SHARP BLOW-UP STABILITY FOR SELF-SIMILAR SOLUTIONS OF THE
MODIFIED KORTEWEG-DE VRIES EQUATION

SIMAO CORREIA AND RAPHAEL COTE

ABSTRACT. We consider the modified Korteweg-de Vries equation. Given a self-similar solution,
and a subcritical perturbation of any size, we prove that there exists a unique solution to the
equation which behaves at blow-up time as the self-similar solution plus the perturbation.

To this end, we develop the first robust analysis in spaces of functions with bounded Fourier
transforms. To begin, we prove the local well-posedness in subcritical spaces through an ap-
propriate restriction norm method. As this method is not sufficient to capture the critical
self-similar dynamics, we develop an infinite normal form reduction (INFR) to derive time-
dependent a priori L* bounds in frequency variables. Both approaches rely on frequency-
restricted estimates, which are specific positive multiplier estimates capable of capturing the
oscillatory nature of the equation. As a consequence of our analysis, we also prove local well-
posedness for small subcritical perturbations of self-similar solutions at positive time.

1. INTRODUCTION

1.1. Setting and motivation. In this work, we consider the modified Korteweg-de Vries equa-
tion on the real line

(mKdV) Ovu+ O2u = +0,(u®), (t,z)eR?,  wu(t,x)eR.

The sign will be irrelevant in our analysis and thus we focus on the focusing case (+). As this
equation is invariant through the scaling uy(t,2) = Au(A3¢, Ax), one may look for self-similar
solutions, that is, solutions invariant under scaling. A direct computation shows that self-similar
solutions are necessarily of the form

S(t,x) = t%s (7). wheres"—25-5"+a, aer,
The existence of self-similar profiles S has been proven in [3, 10}, 111 2T], 0] using ODE, stationary
phase or complete integrability techniques. The corresponding solutions are critical in terms
of time, space and frequency decay. In physical space, the profiles have decay like |x]*1/ 4 as
x — —o0, while their derivative grows as ]m\l/ 4 (implying a strong oscillatory behavior, see for
example [4] for precise asymptotics). In frequency space, the solutions are merely bounded, with
logarithmic oscillations at infinity and a jump discontinuity at £ = 0 (induced by the parameter
«): we refer to Proposition below for more details.

Due to their scaling-invariant nature, self-similar solutions are not included in any existing local
well-posedness theory. Indeed, in the H®-scale, well-posedness is known to be analytic (cf. [24])
for s = 1/4, continuous for s > —1/2 (cf. [20]), and fails at the critical regularity s = —1/2 due
to an instantaneous norm inflation mechanism (this mechanism can also be seen in the evolution
of self-similar solutions). In the scale of Fourier-Lebesgue spaces HS = {u € 8'(R) : (¢)¥a € LV},
the analytic well-posedness can be shown for almost-critical spaces » > 1 and s > (1 —r)/2 (cf.
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17]). They barely missed HY (which corresponds to u € L¥), which is a critical space where
1 3
self-similar solutions lie.

Self-similar solutions present a natural blow-up behavior at t = 0, which is connected to the
formation of logarithmic spirals and corners in the evolution of vortex patches in the plane ([15]).
On the other hand, they also determine the long time asymptotics for small solutions of
([9, 14, 19, 22 23]). In the refered articles, the analysis in performed for subcritical solutions. In
[4], together with Luis Vega, we introduced a critical space where long-time asymptotics could
be analyzed. In particular, we proved that any small critical object converges to the self-similar
solution with the same zero Fourier mode. As such, the most relevant open problems related
with self-similar solutions concern the dynamics near t = 0. In a parallel problem for the cubic
nonlinear Schrodinger equation on R, the use of the pseudo-conformal transformation translates
the problem from ¢ = 0 to one at ¢t = co (while also turning self-similar solutions into constants),
see [1L 2]. For the modified KdV, the absence of such a transformation forces us to analyze the
problem directly.

In our previous work [5], we managed to prove the stability of the blow-up phenomena under
smooth and small perturbations at the blow-up time. More precisely, given a self-similar solution
S (small in a critical space) and a perturbation z small in a sufficiently strong topologyEL namely

(1.1) zely,, (&%2elf, (&drel' nl?
then there exists a unique solution u to (mKdV)), defined for ¢t > 0, such that
(1.2) u(t)—S(t) >z ast—0".

There were two main ingredients in the proof. Define the profile
a(t) = Fale "% u(t)),
the phase
¢ = (I)(£a£17£27£3) = 53 - 5% - 5% - g%?
and the hyperplane of convolution He = {(21,&2,&3) € R3 : & + & + & = &} Then the
corresponding equation becomes

(13) i = 47z I, i@ @i,

so that the nonlinear term takes the form of an oscillatory integral. By stationary phase argu-
ments, this equation reduces to an almost-pointwise ODE in time:

o we ( oo L sauesg s (L€
(1.4) Oyl = D) <z|u(t,§)‘2u(t,§) 75 8it€®/0.-3 <t, 3>> + R[u](t,9).

The remainder R[u] is controlled (and integrable in time) as long as we control both

el and  dciie L.

The L* bound on @ can be bootstrapped using the profile equation itself. Unfortunately,
this is not possible for d¢u, as differentiating in frequency the profile equation would introduce
strong divergent oscillations. It is at this moment that the second ingredient comes into play, the
vector-field or scaling operator (x — 3t02)u. Indeed, the required L? bound for O¢t corresponds
(up to controlled terms) to an L? bound for the vector-field, and this can be obtained through
a direct energy estimate. These two mechanisms are enough to bound solutions for times away
from 0 (as done in [4]). If one introduces sufficiently smooth subcritical perturbations, the bounds
on the remainder can actually be shown to be uniform up to ¢t = 0, which lead to the blow-up
stability result.

The main issue with the above result lies with the conditions ([1.1)) imposed on the perturbation
z (and also the smallness in those spaces). These restrictions can be traced to several deficiencies

We denote ° or F the Fourier transform, possibly specifying variables when it is space-time.
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in our approach: first, the analysis is performed simultaneously in physical and frequency space.
Second, the solution is constructed in a critical space, leading to a smallness assumption. Third,
the control in Fourier space does not exploit oscillations in time, as the profile equation gives a
pointwise control on the time derivative 0. As optimal results in dispersive equations usually
require a refined analysis of the oscillations in frequency, it becomes clear that our previous
result was far from being sharp.

The main goal of the present work is to provide a sharp stability result of self-similar solutions at
blow-up time. Roughly speaking, given a perturbation z with almost critical decay in frequency
space (measured in Wg "®) and of arbitrary size, we show here that there exists a unique solution

u to (mKdV]), defined around ¢ = 0, for which ([1.2)) holds.

1.2. Main results and description of the proofs. As mentioned before, a sharp stability
result requires one to abandon the expansion (as it does not exploit the time oscillations)
and perform the complete analysis in frequency space. We are forced to go back to (|1.3) and
work directly with the full oscillatory integral.

A first attempt would be to try a fixed-point argument using /t\he Fourier restriction norm method

as implemented in [I7], extending their result to weighted L? spaces. In this direction, we have

Theorem 1.1. Equation (mKdV)) is locally well-posed 2' f/ao(<§>“df), for any p > 0.

This result follows in a rather neat way (done in Section from the frequency-restricted estimatﬂ

(see Proposition

i
(15) VM > 1, éS’;leI])R fng <§1>M<<§2>>M<§3>M]l|cpa|<Md€1d€2 < Mﬁ7

for some 5 € (0,1). The relation between the Fourier restriction norm method and frequency-
restricted estimates was observed in [6] for Lg—based spaces. Here, we extend the argument to
LZO spaces.

The fact that a local well-posedness theory exists in almost-critical weighted L™ spaces is a good
starting point to analyze the stability of self-similar solutions in Lgo. Let us give some insight
why the critical regularity g = 0 seems currently out of reach. The description of the self-similar
solution in space-time frequency variables (7,&) presents unavoidable logarithmic divergences:
indeed, a direct computation using the scale-invariant structure of S shows that

fm(etagS) = {139 (2) , for some g € S'(R).
Therefore its L norm behaves as 1/7, which is not controllable in L2({T)’dT), for any b > 1/2.
A similar problem appears in physical variables (¢, z): consider the toy problem of the linearized
equation

Oy + 0ov + 30,(S*v) = 0.

The most natural move is to use the estimates of Kenig, Ponce and Vega [25], which allows to
recover the loss of a derivative:

2
Iwlrerz < lv0)lzz + 1Kl z2-
Now one can essentially only use Holder estimate:
2 2912
IS%0l 1z < 1871 zapelvlz2 -

However, as it was observed in [3], S(t, ) ~ t=1/3(xt=1/3)=1/4 ¢ [AL¥ and the argument cannot
be closed.
In (t,&) variables however, self-similar solutions are actually agreeablﬂ

2Here, L0 ((€)*d€) = {u e S'(RN) : (&) 0(€) € L®(R)}.

A frequency-restricted estimate is a multiplier estimate over sublevel sets of the resonance function.

