observe from (4.40) and (4.41) that

u(·+ ρ(tn + t), tn + t)
√
ψM (·1 − y0)

w−→
n→+∞

ũ(·+ ρ̃(t), t)
√
ψM (·1 − y0) in H1(R2) ,

for all t ∈ R. Thus,

‖ũ(·+ ρ̃(t), t)
√
ψM (·1 − y0)‖H1 ≤ lim inf

n→+∞
‖u(·+ ρ(tn + t), tn + t)

√
ψM (·1 − y0)‖H1 ,

which combined with (4.19) yields (4.54).
Since ψM (x1 − y0) ≥ ex1−y0 for x1 − y0 ≤ 0, it follows from (4.54) that∫ (

ũ2 + |∇ũ|2
)
(x+ ρ̃(t), t)ex1/Mdx . 1 ,

which yields (4.55) arguing as in (2.31). �

Step 6: Strong H1-convergence of u(·+ ρ(tn), tn + t) to ũ(·, t) on the right.

Lemma 4.8. We have that

(4.56) u(·+ ρ(tn), tn + t) −→
n→+∞

ũ(·, t) in H1(x1 > −A) ,

for all A > 0, t ∈ R.

Proof. Arguing as in the proof of Lemma 4.6, it is enough to prove that (4.56) holds
for t ≥ 0.

Recall that vn(x, t) = u(x+ρ(tn), tn+ t)− ũ(x, t) satisfies the equation in (4.43).
Let M ≥ 12. We claim that

(4.57)

∫
|∇vn|2(x, t)ψM (x1)dx −→

n→+∞
0 ,

for all t ≥ 0, which implies (4.56) together with (4.39).
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To prove (4.57), we fix t0 > 0. First, we integrate (4.48) between t0 − 1 and t0
and use (4.39) to get that

(4.58)

∫ t0

t0−1

∫
|∇vn|2(x, t)ψ′M (x1)dxdt −→

n→+∞
0 .

Thus, we infer that

(4.59)

∫ t0

t0−1

∫
|∇vn|2(x, t)ψM (x1)dxdt −→

n→+∞
0 .

Indeed, for all y0 > 0, there exists Cy0 > 0 such that ψ′M (x1) ≥ 1
Cy0

if x1 ≤
y0 + ρ̃1(t0), so that

∫ t0

t0−1

∫
|∇vn|2(x, t)ψM (x1)dxdt

. Cy0

∫ t0

t0−1

∫
x1≤y0+ρ̃1(t)

|∇vn|2(x, t)ψ′M (x1)dxdt

+

∫ t0

t0−1

∫
x1≥y0+ρ̃1(t)

|∇vn|2(x, t)ψM (x1 − y0 − ρ̃1(t))dxdt .

(4.60)

By using (4.19), (4.54) and (4.41), we can make the second term on the right-
hand side of (4.60)arbitrarily small as soon as y0 is chosen large enough. This fact
together with (4.58) implies (4.59).

Now, we claim that

∫
|∇vn|2(x, t0)ψM (x1)dx

.t0

∫
|∇vn|2(x, t)ψM (x1)dx+

∫ t0

t0−1

∫
|∇vn|2(x, t′)ψM (x1)dxdt′

+ sup
t′∈[t0−1,t0]

∫
v2
n(x, t′)ψM (x1)dx ,

(4.61)

for all t ∈ [t0 − 1, t0], which implies (4.57) after integrating between t0 − 1 and t0
and using (4.42), (4.44) and (4.59).
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It remains to prove (4.61). Let us define Jn(t) =
∫ (
|∇vn|2− 2

3v
3
n

)
(x, t)ψM (x1)dx.

It follows from (4.43) and after using some integrations by parts that

d

dt
Jn(t) = −

∫ (
3(∂2

x1
vn)2 + 4(∂2

x1x2
vn)2 + (∂2

x2
vn)2 + v4

n

)
ψ′M (x1)dx

+

∫ (
|∇vn|2 −

2

3
v3
n

)
ψ′′M (x1)dx

+ 4

∫ (
2(∂x1vn)2 + (∂x2vn)2

)
ψM (x1)dx

+ 4

∫ (
∂x1

ũvn∂
2
x1
vn + ∂x2

ũvn∂
2
x1x2

vn
)
ψM (x1)dx

+ 4

∫ (
∂x1 ũvn∂x1vn + ∂x2 ũvn∂x2vn

)
ψ′M (x1)dx

− 2

∫
∂x1

ũ|∇vn|2ψM (x1)dx+ 2

∫
ũ|∇vn|2ψ′M (x1)dx

+
8

3

∫
∂x1 ũv

3
nψM (x1)dx− 4

3

∫
ũv3
nψ
′
M (x1)dx .