4 .. . 1,00
See (.10} for the definition of the weighted spaces W' 7.
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Proposition 1.2 ([3]). Given A € C small, there exists a self-similar solution S whose profile
S(§) = 6_7'638( 1)(&) belongs to WO P (R\{0}) (but not better). It can be decomposed

5(&) = 50(8) + Sreg(£),

where Syeg € whe (R\{0}) (it may have a jump at 0) and

4/7—,11/7)—
,l§§3
taln ialn|¢| € °
(1.6) So(&) = x(§)e ™l (A+B€2 | ﬂfi‘*),

where x € €C(R) satisfy x = 0 for [§| < 1 and x = 1 for [§| > 2, and for some B € C with
Al + [Bl ~ [y (R\{0}).

Of course, e_itfsS/(\t)(f) = S(t'/3¢). When it carries no confusion, we will often denote S(t,&) =
S(t'/3¢) and do the same for Sy and Syeg.

We are then lead to the analysis of the full oscillatory integral in (¢,£) variables at critical
regularity. As it is becoming clear in the recent years [7, (I8, 26], 27, 28|, 29|, the analogue of the
Fourier restriction method in (t,€) variables is the mﬁmte normal form reduction (INFR). Let
us briefly explain the idea behind this procedure. Write in integral form,

(17) . = 0.9 + 15 [ J1,, ¢t it @it ncadends,

where & = ¢3 —¢2 —¢3 — 53. In order to explmt the oscillations in time, we want to integrate by
parts in time, using the relation
o _ On(e™?)
- id

It does not induce singularities, as long as ® is not small. This motivates the introduction of a
parameter N > 0 to split the frequency domain in the near-resonant region |®| < N and the
nonresonant region |®| > N and to integrate by parts in the latter (all double integrals are over
Hy):

0o f ” Pl <nii(s, §1)ils, &2)i(s, §3)dérdéads
ij o> (s, §1)i(s, £2)U(s, E3)dErdEads

— a(0,6) + f f f SO o ii(s, €0)ii(s, €2)ii(s, £3)dEr dEnds
s=t

{Jf is® Lig>nt(s, §1)u(s, E2)u(s, 53)d£1d£2]

s=0
47T2J jj 1M>|>Nat( a(s, &1)u(s, &2)u(s, £3)) d§1déads.

In the last integral, after distributing the time derivative, we are now free to use and rewrite
the last integral as an oscillatory integral which is now quintic in u. We arrive at an expanded
version of , with a few well-behaved cubic terms plus a quintic term: this concludes the first
step of the INFR.

We can play this game again, splitting the quintic term into “good” quintic terms plus a sep-
tic integral, then replacing the septic integral and so forth. This process can then be iterated
indefinitely: the end result is an infinite expansion of in well-behaved terms of arbitrary
order:

a(t, &) = u(0,8) + Z (Boundary terms at step J + Near-resonant terms at step J).
J=1

The main difficulty that now arises is the derivation of multilinear bounds for every single term
in the expansion, together with some decay in J to ensure summability. This has been for some
4



time an unclear topic, especially in what concerns Lg—bounds: apart from some concrete cases
[18,29], the general framework announced in [28] seems not to be completely correct (see Remark
and the validity of the approach described therein remains to be proved.

In this work, we rigorously formalize the derivation of Lgo a priori bounds through the INFR. As
it will be explained in Section [} these bounds may be reduced to frequency-restricted estimates

akin to (L)) (see in particular the paragraph [4.3)).

Remark 1.1. One of the main takeaways of the present work is the effectiveness of frequency-
restricted estimates in deducing bounds for nonlinear dispersive equations. Not only can these
estimates be used to derive multilinear estimates in Bourgain spaces and a priori bounds through
the INFR, but they can also be used to prove Strichartz estimates. In conclusion,

INFR a priori bounds in (¢, &)
Frequency-restricted estimates (in {) = < multilinear Bourgain estimates in (7, &)

Strichartz estimates in (¢, x)

As we already pointed out above, the last two approaches are not suitable to deal with a self-
similar background.

In order to implement the INFR around self-similar solutions, we need to decompose (as done
in [5]) the solution into

(1.8) self-similar S + linear evolution of perturbation z + interaction remainder w.

As the first two terms are already defined, the problem reduces to the derivation of appropriate
bounds for the remainder w. As in [5], we expect it to grow in time as a small power of ¢.
This is actually a crucial point: it allows to avoid the failure of the time integrability induced
by the linearized operator around the self-similar solution, which gives a logarithmic singular
behavior. In other words, we are forced to work in (¢,&) in order to introduce time weights for
the interaction remainder.

Assuming subcriticallity for the perturbation, we show that the remainder is subcritical as well,
even in the presence of the self-similar background. Indeed, when expanding the nonlinearity
using the decomposition , the INFR can be used to prove weighted Lgo a priori bounds for
the remainder, and for most of the source terms, except one (called F3 in following). This one
term has to be dealt with integration by parts in space, and this requires additional smoothness
on z.

The construction of the remainder term follows from a priori bounds on an approximate problem:
we chose to cut off the nonlinearity at large frequency and then pass to the limit. As such, a mere
weighted Lgo bound is not sufficient to show that the limit is indeed a solution to . To
bypass this problem, we will also derive weighted LZO bounds for the derivatives. Such a control
cannot be obtained directly, but an effective way is to use the scaling operator which, in Fourier
variables, reads

(1.9) A=d— ?’;at.

A key algebraic point is that the equation for Aw has the same algebraic structure as that for
w: this is due to the specific critical structure of , and the scaling invariance of the self-
similar solution (this was already a decisive ingredient in the stability proof of [5]). In particular,
assuming subcriticality for 0¢z, the INFR can be used once more to produce an a priori Lgo
bound on Aw. This control of the derivatives of w allows for the application of Ascoli-Arzela
theorem and the construction of the interaction remainder is achieved.

With these elements of context in mind, we can now present the main stability result. Given
'y > 0, we define the Banach spaces

(1.10)
LP(Q) = {U e L7(Q) : o] o) < oo} and  WE(Q) = {U e W) : vl o) < oo} ,
5



where ol = 1€/ 0€) lm)y and olyrer g = Ioluzio + 1ev] o

If @ = R, we omit the domain. Moreover, when p = p/, we write Wﬁﬁo(ﬂ) simply as Wﬁ’m(ﬂ).
Throughout this work, we fix

1
(1.11) O<p<v<1/2 and O<'y<§min(,u,,v—u).

Theorem 1.3 (Blow-up stability of self-similar solutions). Fiz € > 0 small and a self-similar
solution S with ||SHW1,OO(R\{O}) < €. Given z€ Wo™, there exist T = T(e, p, v, ||| 1.0 ) > 0 and
0,1 v

a unique
we L*((0,T), W, ™)
such that
t
(1.12) ¥t e (0,71, w(t)lyr= + 'a”g(t) <,
Ly

and u = e1% (S + 2 + w)Y is a distributional solution of [MKAV]) on (0,T) x R. Moreover, if
21,29 € Wi and w1, wy are the corresponding solutions, then

(1.13) sup [wi(s) —wa(s)|re < V)21 — 22|12, 0<t<T.
s€[0,t]

Remark 1.2. Notice that the remainder has an arbitrarely small loss in decay when compared
to the perturbation. If one aims at deriving bounds without any loss, a logarithmic divergence
appears at t = 0. In view of to the critical nature of the self-similar solution, this is to be
expected.

Remark 1.3. A mere control of the perturbation in Lgo is not enough to prove the stability result.

Indeed, in order to control the linearized operator d,(S%u), we need to exploit oscillations in
frequency (this was already a crucial observation in [4]).

Remark 1.4. We emphasize that our framework is only based on weighted L® estimates in
(space) Fourier variable. We do not rely on any energy estimate. We believe that this is the
correct framework to consider self-similar related problems.

As a byproduct of the analysis performed, we also obtain a local well posedness result, at strictly
positive time, for data which are a perturbation of a self-similar solution.

Theorem 1.4 (Local well-posedness around a self-similar solution at positive times). Fizty > 0.
For e > 0 small, given a self-similar solution with profile S € W(]l”fo(R\{O}), and wo € Wl}’oo such
that

15T o + ol <€
there exist Ty = Ty (e, ) >0, T_ < to < Ty, and a unique w € LOO((T,,TJF),Wﬁ’w) such that

oy« + | 220

Se T-o<t<Ty,
Ly

w(ty) = wo, and u = e~'% (S + w)Y is a distributional solution of (MKAV) on (T_,T,) x R.

Furthermore,

(1.14) lim7_(e) = 0, lim 7% (e) = +o0.

e—0 e—0

Finally, if wo1, wo2 € Wﬁ’oc and wi,ws are the corresponding solutions, then

sup [wi(s) —wa(s)|rz < €|wor — woz -
SE[T_,T+]
6



When comparing Theorems and the main difference is the smallness assumption on
the subcritical perturbation in the latter. This is somehow unexpected, as the blow-up problem
should be considerably more difficult to handle. The difference is a consequence of the use of
the scaling operator (which behaves better at ¢ = 0) in the derivation of the required a priori
bounds (see Remark [6.1)).

The structure of this article is as follows. We start in Section [2] by solving an approximate
problem and giving an outline of the structure of the proof of Theorem In Section [3] we
prove several useful multilinear estimates (in particular, frequency restricted estimates) related
to the expansion of the nonlinearity into various components. Section [d]is devoted to the imple-
mentation of the INFR and the derivation of adequate a priori bounds. In Section |5, we prove
Theorem The proof of Theorem [I.4] is presented in Section [6] while Section [7]is devoted to
that of Theorem [.1]

Notation. Given a € R, a™ (resp. a~) denotes any number sufficiently close to a which is strictly
greater (resp. smaller) then a.

Given a,b > 0, a < b means there exists a constant C' > 0 (depending at most on u,v,~) such
that a < Cb. We may indicate extra dependencies as indices, for example a <, b. If a < b < a,
we write a ~ b.

2. EARLY STEPS OF THE STABILITY PROOF

In view of (1.7)), given &, all integrals will be done in the convolution hyperplane (in R3), which
we recall is

He ={(&,6,8)eR* 1 =& + & + &)

We also recall the phase function ®, which we define on the hyperplane (in R?)

H={(&&,6.&)eR i { =6+ &+ &)
by
O(E,61,60,83) = - & -6 - &

The convolution plane H is endowed with its usual surface measure: we will write it d§;d§; where
i, are two distinct indices in [1, 3] to specify which variables are used for the parametrization.
As all changes of variable lie in SL3(R), we can choose freely which parametrization to use, and
this plays a role for the integration by parts.

Given smooth functions f, g, h € €*([0,T] x R), define

(2.1) N[/, g, h](t,€) = EUH ¢ F(1,€0)g(t, E2)h(t, £3)dE s,
3

For the sake of simplicity, we abbreviate N[f, f, f] as N[f]. Using these notations, and as we
are interested in constructing a solution such that w(¢) — 0 as ¢ — 0, the equation for w reads

22) {étw(t,g) = N[S + z + w] — N[S],

w|t:0 =0.

Equivalently, after integration in time:



2.1. Construction of an approximating sequence. Fix a smooth cut-off x € S(R), radially
decreasing, such that x = 1 on [-1,1], 0 < x < 1 and |[x/(§)] < x(§) for all £ e R. For n € N,
define x,, (&) := x(£/n). Given a perturbation z € Wh®(R), set

zn(§) 1= xn(§)2()-

Consider the approximate problem

{atwn — X2(N[S + 2, + wn] — N[S]),

(2.3)
w"‘t:o = 0.

In order to properly bound the quadratic terms in S, we rewrite
NI[S, S, w + z] B ffemp w + 2)(t, € —n)K (S, S)(t3n)dn,
and N[u] — N[S] =3NI[S,S,w + z] + R[S, z,w],

where R is at least quadratic in (z,w). Finally, given a time interval I, we define the function
space

Xn(I) := {w € G(I xR): Hw”%(I,XTL) < +OO} where |Jv|x, = nglvHLfg.

(Here, v is a function not a priori depending on time; we denote by %; the set of continuous
and bounded functions).

Proposition 2.1. There exists T = T§(S,z) > 0 and a unique w, € X,([0,T)) (integral)
solution to (2.3). If T} < 400, then |wy(t)|x, — +% ast — T§'. Moreover, there exists tg > 0
such that

(2.4) Ve e (0,65],  |own(t)x, Snse YDA+ Jwn(®)[%,)-
Proof. The proof follows from a standard fixed point argument on the map

¢
25 01w (1.6 (€ [ (VIS + 2+ 0] - NS (s,

defined on the complete metric space (Bg r,d), where, given R, T > 0,
Brr ={we ([0, T] x R) : |wlzeor)x,) < R}, d(v,w) = |v—w|r= o7, x,)-
Fix n e N, and let w € Br . A simple computation yields, for ¢ € [0,77],

[KE Xn () RIS, zn, w] ()] <52 <J<§>H’§|Xn(§)Xn(§1)Xn(£2)dfld€2> (1 + Ixq w(t)]7e0)
(2.6) s L+ lw@®)|%, <1+ R
Similarly, as |K(S,S)(n)| < |n|~"/? (see [] or Lemma [3.1| below):

(O X (ONIS. S0+ 5] .6 ( | @“'“‘;ﬂ PelE= ) 1+ )

(27 S5 a1+ w®)lx,) € 550+ B).

The point in putting a weight x2 (with a square) is apparent notably in the above computation,
where the factor x,(&)xn(§ — n) allows to make the integral bounded uniformly in &. After
integrating in ¢ € [0, 7], we infer

1B[w]]l oo (0,77, %) 5.2 (T1/2 +T)(1+ R?).
Furthermore, if wy, ws € B then
<€>#Xn(§) |R[S7 Zn, wl](ta 5) - R[Sa Zn; w2](t7 £)|
<s.- <J<€>M’€|Xn(§)Xn(§1)Xn(§2)d§1d§2) (14 [ wi ()7 + [ w2 (t) ] £e)

i (wr — wa) (t) | oo




Ss2 (L+ o (@)%, + |wi ()%, w1 (t) = wa(t)]x,, Ss2 (1 + B?)d(wr,ws),
and similarly
E'xn(EIN[S, S, w1 + 2,](t,€) — N[S, S, w2 + 2] (2, §)|
< (R 00 ) s~ ) )1, S gt )
In particular, after integrating in ¢ € [0, 7],
d(©[w1], Ows]) < (T2 + T)(1 + R*)d(wn, w).

These estimates show that, for 7" small (depending on S, z and R), © is a contraction over
(Br,T,d), yielding a fixed point w. By uniqueness, this solution can be extended up to a maximal
time of existence Ty and the blow-up alternative holds.

Finally, the estimate ({2.4]) holds due to (2.6 and (2.7). O

Even though it is possible to obtain a priori estimates for w € L7 alone (Proposition |4.4), these

do not suffice to extract a limiting profile. We therefore need to work in Wﬁ’oo. Keeping in mind
the dilation operator A (|1.9), and given a time interval I, we are led to consider the norm

+ agw(t)llxn> :

t
[wly, ) = sup | Jw®)]x, + Hatwos)
tel |£|

Xn

(2.8) and the space Y, (I) := {w e Xn(I): i(?tw, Jew € Xn(I)} .

€]

If t € I, we make the slight abuse of notation |w|y, ) = |[w]y;, ({})- The statement below provides
the approximation w,, in this functional setting.

Proposition 2.2. There exists T{* = T{*(S,z) > 0 and a unique wy,, € Y,([0,17")) (integral)
solution to (2.3). If TT" < +o0, then |wyly, ) — +o0 ast — 1. Moreover, there exists t} > 0
such that

Ve e (0,671, Jwallva) Snsie (1 + lwnlfoeqo.q.x,0)t"> (1 +1).
Proof. We consider © defined by , but now over the space
Brr = {we %([0,T] x R) : |lw|y, o)) < R},
with R, T > 0, and endowed with the metric
d(v,w) = v — wHYn([O,T])-

Fix n € N and let w € Bg . The estimates for O[w] and ;0[w] in L7} are completely analogous
to the previous proof, so that

OL10)lx, + | a0 s (1724 6) (14 Tl ) Sso (1724 0) (14 R

Xn
We therefore focus on the estimate for d:O[w]. First, observe that since S(t,&) = S(t'/3¢) (see
Proposition [1.2) and |x},| < Xn,

Vt>0, £eR, [0:S(t,€)| <s

1/3

g 1@ < xal®)

We have
6NIS. 5.+ ) 66 = [ 26 [EG O (w + 20)(1.€ — )] 15 K(S,5)E )

If the derivative falls on £x2(£) or w + 2, the estimate follows as in the previous proof. When it
falls on €Y, we bound it by

O [ £Xal€)26()w + 20) (1,6~ 1) 1 K(S.5) (¢ )y
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2 _ 2 —
SS,z j <<§>H|§’t(‘§| + ’il/zj‘m)Xn(g)Xn(g 77) dﬁ) (1 + nglw(t)HLoo) SS,Z t1/2(1 + R)

For 0¢ R[S, zp, w], we gather the terms depending on whether the derivative falls on £x2, e'® or

on the remaining factors (recall that |x'| < x):

) (Xn + 26X0) fem(?)s +w+ 2n)(E,€0) (W + 20) (8 E2) (w + 20) (E, £3)dE1dEy

1+ |y 'wt)|3e) <52 1+ R,

f Yo (€2) X (€3) €1

gS,z

’<€>“xn(£) f £0: (") (BS + w + 20 ) (£, £1) (W + 20) (¢, E2) (W + 20) (£, E3)dErdEs

<8,z (1 + I w(®)2e0)

j O ©IEIUE + 161 + 1€512)xn (62) X (€5 dEr

<s. 1+ R?,

\<§>ﬂxn<s> [eemac(as + 0+ 20w + 2000w + 2)(0,60)) devde

gS,z

(EHxn(€) f [€1xn (€2)Xn (€3)dErdEa| (1 + X ' w(t)[3) <52 1+ R,

The integration of these estimates in time yields
106010l e 0,71, x,) S52 T+ T)(1+ BY).
Analogous computations show that one can bound the difference, so that given wi,ws € Bg 1,
d(©[uwn],Ows]) 52 TY2(1+ T)(1 + R)d(wn, w2).

Thus, for T small, © is again a contraction over (Bg r,d). The rest of the proof follows as in
the proof of Proposition [2.1 O

The goal is now to show that w,, exist on a uniform (in n) time interval, on which one can obtain
uniform bounds (in n). This is the purpose of the next three sections, and the heart of the paper.
Before this, we decompose the nonlinearity into several terms, depending on their behavior.