(4.62)

Therefore, we deduce arguing as in the proofs of Lemmas 4.5 and (4.6) and using
(4.34), (4.42) and (4.44) that there exists K2(t0) > 0 such that

d

dt

∫ (
|∇vn|2 −

2

3
v3
n

)
(x, t)ψM (x1)dx ≤ K2(t0)

∫ (
|∇vn|2 + v2

n

)
(x, t)ψM (x1)dx .

(4.63)

For example, we explain how to deal with the fourth term appearing on the right-
hand side of (4.62), which is the most difficult. By using Young and Hölder’s
inequalities, we get that∫

∂x1
ũvn∂

2
x1
vnψM (x1)dx

≤ 1

64

∫
(∂2
x1
vn)2ψ′M (x1)dx+K

∫
(∂x1

ũ)2v2
n

ψM (x1)2

ψ′M (x1)
dx

≤ 1

64

∫
(∂2
x1
vn)2ψ′M (x1)dx+K‖vn

√
ψ′M‖L∞

∫
(∂x1 ũ)2ψM (x1)2

ψ′M (x1)2
dx .

Observe that ψM (x1)2

ψ′M (x1)2 .
(
1 + e2x1/M

)
. Therefore, the Gagliardo-Nirenberg inequal-

ity

‖vn
√
ψ′M (x1)‖2L∞ . ‖vn

√
ψ′M (x1)‖H1‖vn

√
ψ′M (x1)‖H2 ,

Young’s inequality and (4.34) give that∫
∂x1 ũvn∂

2
x1
vnψM (x1)dx

≤ 1

32

∫
|∇2vn|2ψ′M (x1)dx+K(t0)

∫ (
|∇vn|2 + v2

n

)
ψ′M (x1)dx .

Finally, we conclude the proof of (4.61) integrating (4.63) between t and t0 and
using the estimate∫

v3
n(x, t)ψM (x1)dx ≤ K

∫
v2
n(x, t)ψM (x1)dx+

1

32

∫
|∇vn|2(x, t)ψM (x1)dx ,
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which follows arguing as in (4.47). �

Step 7: Exponential decay of ũ on the left. Before proving the exponential decay
of ũ on the left, we need to derive another monotonicity property for u in the
x1-direction for times moving forward.

Lemma 4.9. Assume that u ∈ C(R : H1(R2)) is a solution of (1.1) satisfying
(3.2)–(3.3) for ε0 small enough. For M ≥ 4, let ψM be defined as in (2.1). For
y0 > 0, t0 ∈ R and t ≥ t0, we define

(4.64) Ĩy0,t0(t) =

∫
u2(x, t)ψM (˜̃x1)dx where ˜̃x1 = x1 − ρ1(t) +

1

2
(t− t0) + y0 .

Then,

(4.65) Ĩy0,t0(t)− Ĩy0,t0(t0) . e−y0/M ,

for all t ≥ t0.

Proof. Let t ≥ t0. Since u is a solution of (1.1), we deduce from (2.2) and (3.5)
that

d

dt
Ĩy0,t0(t) = 2

∫
u∂tuψM (˜̃x1)dx− (ρ′1(t)− 1

2
)

∫
u2ψ′M (˜̃x1)dx

≤ −
∫ (

3(∂x1
u)2 + (∂x2

u)2 +
1

4
u2
)
ψ′M (˜̃x1)dx+

2

3

∫
u3ψ′M (˜̃x1)dx ,

(4.66)

provided ε0 is chosen small enough. We decompose the nonlinear term on the
right-hand side of (4.66) as

(4.67)

∫
u3ψ′M (˜̃x1)dx =

∫
Qc(·−ρ)u2ψ′M (˜̃x1)dx+

∫ (
u−Qc(·−ρ)

)
u2ψ′M (˜̃x1)dx .

By using (3.3) and the Sobolev embedding H1(R2) ↪→ L3(R2), we get that

(4.68)
∣∣∣ ∫ (u−Qc(· − ρ)

)
u2ψ′M (˜̃x1)dx

∣∣∣ . K0ε0

∫
u2ψ′M (˜̃x1)dx .

Let R1 be a positive number to be fixed later. To deal with the first term on the
right-hand side of (4.67), we fix first consider the case where |x − ρ(t)| > R1. It
follows then from (1.7) that

(4.69)
∣∣∣ ∫ Qc(· − ρ)u2ψ′M (˜̃x1)dx

∣∣∣ . e−δR1

∫
u2ψ′M (˜̃x1)dx .