2.2. A first decomposition of the nonlinearity. Recalling (2.1), we can expand
N[S+ z+ w] = N[S] =: (F+ L+ Q)[S, z,w],

where F' is the source term and does not depend on w, L is linear in w and ) includes both
quadratic or cubic terms in w.

As it is expected, the term N[S,S,w] is the hardest to handle, being the linearized operator
around the self-similar solution. An analysis of this term as a trilinear object is not adequate
for our purposes, since it is unable to capture the precise oscillatory structure of S = Sp + Sreg
(see Proposition . To this effect, we define

Klfaln = [0ty (152 ) g (152 ) an

W(&,m) == —3n&* + 3&n” — 3n° /4 = —277(77 — 2¢)°.

and

Then we may rewrite

N{[So, So, w](t,&) = J . e Sy (t1/3¢1)So (13 &2)w(t, €3)dérdés
¢

= Jﬁeit\pw(t,f —7) (j e3itnx\2/450 <t1/3(772+)‘>> So <t1/3(772_)\)> d)\) dn

10



1 .
(2.9) — o [ e~ K (S0, S0) (¢ )y = L)
Thus the linear term is decomposed as
L[S, Z, ’ll)] = LK[TU] + LQ[S()a Sreg7 2, U}],

where Ly contains the other terms linear in w, which are at most linear in 5.

For the source terms, we perform an analogous splitting. There is no trilinear term in S (due to
the cancelation), and once again we set aside the term N[Sp, So, z], but this time only for high
frequency.

More precisely, we extract the low-frequency part of all the source terms, which can be bounded
directly without any integration in time. For this purpose, given 7 € (0, 1), we define the regions

D(r) = {(¢,m) e RZ 5[] + n| = 7~ /10},
(2.10) Dy = {(£1,&2,83) € He : (&1 + &+ 63,61 +&§2) € D(7)}, Dy = He\Dy,
Dy = {(¢1,62,&) € He : |&1] + |&al + &5 > 77}, Dy = H\D.

The regions D; = D;(7,§), i € [1,4], depend on 7 and &: we do not write this dependence
explicitely to keep notations reasonable.

The reason for the extra parameter 7 is the following: the domain decomposition should nat-
urally depend on the timeﬂ t. However, when performing integrations by parts in time, if the
domain depends explicitely on ¢, the boundary terms can controlled to the expense of lengthy
computations (as it will be clear from Section . To avoid those, we decompose time dyadically
on intervals [t 1,%] where ¢t = T/2¥, and perform integration by parts on ¢ € [ty 1,x]. In
pratice, 7 will be one of the ¢; and in any way 7/2 <t < 27.

The regular source term is

FQ[S, Z] (t, T, f) = g eit‘b(z(&) + 3S(t, 51))2(52),2(53)(1516152

Dy

(2.11) + 3¢ . e S(t,&1)S(t, &2)2(&3)dErdEs.

The point in considering these regions is that, in these low-frequency domains, integration in
time (and so the INFR) is unable to gain some regularity. However, we can exploit the oscillations
in frequency for the self-similar solution by integrating by parts in space and we prove bounds
on Fy in weighted L® spaces directly. This is done in Proposition

The remaining (high-frequency) source term writes

R[S, 2](t,7,6) =& | e™(2(&) + 3S(t,&1))2(&2)2(€3)dErds

Ds

+3¢ N P (Speg + S0)(t, €1)Sreg(t, £2)2(E3)dE1dEs

+3¢ | €"PSo(t, &1)So(t, €2)2(&3)dErdE,

Dy

=€ (@) + 35 (1 6)2(8) (8 dadto

+3¢ N € (Syeg + S0)(t, £1)Sreg(t, £2)2(E3)dE1dEs

) 1
3| eMa(e— ) K (S0, So) ()i
D(r) t

(2.12) =: F11[S, z] + F12[S0, Sreg, 2] + Lk p(r)[2]-

5The correct variable to consider when dealing with self-similar solutions is t£°.
11



In conclusion,
(2.13)  N[S+z+w] — N[S] = Fuu[S, 2] + F12[S0, Sreg, 2] + F2[S, 2] + Ly p(r)[2]
+ LK[w] + LQ[S07 Sregv 2 w] + Q[S, Z, w]

For the terms other than F3, the oscillations in time can be exploited, leading us to the applica-
tion of the INFR: the construction is made in Section [l In order to be able to bound the terms
in infinite expansion, we first prove in Section [3.3] the necessary frequency-restricted estimates
(Proposition and Proposition . Moreover, source terms require an extra care, as we will
need a polynomial bound in time for these terms (which ultimately dictates the polynomial

growth of w). This is done in Propositions [3.8] and

3. MULTILINEAR ESTIMATES

3.1. Bounds on the self-similar solution. Here we are interested in taking care of the oscil-
lations of the self-similar solution, by deriving bounds on K (S, S).

Lemma 3.1. Let f, g€ Wy (R\{0}), then
1
Vn € R\{O}, ’K(fa g)(n)| < WHNW&’;@(R\{Q})HQHW&HO‘?(R\{O})‘

Proof. Assume that f and g have unit norms. Given 1 > 0, write

nn = £ (5o (157)-

< Lo
ARUEPVERCEPY

Then

Hence

BN
K(f,9)(n) WU h(n,C/\/ﬁ)dC‘
L CM%C/W) L 63@'42/4 1
S i T |y vl (it v &
1 1 ¢2 1 ¢ 1 1 1
SET A 1+¢c2|2d“mf|1+iczm(<n+</m>+<n—</m>)d<'

The first integral is bounded. For the second, if |¢| < 10|n|3/2,

¢ 1( 1 1 )d ¢ 1
J|1+2'C2\\/ﬁ <77+C/\/?7>+<77—C/\/ﬁ> Csqumw 11 +14C? n st
If [¢] = 10|n[*2, then |n + ¢/\/m] ~ |¢/y/n] and

f ¢ 1( ! + ! )dC<fldC<+oo
11+l yn \n+¢/ym - n=¢/m) " T ) L+ '
The proof for n < 0 follows from analogous computations. ([

We will also need some estimates on the derivative, which is the purpose of the next result.

Lemma 3.2. [3, Lemma 14| One has

2
(3.1) VECRS, K (S0 50)(©)] % fg

In Lemma there is no need to split S into Sp and Sies. However, it is not known whether
the bound holds for d:K(S,S). Indeed, in [3, Lemma 14|, one uses crucially the exact
expression of Sy and its derivative. In order to derive the estimate for 0. K (S, 5), as we do not
have an explicit formula for Syes, we would need to use bounds up to the second derivative of
Sreg- The existence of such bounds is not a trivial problem, due to the presence of the highly
oscillatory term e~8i6°/9 iy .

12



3.2. Bounds on F5.

Lemma 3.3. Given t,7 € (0,1),

— r—p
ST |l lglie bl -
Ly

H£ fD ¢ F(61)g(E2)h(E)dr e

Proof. Recall the definition (2.10)) of Dy, so that Dy is empty if |£| > 7~ /3. Now, if [¢] < 771/3,
then

!€<€>”JD F(€0)9(E2)h(Es) dErdes

62+ leal<r—1/2 <63)

B )
ST flee gl B e O

gl |h] e

Proposition 3.4. Fort, 7€ (0,1),

—1 -1y, 2=Z£ 2 3
LS. (g < (7775 IS0 e oy o Vol + 20 )

1

Proof. Recall that

R[S, 2t &) = € | €™ (2(61) + 3S(1,€1))2(€2)2(E5)dErdE

Dy

w3 " S(t,61)5(t, £2)2(€3)dérdEo.
2
By Lemma [3.3] these integrals are bounded adequately in Dy. It remains to estimate the second
integral in D2\D4. In this region, we have |&5| < [¢] + €1 + &| < 77Y3/5 and |&| = 7/20771/3
(because 2|&1| = [&1] + |&| + &3] — |& + &| — |&] = 7T771/3/10). As a consequence, |0, ®| =
362 — €3] 2 |&1|* and we can integrate by parts in &; (observe that, since &1 and & are far from
0, no boundary terms appear from the jump of S at £ = 0):

‘5‘[ P S(t,&1)S(t, &2)2(E3)dE1dEs
D2\Dy

<

i 1
§JD2\D4 elt¢a£1 <Zt8£1<I>S(t7 51)3(757 £2)> Z(€3)d§1d§3

e7,t<I>

L
o(Ds\Dy) 1t0g, P

S(t,€1)5(t, £2)2(€3)do (61, €3)

Omitting norms in S and z,

205, (pg S0.850.8) ) s(eicde

D2\Dy

& | |

© 0(D2\Dy) it0g, P
1 1

1 1
p 4 p B
€6 fDM 7 Ty s + €O L<D2\D4> F G

< 4L —(1+n)/3 j d&s f digl + ¢ 15 < e T N
lea|<r—1/3/5 {€3)" & z7r-1/3/20 &3
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3.3. Frequency-restricted estimates. In this section, we derive the frequency-restricted es-
timates needed for the implementation of the infinite normal form reduction (see Section . We
begin with some elementary computations.

Lemma 3.5. Given a« € R and M > 0,

(3'2) Jf ]1|q%+q§—a\<MdQIdQ2 < min(1, M),
B1(0)
(3.3) Jf 1ig1q2—a|<mdqidge < min(1, M|In M),
B1(0)
dgq 1-6
(3.4) Vé e (0, 1), ﬂ|q—o¢|<M75 s M s and
[
1
(3.5) j 12 —a|<mdq < min(1, V. M).
-1

Proof. The first estimate is direct. For (3.3)): if M < 10, the integral is uniformly bounded; if
M > 10,

” Lgrgo—al<mdqidge < f fﬂ|q1—a/q2|<M/q2dq1dq2 +J f ldq1dqa
B1{0) M<|ga|<1 laz|<M J]q1|<1
1

d
sf 2 4 N < M|In M.
M<lg|<1 |22

The proof of (3.4)) follows from direct integration if |a| < 2M. Otherwise,

dq 1-5 1-5 M 1-6
1 B MY —(la| = M) 0 < — 1 <t
f |qfoz|<M|q’5 ~ (‘O[‘ + ) (‘O[‘ ) ~ (‘Ot‘ -l-M)(S ~

Estimate (3.5)) follows from (3.4 with 6 = 1/2 by a change of variables. O

Proposition 3.6. Given M > 1,

‘ SIS )
(3.6) sup (6" Il (jga};3|@l> T

In particular,

u _d6dS s
(3.7) sup el U1|<1>—a|<M<§1>u<§2>u S M

Proof. We reduce ) to the case [£1]| < |&2] < |&3], since

U ( i 4 > “‘“KM@%M&d@

&
< JJ (ool ) o-svews gt

EME
<6 H 151|<|§2|<|53|ﬂ|<1>a<de€1d£z.

First notice that

F¢s]

Hﬂlsalslﬂlsllslszslés1|<1>a|<M<§1>M<§2>Hd§1d£ S H d1dgy = O(1),
[-1

because |£3] = |£]/3. Hence we want to bound

£3[<E)"
I:= Jf ]l|§3|>1]1|§1|<|§2|<|§3ﬂ|¢»—a|<M<é|_1§L<<£>2>“d§1d§2'
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We split the integration into different regions, depending on the behavior of the phase function
®. We view @ as a function of (£;,&2), with &3 given by £ — & — &2, so that

0D . P
= HE ), o =-3E-8)

The idea now is to perform a change of variable in the mtermedlate frequency &5 — ® and then
integrate in the smallest frequency &;. This is possible when 2 @ is of the order of £2 (Case 4).
When it is too small, then we are either close to a stationary point of ® (Cases 1 and 2), given

by
50 = (6/375/3)7 51 = (‘Saé)a 82 = (57 _‘5)7 83 = (_57‘5)7
or we're near |£a| = &3] with |€1] # |€3] (Cases 3 and 5).

The stationary cases. In this region, all frequencies are comparable. The bound will follow from
a careful description of the geometry of ® coming from Morse theory.

Let ¢ > 0 small to be chosen later.
Case 1. Near the stationary point sq, that is,

(€1,62) € Bejg(s0)-

In this region, all frequencies are of order /3. In particular, as €3] = 1, |¢] = (£). We normalize
the frequencies, so that the region becomes independent of |§| Denote ro = (1/3,1/3),

(3.8) =¢;/€ for i = 1,2, and ¢(p1,p2) =1 —pl —(1-—p1 — p2)3,
so that (I)(£17§2) &3¢(p1,p2). Then

j Lo a|<M<§<§>>u<|§3iud§1dE2§|§|1_” jj Ligsg—a<nrd€1dé2

Bejg|(s0) Bejg|(s0)
< |€|3“J Ligsg—a|<mrdprdps.
B(ro)
Observe that

é(ro) = g; V(rg) =0, D2¢(r0) = (? ;) is definite negative.

By Morse’s lemma, if ¢ is sufficiently small, there exist a domain Dy < B1(0) in R? and a "

diffeomorphism ¢g : Dy — Be(rg) such that ¢g(0) = ro and

8
Vg e Do,  ¢(po(q)) = 9~ lal*.
Therefore, by n,

ff :ﬂ.|€5¢ a|<Mdpldp2 = J‘J‘]].lgg 8 |q‘ a‘<M|detDcp0( )|dq

Bec(10)
M
d “Fmin (1, 0 | < M1H3,
ﬂ oo (031 < e 0 < 16T min (1. g ) <
B1(0)

Case 2. Near the other stationary points, that is,
(fl,gg) € Bc\§|<3j)7 for j = 1,2,3.

We perform the analysis around sj, the other ones being similar. As before, denote r = (1,1).
Using the normalization ({3.8)),

- f lo-aienrz eszdidsa 1690 [[ Looaicardomd

Beje|(s1) Be(r1)
15



We compute
d(r1) =0, Vo(rg) =0, V2¢(ro) =3 (_12 _02> , which has signature (1, —1).

Applying again Morse’s lemma, for small ¢, there exist a domain D1 < B;1(0) and a %' diffeo-
morphism ¢; : D1 — B(r1) such that ¢1(0) = r; and

Y(q1,q2) € D1,  é(v1(q1,q2)) = quqe.
Therefore, by (3.3} .

ff Liesg—a|<mrdprdps = ff1§3q1q2 aj<m|det Doi(q1, g2)|dg1dgs

Bc"'l)
M
dgi1dgo < mi 1, — |1
H e g |< 2 NP “““< B "

—p/3
L < e wia M1 |£|3 . < MI~H/3,

M

M1-n/3
G > s

Tl

and thus

The nonstationary cases. Before we proceed, let us observe that, in the remaining region

D= {(£1,8) e R?:Vj =0,...,4, |(&1,8) — 551 = clg], [&] < [l < &), 1&] =1},

there exists a constant ¢ > 0 (depending solely on ¢) such that

V(61,82) € D, &l < (1-)|gsl-

Indeed, if this was not the case, we would be near one of the four stationary points. As a
consequence,
0P

V(€1,&) € D, ]a =3(& — &) = 3¢,
&

Case 3. In the comparable-frequencies region.
Let d > 0 small to be chosen later, and denote

D3 =D n{(&.&) e R : &1 = d|és]}-

Since [§3] = [&1], we have [&1] ~ [&of ~ |&] 2 [€]-
We decompose D3 further into

D31 = D3 n{(&1,6) € R? 1 [¢] > d|&1]},  Dsa = D3\Ds.
In D3y, we perform a change of variable @3 : (£1,&2) — (P(&1,&2),&2) and

M€ EME d2d®
Isy = H 1<1|<|»:2|<|53|ﬂ|<1>asMMd&d@ < J <<§>2>|23| Lo—al<h Tog]
D31 ©3(D31) %

1
< fJMh@aKMd&d@-
As |2] < I&/°, by (34,

ae d&o 1-1/3
I3 < Jl¢—a<M J =2 < MITHB,
( s ) \Jieaprer 1

In D3y, & + & ~ —&3. We perform the change of variables (£1,&2) — (®,p) = (®(&1,£2),81/62),
whose associated jacobian is
21 0L

L 02 5?4'53—5%(514-52)
061 & 06y €2

&

(3.9) ~ |&],
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when d is small enough. Thus

" [&5] " &5] d®dp
Isz = Jj Lel<lezl<ies| Ljo-al<h 7g Sive Srdbrder < (e emal<M e
D32 |p|<1
< L]1 d®dp < Lﬂ dddp < M'~H/3
pl<1 Ip|<1

Case 4. Away from the bisectors &3 = +&, with small &1.
We consider the domain

Dy =D {(&1,&) e R? ¢ |&] < d|&s], [&] < (1—d%)|&s]}.

In this region, there exists ¢’ > 0 such that

v(£17£2) € Dy, = 3 53 52) C”53

el
We divide this region as
Da = Dy {(61,62) e R : [&] = [€]}, Daz = Da\Dar.

Over Dy, we perform the change of variables (£1,&2) — (®,p) = (P(&1,£2),&1/&2) as in the
previous case. Observe that, since we're far away from the region [£2| = |£3], (3.9) holds. Since
®| < [&f,

"€ Y d®dp
ta = [[ Brcirciito-ien g gzttt = || gmt-aen gy
u Ipl<1
> ) Tl 1ol ) gl 10 malsMEEE S .
Ipl<1 Ip|<1

For Dy, we have [£| 2 |£3] and it suffices to consider the change of variables & — ®:

P&
Iy 1= ﬂ 151|<|52|<|53|ﬂ|<1>a<M%d€1d€2
Dys2

_ /3

§1+,u 1—p/3 #

’<£‘1>2# (JRQ_QKM@) j te)

—14+2u # ( 1 d@)l_u/gd Ml u/3

< €] J&Iélél &y J |®—a|<M §1 <

Case 5. Near the bisectors &5 = +£&, with small &. We work on

Dz = D~ {(&1,&) € R? - 61| < d|és], &2 £ & < dlés|}-
We split the domain further into

DE = D5 n{(€1.6) e R?: |&] = dl¢]}, D = DF\DF

In D;rl, } ~ &2 and |®| < |&]3. Performing the change of variables &1 +— @,
+ "€l 1] 4 d®dss
I5i = Hﬂ|sl|<|52<|ssﬂq>a|<M<f Sidggyn 1062 = Tepon HIeal<M T

DF 62|z |@1/3

1
< | g J ———d& | dd < MR,
f * a<M( ealz o3 [€2] T )
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In D&, we have || ~ || 2 |¢] = |&1]/d, which implies

6<I> 8<I>

~|¢&] and  |€P| ~ [€€5(6 — 51)|“

For &; fixed, this imphes that
M

1
17
J e to-arcandee = | rereitio-arcand® < s
and, using (3.4)),

_ _ 1
J’€2|1 Flig—aj<mdéa < J|§2|1 u]1|'13a<M’aq>dq)
062

1 M 17#/2
1—p _ I
< J|§2| IL|<I>*04\<M |££2|17u|§q>|ﬂ/2dq) s <|€|> '

Interpolating the above estimates, we conclude that

MONY3 /g 2/3-n/3
() ()
J 161~ 0 casdes < aer) \Jg
Therefore,

I "
I3 = ﬂ151|<<2|<|53|ﬂ|¢a<M M| e ge, < f f a1 gy nrdades

) Eoer o
Dz,
©* ( M )”3 (M)”"WS -
< d — < MR, U
s (‘['§I|<d|§| EH 51) |E1KEH* [3 s
Proposition 3.7. For M > 1,
(3.10) cup [ mas (€] 1) —= 2T -ogensdn < VL.