In the case where |x− ρ(t)| ≤ R1, we have

|˜̃x1| ≥ |y0 +
1

2
(t− t0)| − |x1 − ρ1(t)| ≥ y0 +

1

2
(t− t0)−R1 ,

so that

(4.70)
∣∣∣ ∫ Qc(· − ρ)u2ψ′M (˜̃x1)dx

∣∣∣ . eR1/Me−
(
y0+ 1

2 (t−t0)
)
/M

∫
u2

0dx ,

since ψ′M (˜̃x1) . e−|˜̃x1|/M . Therefore, we deduce gathering (4.67)–(4.70), fixing the
value of R1 and choosing ε0 small enough that

(4.71)
2

3

∣∣∣ ∫ u3ψ′M (˜̃x1)dx
∣∣∣ ≤ 1

8

∫ (
|∇u|2 + u2

)
ψ′M (˜̃x1)dx+ Ce−

(
y0+ 1

2 (t−t0)
)
/M ,

where C is a positive constant depending of ‖u0‖2L2 .
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Therefore, we conclude the proof of (4.65) by integrating (4.66) between t0 and
t and using (4.71). �

We are now in position to prove that ũ decays exponentially on the left in the
x1-direction.

Lemma 4.10. Let M ≥ 4. Then,

(4.72)

∫
ũ2(x+ ρ̃(t), t)

(
1− ψM (x1 + y0)

)
dx . e−y0/M ,

for all y0 > 0 and t ∈ R.
Moreover,

(4.73)

∫
x2

ũ2(x+ ρ̃(t), t)dx2 . e
x1/M , ∀x1 ≤ 0, t ∈ R .

Proof. Fix t̃0 ∈ R and y0 > 0. First, we observe from (4.39) and (4.41) that∫
u2(x, tn+t̃0)ψM (x1−ρ1(t̃0+tn)+y0)dx −→

n→+∞

∫
ũ2(x, t̃0)ψM (x1−ρ̃1(t̃0)+y0)dx .

Thus, if we denote m̃0 =
∫
ũ2

0(x)dx, there exists n0 = n0(y0) ∈ N such that∫
u2(x, tn + t̃0)ψM (x1 − ρ1(t̃0 + tn) + y0)dx

≤
∫
ũ2(x, t̃0)ψM (x1 − ρ̃1(t̃0) + y0)dx+ e−y0/M

= m̃0 −
∫
ũ2(x, t̃0)

(
1− ψM (x1 − ρ̃1(t̃0) + y0)

)
dx+ e−y0/M ,

(4.74)

for all n ≥ n0. Note also that we used the fact that the L2-norm of ũ is conserved
in time, since ũ is a solution of (1.1).

Now, we use the monotonicity property on u for times moving forward. Let
n′ ≥ n be such that tn′ ≥ tn + t̃0. It follows from (4.65) that∫

u2(x, tn′)ψM
(
x1 − ρ1(tn′) +

1

2
(tn′ − (tn + t̃0)) + y0

)
dx

.
∫
u2(x, tn + t̃0)ψM

(
x1 − ρ1(tn + t̃0) + y0

)
dx+ e−y0/M .

This implies together with (4.74) that∫
u2(x+ρ(tn′), tn′)ψM

(
x1 +

1

2
(tn′ − (tn + t̃0)) + y0

)
dx

≤ m̃0 −
∫
ũ2(x, t̃0)

(
1− ψM (x1 − ρ̃1(t̃0) + y0)

)
dx+Ke−y0/M ,

(4.75)

as soon as n′ ≥ n ≥ n0 satisfies tn′ ≥ tn + t̃0.
On the other hand, it follows from (4.29) that∫

x1>−A
u2(x+ρ(tn′), tn′)ψM

(
x1+

1

2
(tn′−(tn+ t̃0))+y0

)
dx −→

n′→+∞

∫
x1>−A

ũ2
0(x)dx ,

for any A > 0. We fix A > 0 such that
∫
x1>−A ũ

2
0(x)dx ≥ m̃0 − 1

2e
−y0/M . Then,

there exists n′1 = n′1(y0, n) ∈ N such that∫
u2(x+ρ(tn′), tn′)ψM

(
x1 +

1

2
(tn′ − (tn + t̃0)) + y0

)
dx ≥ m̃0 − e−y0/M ,(4.76)
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for all n′ ≥ n′1.
We conclude the proof of (4.72) gathering (4.75) and (4.76).
We turn now to the proof of (4.73). Fix some y0 > 0. Since

(
1−ψM (x1+y0)

)
≥ 1

2
if x1 ≤ −y0, it follows from (4.72) that

(4.77) sup
t∈R

∫
x1≤−y0

ũ2(x+ ρ̃(t), t)dx . e−y0/M ,

where the implicit constant does not depend on y0 > 0.
Let us recall the following Sobolev inequality for functions w = w(x1) of one

variable. It holds that

(4.78) ‖w‖2L∞(x1≤−y0) ≤ 2‖w‖L2(x1≤−y0)‖∂x1
w‖L2(x1≤−y0) ,

for any w = w(x1) ∈ H1(R) and y0 > 0.

We apply (4.78) to the function w(x1) =
( ∫

x2
ũ2(x1 + ρ̃1(t), x2 + ρ̃2(t), t)dx2

) 1
2

.