Proof. Before we proceed, it is useful to normalize the frequencies. Write p = n/§ and ¢ (p) =
—%p(p —2)2, so that

oY 3 0% 9
U=89p), —=-——p-2)Bp—2), = =—=p+6.
£ (p) ap 1P =2)B3p—2) P 5P
In particular, the stationary points p = 2,2/3 are nondegenerate. We assume, without loss of
generality, that £ > 0 and split the integration into the regions near the stationary points of W

(n = 2&,2£/3), the singular points (n = 0,¢) and the remaining domain.

Case 1. Near the stationary points 2& and 2&/3.
Let us focus on the case n ~ 2£. Since p = 2 is a nondegenerate critical point of v, there exist
¢ > 0 small, a segment Dy < [—1,1] and a ¢ diffeomorphism ¢; : D1 — [2—¢,2 + ] such that
for all g € D1, ¥(¢1(q)) = —¢*. Given n € [(2 — ¢)&, (2 + ¢)€], we have
EF 1/2
max (|&], |n]) —=—— < €]V~
(Il Inl) N iy

Therefore, using (3.5

= max "
. f[@c)g,mcm (8 1l) e = NG

2+c
< |§3/2L Liesy(p)—al<mdpP < |5|3/2f X Liesg2qal<nrdg < VM.
e _

Ly —aj<mdn < |§’1/ZJ Ly —a|<pdn
[(2—c)&,(2+0)€]

If n ~ 2¢/3, for ¢ > 0 small, there exists a segment Dy = [—1,1] and a € diffeomorphism
@9 : Dy — [2/3 —¢,2/3 + ] such that for all g € Do, ¥(p2(q)) = ¢*. The estimate in the interval
[2/3 — ¢,2/3 + ¢] follows from computations analogous to the n ~ 2¢ case.
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Case 2. Near the singularity at 0.

In this region, we use the fact that 1 is a diffeomorphism on [—2/3 + ¢,2/3 — ¢| onto its image,
with ¢/ (p) = ¢ on this interval. In particular, as 1/(0) = 0, we also have [(p)| < |p|. Furthermore,
for |n| < (2/3 —¢)[¢], (¢ — n) 2 |¢|. Performing the change of variables p — ¢ and using (3.4),

o dn
Ji= | max (1€, 11l) 21y ieardn < € Ly —aens -
nl<(2/3—c)l€] VIKE —myp el \77|<(2/3—C)I£| T

3/2 p 3/2 3/2 M 12
< el f Loy aroni—E= < ¢ Jﬂ . < el ( )
i e &<t wr €[5

< VM.

Case 3. Near &.
As for the previous case, ¢ is a diffeomorphism on [2/3 + ¢, 2 — ¢] onto its image, with ¢'(p) > ¢
on this interval. By Cauchy-Schwarz inequality,

o
VIKE =

J €21 d v e, "
< - n f n .
[(2/3+¢)€,(2—c)€] Ymal=n [(2/3+c)¢ <§ 77>2”

Now, with ¢ = £ — 7, we bound the second integral as

ﬁd _ e|2u-1 LZOI
L_ﬁ'écg & g JIC@IEI O ()-

On the other hand, by (3.4)),

max ([¢], |n]) —=>—; -7 Lig—a|<mdn

Jy = J
[(2/3+¢)€,(2—c)€]

2—c
58 w-aicantn = [ Bisg-arcardp
f[(2/3+c oo oM €3 0(p)—al <M

S EP TR T

el
Gathering these two estimates together yields

Jy VM.

Case 4. In the remaining region.
We conclude with the region

Ry =]-0,(=2/3+c)§[ V]2 + ¢)€, o] .
In Ry, [p|? ~ |¥(p)|, [¥'(p)] = p*. and (& —n) = |n| = €| In particular,
<£>H <| ’1/2.

(g ) 5

Hence

Js = JR max(\§|, ’?7’ \/»<<i_> |\II a\<Md77 < JR ‘77‘1/2]1\\Ilfo¢|<Md77

S| Loup-a<ulpl .
[p—1|=1+c
We now perform the change of variable p — 1,

dyp dy v
3/2 3/2
Js < € f1§3¢—a|<M BEE < g% f]l§3¢—a|<M|¢|1/2 S VM.
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Propositions and [3.7] are sufficient to control the nonlinear terms involving w. These results
could also be applied to the source terms. However, to achieve the polynomial bound in time
for w, we need a refined control in time on the source terms (see ) The next result will be
used to control the term Fy1[S, z].

Proposition 3.8. Recall v was set in (1.11)) and let B be such that 1 — (v —pu—3v)/2 < B < 1.

Then, for M =1,
) dfldSQ B
s£u£ <§>MJ (J.Hlfgg‘fy\) Lig-— a|<M<§ WlEa < MPTY,

Proof. We split into several cases. If either |&;| = 771/3/100 or |&] = 7=1/3/100, then

dé1d€y
" ng (jljlfgf3|§j|> Lo—al<M g 3uze s
d€1ds v
s (<€>M ng (Jmlagi |§]’> [Pl =<M e ynlgamm >“<§2>“) o

and the proof follows from Proposition 3.6} Otherwise, |¢;], |€2| < 77/3/100 and the definition of
D implies that |£3] = 977/3/100 and |¢| = 7|¢1|. Then |d¢, ®| ~ [£[2. Setting 1/p = (v—pu—37)/2,
we have vp > 1 and, by applying Holder in &7,

e | ool 7oy 16 < e | (f J1M|<Md§1) - ( | @d@)’l’ ot

s@T (f]lm» ol <M g3 d<1>> < MPlE|™ s MPr7. O

==

We now prove the necessary frequency-restricted estimate in order to handle the Fi2[S, Syeg, 2]
term.

Proposition 3.9. Fiz t,7 € (0,1) such that t = 7/10 and M > 0. Then

d§1ds v
up <£>“f <jr=ng§§3|£j|> [@—al<M e G ey [(zeM)1 3 (tM)! /3]

Proof. Observe that, compared to (3.6]), the weights in the denominator are slightly stronger.
Thus, for large frequencies, we can convert the extra weights directly into powers of ¢t and then
apply Proposition Indeed, if |&3] > t~1/3/300,

de,de
@ (s 61) Vo-aressgmesin’
d&1dés vep
s ( o 651) T ey S
S (tM)*~
Second, if €] = t~1/3/300,
¢, de
" fDl (j.l_nf}gfg |§j> |b— ‘1‘<M<t1/3§2>(14/7)2 (&)
, dérdes v
< <§> J < max |€J|> |®— Oé|<M<§ >yt11//3<2§3>l/t ?

Otherwise, |£], &3] < t71/3/300, then |&; + & + &| + [& + &] < t71/3/100 < 771/3/10, but this
is not possible in D;.
0
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Finally, we prove a frequency-restricted estimate for the last source term, Ly p(r)[z]. It looks
very similar to the bound ([3.10)) in Proposition , with a improvement in 7 when the intregal
is over D(7) only.

Proposition 3.10. For M > 1

"

NG ~Tg— a|<Md77<\ﬁT 3.

sup j max (], [7]) ——=2—
&,a JD(T)

Proof. If |€ —n| = 77/3/100, then

\/><<€> e Ly —a)<mdn

©*
< ( fD(T)maxua,mD e a.<Mdn>T *,

and the estimate follows from Proposition If |¢ — n| < 771/3/100, the conditions on D()
imply |¢| ~ |n| = 77/3. Proceeding as in Case 3 of the proof of Proposition

@ ([ e >/< g )”2
al< d ~ 1 —al< d 7d
L~g wel<M e S f €1 o—at<ard L~g<f—n>2” g

1/2 o
s (f ]l\I’a|<Md\Il> 'Y s VM ([

f max ([¢], ]
D(r)

Finally, we notice that frequency restricted estimate with constraint of the form |0 — a| < M
(where © is a phase function), as above, can help derive a frequency restricted estimate with
constraint of the form |© — a| > M, via the use of a dyadic decomposition on the phase.