Thus, we can bound ‖w‖2L∞(x1≤−y0) by

( ∫
x1≤−y0

ũ2(x+ ρ̃(t), t)dx
) 1

2
( ∫
x1≤−y0

( ∫
x2
ũ∂x1

ũ(x+ ρ̃(t), t)dx2

)2∫
x2
ũ2(x+ ρ̃(t), t)dx2

dx1

) 1
2

.

It follows then from (4.77), the Cauchy-Schwarz inequality and the global H1 bound
in ũ that

(4.79) sup
t∈R, x1≤−y0

∫
x2

ũ2(x1 + ρ̃1(t), x2 + ρ̃2(t), t)dx2 . e
−y0/M .

This implies (4.73) since the implicit constant in (4.79) does not depend on y0. �

Finally we give the proof of Proposition 4.1.

Proof of Proposition 4.1. The H1 convergence on the right is given by Lemma 4.8,
while the exponential decay in the x1 direction is obtained gathering (4.54) and
(4.73). Note that we also have that ρ̃(0) = 0 from (4.41) �

5. Stability of the sum of N-solitons

In this section we prove Theorem 1.7.

5.1. Reduction to a well-prepared case. First of all, after relabeling the set of
scalings (c0j ) and the corresponding initial positions (ρj,0), we can assume that

(5.1) 0 < c01 < c02 < · · · < c0N .

In what follows we will prove that there is a time T# > 0, a constant A# > 0 and
another constant γ0 > 0, depending only on the parameters (ρj,0) and (c0j ), such

that for some ρj,# = ρj(T#) ∈ R2 one has

(5.2) ‖u(T#)−
N∑
j=1

Qc0j (x− ρ
j,#)‖H1 < A#(ε+ e−γ0L),

and now

(5.3) ρ1,#
1 < ρ2,#

1 < · · · < ρN,#1 ,
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and (1.29) is also satisfied, in the sense that

(5.4) min{|ρj,# − ρk,#| : j 6= k} > L.

Let us define T# as follows. Fix L0 > 0 large and L > L0 in (1.29). We fix T# ≥ 0
such that (5.3) and (5.4) are satisfied, where

ρj,#1 := ρj,01 + c0j T#.

In other words,

ρ1,0
1 + c01T# < ρ2,0

1 + c02T# < · · · < ρN,01 + c0NT#.

Consider the multi-soliton

R0(x, t) :=

N∑
j=1

Qc0j (x1 − c0j t− ρ
j,0
1 , x2 − ρj,02 ).

Then we have

S[R0] := (R0)t + (∆R0 +R2
0)x1

=
(
R2

0 −
N∑
j=1

Q2
c0j

(· − c0j t− ρ
j,0
1 , · − ρj,02 )

)
x1

=
(∑
i 6=j

Q2
c0i

(· − c0j t− ρ
j,0
1 , · − ρj,02 )Q2

c0j
(· − c0j t− ρ

j,0
1 , · − ρj,02 )

)
x1

.

Under the assumption (1.29), we have for all t ≥ 0,

‖S[R0](t)‖H1 . e−γ0L,

for some fixed constant γ0 > 0 only depending on the scalings (c0j ). The error
function

z0(t) := u(t)−R0(t) ∈ H1

satisfies (cf. (1.30))

‖z0(0)‖H1 < ε,

and the equation

(5.5) (z0)t + (∆z0 + 2R0z0 + z2
0)x1

+ S[R0] = 0.

Now we establish some energy estimates. We have

d

dt

(1

2

∫
z2

0dx
)

+

∫
(R0)x1

z2
0dx+

∫
S[R0]z0dx = 0,

so that

‖z0(t)‖2L2 . ε2 + e−2γ0L +

∫ t

0

‖z0(s)‖2L2ds.

We have for t ∈ [0, T#],

(5.6) ‖z0(t)‖2L2 . eT#(ε+ e−γ0L).

In order to obtain an estimate for the derivative of z0, we have from (5.5)

(z1)t + (∆z1 + 2R0z1 + 2(R0)x1z0 + 2z0z1)x1 + (S[R0])x1 = 0,

where z1 := (z0)x1
. This time we will have

d

dt

(1

2

∫
z2

1dx
)

+

∫
(R0)x1

z2
1dx+

∫
(z0)x1

z2
1dx+

∫
(S[R0])x1

z1dx = 0.
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Using the Gronwall’s inequality, we obtain once again, for all t ∈ [0, T#],

(5.7) ‖z1(t)‖2L2 . eT#(ε+ e−γ0L).

A similar estimate holds for (z0)x2 . From (5.6) and (5.7) we conclude (choose
A# ∼ eT#).

5.2. Proof in the well-prepared case. Assume (5.1), (5.2), (5.3) and (5.4).
We follow the Martel-Merle-Tsai paper [36], with some minor modifications. For
technical reasons we need the following quantities

(5.8) α0 := A#(ε+ e−γ0L), γ1 ∈ (0, γ0).

The parameter γ1 is small but fixed, independent of ε. Finally we define, for A0 > 1
large to be fixed later and α > 0 small (α < α0), the tubular neighborhood

VL(α,A0) :=
{
v ∈ H1 : there are (ρj)j=1,...,N ∈ R2N such that

‖v −
N∑
j=1

Qc0j (· − ρ
j)‖H1 ≤ A0(α+ e−γ1L)

}
.

Since (1.1) is invariant by time translations, we can assume T# = 0 in (5.2). Then
we have u(0) ∈ VL(α, 1) ⊂ VL(α,A0). Moreover, by continuity of the H1-flow map,
we have that u(t) ∈ VL(α,A0) for all t ∈ [0, T ], for some T = T (A0) > 0. The
idea is to prove that for all A0 large enough we can take T = +∞. (Recall that

A0(α+ e−γ1L) ≤ Ã0(ε+ e−γ1L), which leads to estimate (1.31).)

Let us assume that T (A0) < +∞. Then, by taking α0 smaller and L0 larger if
necessary, we have that there are parameters (cj(t), ρ

j(t)) ∈ R+×R2, j = 1, . . . , N ,
defined on [0, T ], and such that if

R(x, t) :=

N∑
j=1

Q̃j(x, t), Q̃j(x, t) := Qcj(t)(x− ρ
j(t)),

and

z(x, t) := u(x, t)−R(x, t),

then for all t ∈ [0, T ] and all j = 1, . . . , N ,

(5.9)

∫
zQ̃jdx =

∫
z∂x1

Q̃jdx =

∫
z∂x2

Q̃jdx = 0.

The proof of this result is obtained by an standard application of the Implicit
Function Theorem. An additional byproduct of this result is the estimate

(5.10)

N∑
j=1

|cj(t)− cj(0)|+ ‖z(t)‖H1 . A0(α+ e−γ1L),

with a constant independent of time. Now we compute some energy estimates.
Consider the energy H(u) defined in (1.4). It is not difficult to check that for some
constant γ1 > 0 depending on L,∣∣∣H(R+ z)(t)−H(R)(t)− 1

2

∫
|∇z|2(t)dx+

∫
Rz2(t)dx

∣∣∣(5.11)

. ‖z(t)‖3H1 + ‖z(t)‖H1e−2γ1t.
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Moreover, if H0 :=
∫

( 1
2 |∇Q|

2 − 1
3Q

3)dx, we have

(5.12)
∣∣∣H(R)(t)−H0

N∑
j=1

c2j (t)
∣∣∣ . e−2γ1t.

On the other hand, consider the parameters

σj :=
1

2
(c0j + c0j−1), j = 2, . . . , N,

and the perturbed mass

(5.13) Mj(t) :=
1

2

∫
u2(x, t)ϕj(x, t)dx

where ϕj(x, t) := ψA(x1−σjt) and ψA is defined in (2.1) for A large but independent
of L and α. Note that thanks to (5.9) the modified mass Mj satisfies the identity

(5.14) Mj(t) = M0dj(t) +
1

2

∫
z2ϕj(t)dx+O(e−2γ1t), M0 :=

1

2

∫
Q2,

where

(5.15) dj(t) :=

N∑
k=j

ck(t).

On the other hand, following the proof of Lemma 3.3, we have for A > 0 large and
L > L0 large (depending on A) the monotonicity estimate

(5.16) Mj(t)−Mj(0) . e−2γ1L,

with constants independent of α and L. Let us define, for any t ∈ [0, T ], the
quantity

(5.17) ∆̂cj(t) := cj(t)− cj(0),

and more generally, for any time-dependent function f(t),

∆̂f(t) := f(t)− f(0).

Then, using (5.14) and (5.16) we have

∆̂dj(t) . ‖z(0)‖2H1 + e−2γ1t,

or

(5.18) |∆̂dj(t)|+ ∆̂dj(t) . ‖z(0)‖2H1 + e−2γ1t.

Now we estimate the difference ∆̂cj(t). First of all, note that for each j,

|∆̂[c2j ](t)− 2cj(0)∆̂cj(t)| = |∆̂cj(t)|2.

Therefore, using (5.12) and the previous identity,

∆̂H(R)(t) = H0

N∑
j=1

∆[c2j ](t) +O(e−2γ1t)

= 2H0

N∑
j=1

cj(0)∆̂cj(t) +O
( N∑
j=1

|∆̂cj(t)|2 + e−2γ1t
)
.
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Next, we have

N∑
j=1

cj(0)∆̂cj(t) =

N−1∑
j=1

cj(0)∆̂(dj(t)− dj+1(t)) + cN (0)∆̂dN (t)

=

N−1∑
j=1

cj(0)∆̂dj(t)−
N∑
j=2

cj−1(0)∆̂dj(t) + cN (0)∆̂dN (t)

=

N∑
j=2

(cj(0)− cj−1(0))∆̂dj(t) + c1(0)∆̂d1(t).