Lemma 3.11. Assume that one has the bound, for M > 1

sup [ (6.2 bio(es)-al<ard= < Col”
5,0{ Fg

for some 0,Cqy = 0, where © is a phase, m = 0 is a multiplier and I'¢ is a domain of integration
in RN which may depend on €.

Let p > 6. Then there exists C = C(p,0) such that, for any M > 1

m(& =) _ cCy
suP L& mM@(g,a)wad: < Tt

Proof. We decompose dyadicallyﬁ depending on the size of |© — a/:

m(¢, 2 - m(¢, E) -
Supf ’@ 7a‘Pﬂ|@_a‘>Md: < sup Z m1M1/2<|9_a‘<M/d:
Sa sy T
M'dyadic

<2 Z Sup
M'>M &%
M'dyadic

<2°Cy Y. M < CCM. O

M'>M
M'dyadic

M,pj m(§, E)Ljo—al<mrd=

6We write “M’ > M is dyadic” as short for “There exists n € N such that M’ = 2" M”.
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3.4. Pointwise bounds for the nonlinearity. As it will be seen in Section 4, we will perform
a bootstrap argument involving w, dgw and dyw. The infinite normal form reduction will provide
a priori bounds for

3t
w and 8§w—26tw.

In order to close the bootstrap, we need an estimate for %(%w, which amounts to a pointwise
estimate of the nonlinearity.

Lemma 3.12. Given0<a<1land0<ad <V <1, set
1
0 = 3 min(a, b’ — a’).
Then, forte (0,1),

(3.11) Lf; g, R](2)

0
S ElFhwee @gop 19w @gon 1P lwee oy

&

Proof. Throughout the proof, we omit the spatial domain R\{0} in the norms, keeping in mind
that integrations by parts in frequency will produce boundary terms at the zero frequency.
Moreover, assume, from now on, unit norms for f,g and h. Recall that

éN[f,g, h] = f " f(£1)g(&2)h(E3)dérdEs =: I.

Without loss of generality, we suppose that |£1| = |{2| = |&3|. In the domain where all frequencies
are smaller than ¢~/3, the corresponding integral I; is bounded directly:

LOC
a!

1 1 1
< -— © 0 o < < .
1< ([ gt Uy s lohuy s s < s < g

We henceforth consider |1 = ¢~1/3. In the domain where |&;] = 10|¢|, then |&] ~ |&] = t~1/3
and |0g, ®| = |&1]?. The integration by parts in & in this domain Dy gives

312 f= [ o (g reaene) ) dades

i 1L
+ J@L&)ewz (6 ita&(pf(ﬁl)g(&)h(fzs)) ‘@:oid&

. ) 1 1 dés
; 1 déyd ol
s (L (i * 1€} (@@ @p)) e +f|gz>t—l/3/w ff%>

Ily2:2lglyce Vol

and

1 1 1 1 1 1 1
e + o= < :
~ot <é‘>a+a’ <€>b’ t2/3 )~ —('—a’)/3 tlfa/3 <§>a’
In the domain |&;| < [£], we decompose in the stationary and nonstationary cases. In the domain
D3 where furthermore |0, ®| ~ |7 — 2| > |£|?/100, we perform the same integration by parts
as in (3.12)). We bound the corresponding integral I3 by

1 1 1 1 d&o
T 4 déid —=
|IS‘ : (f (t|€|3 i t§2 (<€1>a’<£3>a i <f3>b/>) fude + J;517£2)€5D3 t£2>

”f”Wéy;ngHWOl’;/OH HW;;

<1 1 1 1 - 1 1 1
S\ + ©v top) S \gas T amw—aps o
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By symmetry, these computations can also be applied to the case [0, ®| > |£|?/100. We are left
with the region [£§ — &3], 165 — €3] < [€]?/100. Setting p; = &;/¢ and P = 1 — p} — p3 — p3, this
implies that (p1,p2,p3) is near a stationary point for P,

111
- =, = 1,1,-1 1,-1,1 —-1,1,1).
(333) Q1-0 Q-1 CLLD

We consider only the first two possibilities. After a change of variables, we must bound

= f MEP F(€p1)g(Ep2)h(Eps)dprdps.

In the region |p; —1/3] < 1/10 for j = 1,2, 3, and (without loss of generality) |p1 —ps| = |p2 —ps],
the corresponding integral writes

L 1
Iy =¢ fm O (e”é P(p —pa)) ERTTEIr _pg)aplPf(fpl)9(§p2)h(§p3)dp1dp2~

Writing q; = p; — p3, 7 = 1,2, the integration by parts in p; yields

tEPadlel = Jq] (€t + €Y €]
L sﬁf . + . dodas + € | 5 _ag,
. gl<lal<t \ |1+ it&3q[? |1+ it&3q7| |1+ it&3|

< f el | laPel = + 1)
~ o<t |11+ it&3q3|? |1+ it&3q3|

t’£‘1+a

< J 1SS S S

~N O A1 T4 . . 99 zl ! /

tleltra ) <nmpepre |1+ 0232 tjglata’ ©tgP o tfg|tta
3

< log(t£?) 1 L 1 < 1 ,

tg[tra T gfgleta gl T Hmg)e

In the region where [p; — 1| < 1/10 for j = 1,2, define ¢; = p; + p3, j = 1,2. We can assume
without loss of generality that |ga| < |q1] < 1, and write for the corresponding integral

= | 5 () s Coo(@h(€ps)imdy:

Since 0, P ~ 63113 ~ ¢, the integration by parts in p; gives

0y (e @) ) dordre

[
+ £2f dp
it&30,, P ipaj<2 tIE ?

1
t’£‘1+a

1 / /
<¢| (= =+ Il =+l dardas +
jaal<lar|<1 1001

S SRS R SR
Tofgftre ogfgferet g T O

Summing up the bounds for I,..., I5, we obtain the desired estimate for I. O

Remark 3.1. In the above proof, the analysis can be performed with a single integration by
parts due to the subcriticality of the norms in (in the critical case, two integrations are
necessary, see |5, Lemma 9|). The gain in powers of ¢ comes from an extra decay either in the
functions involved or in their derivatives.

4. THE INFINITE NORMAL FORM REDUCTION

We now detail how to control

t
wn(t) =% | (VIS + xoz + wn] = N[S)ds
0
uniformly in n. We use the decomposition (2.13)), in which we distinguish the “well-behaved”
terms which can be bounded suitably using the multilinear estimates of the previous section,
and the other “bad-behaved ” terms, which require an extra reduction. For the latter, the idea
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it to perform an integration by parts in time. When the time derivative falls on the nonlinear
terms, many new terms appear: to be able to correctly treat them, we’ll associate to each of
them a tree. The nodes and leafs of the tree will have a color corresponding to one of S, z, w
etc. (this will be made precise below). We actually need some extra information, which leads to
consider four different types of trees:

e resonant, where the integration by parts in time does not improve the estimate;

e boundary, corresponding to the boundary terms after an integration by parts;

e derivative, when the time derivative falls onto S;

e Fy, when the time derivative falls on w and we replace it by the source term Fy (see
(2.11))).

Given a colored admissible tree of a given type, we can provide an estimate of the associated term
in a systematic way, which is actually rather automatic: we essentially use pointwise estimates.
This is a very agreable feature coming from working in weighted L® spaces.

Observe that, as x, does not depend on time (and 0 < x,, < 1), it is not affected by the
integration by parts in times, so that it plays essentially no role in the construction of the tree
nor in the estimates. For simplicity of the exposition, we therefore choose to drop all n and x,
in the section: equivalently, this corresponds to derive a priori estimates on a solution to

(1) w(t) = Lt N[S + = + w] — N[S]dt,

and it will be clear when doing the computations that all bounds also hold for w,, with the
same constants (independent of n).

In view of the frequency-restricted estimates of the previous section, at each step j, the inte-
gration occurs on domains with some conditions on the phase. We therefore give ourselves a
sequence of frequency thresholds (IN;);, to be precised later.

As it will be clear, we will need to incorporate a dependence on time in the normal form reduction
itself, ideally by taking N; = N;(t). However, as we perform integrations by parts in time, this
dependence would yield new delicate terms.
Instead, from now on, we choose T" > 0 small (to be fixed later) and we work separately on
the dyadic time intervals Ij, = [tr41,tx] = [T/281, T/2%] (k € N). This will allow us to freely
interchange t € I, with ¢, (it plays the role of the variable 7 of the previous section). For each
k, we perform the infinite reduction to the equation starting at ¢t = ¢34 1:

¢
(4.2) w(t) = w(tgs1) + N[S{Ht) + 2z +w(t)] — N[SH)]dt,

lkt1
and our goal is to obtain estimates for ¢ € [tx41, tx]. Actually the admissible trees do not depend
on k or the (NV;);, only the estimates do, and we will of course track the dependence in k and
(V)
In the next paragraph, we describe the algebraic procedure corresponding to the infinite normal
form reduction. The precise analytic structure and the derivation of a priori bounds will be
discussed in the following subsection, starting with an example.

4.1. The normal form algorithm. In this procedure, k € N is fixed, and we recall that we
are given a set of frequencies (N;);. We also give ourselves a time t € [tj1,tx].

In the equation for w, at each iteration of the algorithm, the right-hand side is made of an
(increasing number of) terms. To go to the next iteration, we split between well-behaved terms
(for which the tree building proceduce stops), and bad-behaved terms, for which we will increase
the number of factors (and so, the size of the tree).