Therefore, we use the identity

(5.19)
H0

M0
= −1

2
,

(see Appendix B for a proof) to obtain

∆̂H(R)(t) = −M0

N∑
j=1

cj(0)∆̂cj(t) +O
( N∑
j=1

|∆̂cj(t)|2 + e−2γ1t
)

= −M0

N∑
j=2

(cj(0)− cj−1(0))∆̂dj(t)−M0c1(0)∆̂d1(t)(5.20)

+O
( N∑
j=1

|∆̂cj(t)|2 + e−2γ1t
)
.

Now we replace (5.18) and use the fact that cj(0)− cj−1(0) > c0 > 0 for all j. We
get

∆̂H(R)(t) ≥ c0
N∑
j=1

|∆̂dj(t)| − C
(
‖z(0)‖2H1 +

N∑
j=1

|∆̂cj(t)|2 + e−2γ1t
)

which, after using (5.11), implies that |∆̂dj(t)| and |∆̂cj(t)| have quadratic varia-
tion, for all j = 1, . . . , N . More precisely,

|∆̂cj(t)| ≤
N∑
k=1

|∆̂dk(t)| . ‖z(t)‖2H1 +

N∑
k=1

|∆̂ck(t)|2 + e−2γ1t,

which implies that

(5.21) |∆̂cj(t)| . ‖z(t)‖2H1 + e−2γ1t.

Finally, using (5.20), (5.21), (5.14) and (5.16),

−∆̂Mj(t) +
1

2
∆̂

∫
z2ϕj(t)dx+O(e−2γ1L) = −M0∆̂dj(t),
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and

∆̂H(R)(t) =

N∑
j=2

(cj(0)− cj−1(0))
[1

2
∆̂

∫
z2ϕj(t)dx− ∆̂Mj(t)

]
+c1(0)

[1

2
∆̂

∫
z2ϕ1(t)dx− ∆̂M1(t)

]
+O
(
‖z(t)‖4H1 + e−2γ1L

)
.

≥ 1

2
c1(0)

∫
z2ϕ1(t)dx+

N∑
j=2

1

2
(cj(0)− cj−1(0))

∫
z2ϕj(t)dx

−C
(
‖z(0)‖2H1 + ‖z(t)‖4H1 + e−2γ1L

)
≥

N−1∑
j=1

1

2
cj(0)

∫
z2(ϕj − ϕj+1)(t)dx+

1

2
cN (0)

∫
z2ϕN (t)dx

−C
(
‖z(0)‖2H1 + ‖z(t)‖4H1 + e−2γ1L

)
,

which implies that

1

2

∫
|∇z(t)|2dx−

∫
Rz2(t)dx

+

N−1∑
j=1

1

2
cj(0)

∫
z2(ϕj − ϕj+1)(t)dx+

1

2
cN (0)

∫
z2ϕN (t)dx

. ‖z(0)‖2H1 + ‖z(t)‖3H1 + e−2γ1L.

A standard decomposition argument for A > 0 large enough and (5.9) allows to
use the coercivity property associated to each soliton in the region σjt . x . σj+1t
(see e.g. [36, Lemma 4]), and therefore we obtain

‖z(t)‖H1 ≤ 1

2
A0(α+ e−γ1L).

Finally, we use the decomposition

‖u(t)−
N∑
j=1

Qc0j (· − ρ
j(t))‖H1 ≤ ‖z(t)‖H1 + C

N∑
j=1

|∆̂cj(t)|

≤ 3

4
A0(α+ e−γ1L),

improving the original estimate, so that we have u(t) ∈ VL(α, 3
4A0). Therefore

T = +∞.

Appendix A. Numerical Estimates for the Spectral Property

Subject to Proposition 2.5 on the sign of an inner product, the gZK solitons are
asymptotically stable. Recall that the relevant quantity and its sign, (2.50) are:

(L−1ΛQ,ΛQ) < 0.

Having this condition yields coercivity of the bilinear form induced by L, on a
subspace, which makes way for the proof of the linear Liouville property.
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Conditions like (2.50) have appeared in a variety of works on soliton and blowup
stability for gKdV, NLS, and other equations. While in dimension one, such con-
ditions can sometimes be proved analytically, due to our intimate knowledge of the
sech function, in dimensions two and higher, we resort to computation. This re-
quires the computation of four quantities, Q, ΛQ, W , and the inner product, where
W ∈ H1(Rd) is the solution of

(A.1) LW = ΛQ

Numerical computation of these quantities has been successfully performed in sev-
eral works on NLS, including [2, 15, 37, 46]. Using the methods of [2, 37, 46], we will
estimate (A), proving the desired property for certain values of p and d, including
the quadratic case in dimension two.

A.1. Computational Methods. To solve (1.6), (A.1), and compute (2.50), we
first remark that since Q is radially symmetric, so is ΛQ. Thus, W is also radially
symmetric, and we are reduced to solving singular boundary value problems

−Q′′ − d− 1

r
Q′ +Q−Qp = 0, Q′(0) = 0, lim

r→∞
Q(r) = 0,(A.2)

−W ′′ − d− 1

r
W ′ +W − pQp−1W =

1

p− 1
Q+

1

2
rQ′, W ′(0) = 0, lim

r→∞
W (r) = 0,

(A.3)

(L−1ΛQ,ΛQ) = Cd

∫ ∞
0

(ΛQ)(r)W (r)rd−1dr.(A.4)

Cd is the surface area of the d− 1 dimensional sphere. To make these problems
computationally tractable, we truncate the domain to (0, rmax), where rmax is taken
sufficiently large. The asymptotic of Q is well known, with

(A.5) Q ∝ r−(d−1)/2e−r.

Therefore, for the truncated domain, we introduce the Robin boundary condition,

(A.6) Q′(rmax) +
d− 1 + 2 rmax

2 rmax
Q(rmax) = 0.

For large values of r, a dominant balance of (A.3) is

(A.7) −W ′′ +W ≈ rQ′,
from which we infer that

(A.8) W ∝ r(5−d)/2e−r.

This motivate the Robin boundary condition

(A.9) W ′(rmax) +
d− 5 + 2 rmax

2 rmax
W (rmax) = 0.

We thus solve the equations (A.2) and (A.3), with approximate boundary con-
ditions (A.5) and (A.8). To compute the inner product, we introduce the function
ν(r), solving the ODE

(A.10) ν′ = (ΛQ)(r)W (r)rd−1, ν(0).

Then

(A.11) ν(rmax) =

∫ rmax

0

(ΛQ)(r)W (r)rdr ≈ C−1
d (L−1ΛQ,ΛQ).
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Figure 5. Computed Q and W profiles for p = 2 in d = 2, along
with the ν(r) function defined by (A.10). Q and W are exponen-
tially small and ν has plateaued at a fixed, negative, value.

(A.10), though trivial, is introduce so that we can solve this system, in concert, as
a coupled first order system using Matlab’s bvp4c, a two point boundary value
problem solver. Since Cd > 0, we omit it in our calculations.

A.2. Numerical Results.

A.2.1. Case of p = 2 in Dimension d = 2. We apply the algorithm with rmax = 50
and absolute and relative error tolerances of 10−8 and 10−10 to the p = 2 case in
d = 2. We find that (2.50) is indeed negative. In Figure 5, we plot Q, W and
their asymptotics in (a) and (b), along with the computed ν in (c). Q and W
are both vanishing exponentially, and ν has stabilized to a fixed, negative, value,
ν(rmax) ≈ −0.476741.

A.2.2. Other Cases. We can repeat this computation for other values of p and in
other dimensions. In Figure 6, we plot the ν(rmax), the estimate of (2.50) for a range
of p in dimensions two and three. For a range of computed p, p ∈ [1.8, 2.1491) in
d = 2 and p ∈ [1.8, 1.8333) in d = 3, the sign is negative, as needed for stability.
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Figure 6. Estimated values of (A) in dimensions one, two, and
three for a range of nonlinearities, p. The zero crossings are located
at 2.8899 (d = 1), 2.1491 (d = 2), and 1.8333 (d = 3).

For higher, more supercritical, of p, (2.50) is positive, and the result is inconclusive.
That the calculation is inconclusive is affirmed by the corresponding computation
made in dimension d = 1, also shown in the figure. For this case, the zero crossing
is at p = 2.8899, excluding the cubic nonlinearity. But it is known p = 3 in d = 1
is asymptotically stable in the sense discussed here, [31, 34].

Appendix B. Proof of (5.19)

In this short appendix we prove (5.19). Recall that Q is the unique radial solution
of (1.6) in H1(R2). We multiply (1.6) by Q and integrate to get

(B.1) −
∫
|∇Q|2 −

∫
Q2 +

∫
Q3 = 0.

Now we prove two different identities dealing with the gradient term. First of all,
multiply (1.6) by ∂x1

Q, we obtain

∂x1

[1

2
(∂x1

Q)2 − 1

2
Q2 +

1

3
Q3
]

+ ∂x1
Q∂2

x2
Q = 0,
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which implies that the term ∂x1
Q∂2

x2
Q has finite integral on each subinterval of

Rx1 . With a slight abuse of notation, we have

1

2
(∂x1

Q)2 − 1

2
Q2 +

1

3
Q3 +

∫ x1

−∞
∂x1

Q∂2
x2
Q = 0.

Note that the first three terms above are integrable. Therefore
∫ x1

−∞ ∂x1Q∂
2
x2
Q is

integrable on R2 and we obtain∫
x1,x2

1

2
(∂x1

Q)2 − 1

2
Q2 +

1

3
Q3 +

∫
x1,x2

∫ x1

−∞
∂x1

Q∂2
x2
Q = 0.

Now we use the Fubini’s Theorem to compute the last term above. We have∫
x1,x2

∫ x1

−∞
∂x1

Q∂2
x2
Q =

∫
x1

∫ x1

−∞

∫
x2

∂x1
Q∂2

x2
Q

= −
∫
x1

∫ x1

−∞

∫
x2

∂x1,x2Q∂x2Q

= −1

2

∫
x1,x2

∫ x1

−∞
∂x1

[
(∂x2

Q)2
]

= −1

2

∫
x1,x2

(∂x2Q)2.

We finally obtain ∫
(∂x1Q)2 − (∂x2Q)2 −Q2 +

2

3
Q3 = 0.

Now we interchange the roles of x1 and x2 to get a second estimate:∫
(∂x2Q)2 − (∂x1Q)2 −Q2 +

2

3
Q3 = 0,

which implies that ∫
Q2 − 2

3
Q3 = 0,

and ∫
(∂x1

Q)2 =

∫
(∂x2

Q)2,

as expected since Q is radially symmetric. Replacing in (B.1), we get∫
(∂x1

Q)2 =
1

2

[3

2

∫
Q2 −

∫
Q2
]

=
1

4

∫
Q2.

Finally, we compute H0. Using the previous identities we have

H0 =
1

2

∫
|∇Q|2 − 1

3

∫
Q3

=
1

2

(
2 · 1

4

∫
Q2
)
− 1

3
· 3

2

∫
Q2 = −1

4

∫
Q2 = −1

2
M0,

as desired.
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Appendix C. Linear waves versus Asymptotic stability in the energy
space

In this small section we prove that Remarks 1.1 and 4.1 are formally sharp, by
using linear waves at infinity. Indeed, consider the linear dynamics

ut + ∂x1
∆u = 0,

and take u = exp(i(k1x1 +k2x2−wt)), the standard front wave. Then we compute
w in terms of k1 and k2. The result is

w(k1, k2) = −(k3
1 + k1k

2
2).

Now we compute the velocity group, which is the vector ∇w. The result is

∇w = −(3k2
1 + k2

2, 2k1k2)T ,

which is a vector with negative x1-coordinate, but the x2-coordinate depends on
the sign of k1 and k2. Without loss of generality, we can assume k1 > 0, k2 < 0.
Now we compute the minimal angle θ for which

−2k1k2 = R cos θ, and 3k2
1 + k2

2 = R sin θ.

It turns out that the angle is given by

min
3k2

1 + k2
2

2|k1||k2|
= tan θ,

but
3k2

1 + k2
2

2|k1||k2|
=

1

2
(3r +

1

r
), r :=

|k1|
|k2|

> 0.

Note that we always have

3r +
1

r
≥ 2
√

3,

so

min
3k2

1 + k2
2

2|k1||k2|
≥
√

3 = tan
π

3
.

as expected. A similar result holds for the three dimensional case. We thank Didier
Smets for this interesting remark.

Appendix D. Proof of Theorem 1.5

Assume that v ∈ H1(Rd) is a nontrivial solitary wave satisfying (1.28) satisfying
∂−1
x1
∂xjv ∈ L2(Rd) for all j ∈ Z+ ∩ [2, d] and cj 6= 0 for some j ∈ Z+ ∩ [2, d]. Since

(1.28) is invariant by rotation in the d− 1 variables (x2, · · · , xd−1), we can always
assume that c2 6= 0 and c3 = · · · = cd = 0.

Multiplying (1.28) by x2∂x1v and integrating by parts (this process can be made
rigorous by using a suitable cut-off approximation), we find∫

∂x1v∂x2v = −1

2
c2

∫
v2.

On the other hand, we multiply (1.28) by x1∂x2
v to obtain∫

∂x1v∂x2v =
1

2
c2

∫
(∂−1
x1
∂x2v)2,

which is a contradiction, unless c2 = 0 or v ≡ 0.
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1. M. A. Alejo, C. Muñoz and L. Vega, The Gardner equation and the L2-stability of the N-

soliton solution of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 365 (2013),
195–212.

2. R. Asad and G. Simpson, Embedded eigenvalues and the nonlinear Schrödinger equation, J.

Math. Phys., 52 (2011), 033511.
3. H. Berestycki and P. L. Lions, Nonlinear scalar field equations, Arch. Rational Mech. Anal.,

82 (1983), 313–345.
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Schwartz UMR 7640, Route de Palaiseau, 91128 Palaiseau cedex, France

E-mail address: cote@math.polytechnique.fr
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