All terms will have have the form

(4.3) Jt . “@mﬂﬁ &)d=ds,



(except for boundary terms for which there is no time integration) where © is a phase function,
I' is a convolution surface, m is a space-frequency multiplier, [y is the degree of the nonlinear
term and f; are one of the intervening functions w, z, So, Sreg, Ko, where

Kolt,€) i= K (S0, 50)(115€).

(Ko is required to make retain the special cancellations specific to the self-similar solution),
the derivatives 0,50, 0;Sreg, OtKo (2 does not depend on time, and we replace d;w using the
equation, which increments the step), or F5 (which cannot be treated by INFR, but fortunately
is well-behaved). We will give two equivalent descriptions: first, an algorithm to produce the
terms of the INFR; second, the procedure to construct colored trees (which can help to visualize
the algorithm, and is similar to the description given in [2§]).

The algorithm is as follows. In the first step J = 0, the well-behaved term is just F», and the
bad behaved terms are the other ones appearing in . To construct the terms at step J > 1,
for each of the badly-behaved terms at step J — 1, which are of the type (4.3), we perform the
following term-loop:

(1) We split the frequency domain into the regions |©] < N; and |©] > N;. The first
corresponds to a resonant term and is a well-behaved term.
eit@

= to integrate by parts in

it® )

(2) For the nonresonant term, we use the relation d;(e

time: this generates one boundary term and [y integral terms, depending on where the
time derivative falls onto which fi; in each of these terms there is a gain of ©~! with
respect to the previous step.

(3) The resulting boundary terms are well-behaved.

(4) If the time derivative fell onto Sy, Sreg Or Ko, the term is called a derivative term and it
is well-behaved.

(5) If the time derivative fell onto w, we replace dqw using (2.2)). The terms with F» become
well-behaved. The remaining ones are part of the badly-behaved terms of step J and
can be written in the form ; we emphasize that among these remaining terms, those
corresponding to source terms (with no w) have restricted domains of integration D;,
according to the decomposition in .

We emphasize that a well-behaved term at step J is not considered at step J + 1.

For each J > 1, let NiJ, be the sum of all resonant terms appearing at step .J. Analogously, we
define NViJ,, N, and VNV, 1:12+1 for the boundary, derivative and Fy terms. Finally, R”7(t) is the sum
of all badly-behaved terms at step J. This allows us to write the equation for w as

J
(44)  wt) = D (M) + M) + NG () + N (1)) + N (1) + RIFL).
j=1

4.2. Tree representation of the terms in the INFR. As mentioned above, it is convenient
to describe a term appearing in the INFR by a tree, which we call admissible. We now explain
how to construct the corresponding set of admissible trees at each step.

Each node (internal or leaf) is colored with one color among

{w7 Z, SO) Sreg; K07 at‘g()a atSregy atK(]a FQ}

An elementary tree is be a tree with a single root, colored w, and 2 or 3 leafs, satisfying either
one of the following:

e It has three leafs, where at least two of them are colored either w or z and the third is
colored w, 2, Sp or Sieg. This corresponds to the quadratic and cubic terms in w or z.

e It has three leafs, one of them colored S, another colored Sy or Syee and the third
colored w or z. This corresponds to the linear terms in either w or z which have a
trilinear structure.

e It has two leafs, one colored K and the other colored either w or z. This corresponds to
the linear terms in w or z with a bilinear structure related to the self-similar solution.
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An admissible tree of size J will be a colored tree with J parents, together with a numbering
# : {parents} — {1,...,J} such that:
e For each parent node, the subtree made of this node and its children is an elementary
tree.
e If one parent x is an ancestor of another parent y, then #(z) < #(y).

Analogously to the normal form procedure, we will build resonant, boundary, derivative and Fb
trees. The parallel algorithm for admissible trees is the following: given an admissible tree of
length J, the tree-loop is as follows:

(1) Put a copy of it in the resonant trees set.

(2) Put a copy of it in the boundary trees set.

(3) For each leaf not colored z, create a copy of the tree, which will be extended as follows.

(4) If the chosen leaf is colored either Sy, Sreg o1 Ko, change its color to 0¢Sp, 0¢.Sreg Or 0K,
respectively, and put the tree in the derivative trees set.

(5) If the chosen leaf is colored w,
(a) create one copy where this leaf is replaced with Fy (and put it in the Fh-trees set),
(b) create copies where the leaf is replaced with each of the elementary trees. In the

latter, the parent of the elementary tree (which replaced the leaf) is numbered J+1.

Notice that all numbered nodes are parents, and so are colored w. Also, by direct induction,
derivatives or Fb factor can only occur at most once in a given admissible term or tree, as a
child of the final elementary subtree (i.e whose parent is numbered J in a tree of size J).

The term and tree generation algorithms are equivalent: there is a one-to-one correspondence
between terms at step J of the INFR and admissible trees of length J. Here is how to proceed.

Given a term (at step J) by the algorithm, the associated tree is constructed inductively on
j =1,...,J: at each step j, we consider the choice made in step (5) of the term-loop. The
factor where the derivative falls corresponds to a terminal node (leaf) which we replace by an
elementary tree, whose parent is labeled 7 and whose leafs are colored according to the choice
made in step (5) of the term-loop.

Reciprocally, given an admissible tree, we can construct the associated term, inductively on the
index j of the numbering #. At the j** step: consider the node & numbered #(x) = j. Denote &/
the corresponding frequency. Then in the (j — 1)** term, one replaces the factor w(t, &) corre-
sponding to x with N[f, g, h](t,&7) where the intervening function f, g, h are chosen according
to colors of the children of z, except when we are facing a source term (that is no children
is colored w), in which case we replace it with the adequate component of Fy[S,2](t,ty, &),
as detailed in . Notice that these source terms come all with frequency restrictions; and
we emphasize that the complementary frequency restrictions are taken care of by the F5 term,
which appeared at an earlier step (that of the parent of z).

For example, the trees
correspond, respectively, to

U "z (&)w(t, E)wlt, &)dErdEs.

E=&1+62+E3
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and

JJ ez Jf et ®(62,621,622:62) G (1 €51)Syeq(t, E20) 2 (E23) dE1 dEns

E=E&1+&2+E3 Dy (tg41,89)
E2=E21+E22+&23

w(t, £3)d&1dEs.

In the next subsection, this identification will help us derive appropriate bounds on the normal
form expansion.

Since the elementary trees are at most ternary, an admissible tree of length J will have at most
2J + 1 terminal nodes. Furthermore, there are 18 different elementary trees (corresponding to
the number of nonlinear terms in the equation for w); at every step of the algorithm, each node
can create at most 18 new admissible trees. Therefore, denoting AT ; the set of admissible trees
of length J, the total number of admissible trees of length J is bounded by

(4.5) Card(AT;) < 1871 . (27 + 1)!

4.3. Bounds on the infinite normal form equation. We now define the frequency thresholds
sequence (Nj)jen. To that end, we fix

(4.6) max{1—’;,1—”_‘;_37}<5<1.

With this choice of 3, in every single frequency-restricted estimate of Section [3] the integral is
controlled by M?.
Let (¢j)j=1 be an increasing sequence, with ¢; = 1 and such that there exists C' > 0 for which

(4.7) vJ =1, Card(ATy)- H

/

For example, one may choose ¢; = §3/(1=B) We then define
(4.8) Nj = Cj/thrl-

Let € > 0 small, to be fixed at the end of the argument. We will bound the terms appearing in
the normal form expansion by using a bootstrap argument based on the assumption that

(4.9) vt e [0,T1, Hw(t)||L20 < et”.
Through the infinite normal form expansion, we will prove that

VE VE € [t tr],  Jw(t) —wtep)|oe < €17,
which allows us to recover
(4.10) vie [0,T), [w(t)|re s €.

The gain €2 will come from the smallness of the nonlinear terms, which are at least cubic. From
the bootstrap assumption, w is small. By hypothesis, the self-similar solution .S is small, namely
it satisfies

(4.11) VE >0, Sl < €
and so
(4.12) V>0, [€Y2Ko|re < t7Y2 0,510 < et
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We need to ensure that z is also small in some space-time norm. Since z is not small in frequency,
we need to use weights in time to force the smallness, and this will make our choice of T" > 0,
which is the last free parameter. Fix

(1= v—p—3y v—3y P -
(4.13) 0<p< mln{ 5 5 13 and Tj:= |71/p.
\ZHLgO
The idea is to write
(4.14) Vte [0,Ty),  |zlloe < et™”.

This gives smallness, up to the loss in time ¢~” which must be recovered in the estimates for the

normal form equation. Also, from Proposition (and in view of (4.11)), (4.12))),
(4.15) Ve [0,T5],  |FalS, 2] (t trsr) |z < 75 73 < S,
Throughout this section, we will thus suppose that we have the following

Bootstrap Assumption. w is defined on [0, T] with T' < T, satisfies (4.1]) and the assumption

(4.9) holds.

After recovering estimate , the bootstrap argument is done in Proposition

From now on, we fix k € N and we work on the interval [¢;41, %], with the equation . The
precise definition of each well-behaved term in the INFR derived from will depend on k,
but for most of this section, this dependence is not relevant here (since k is fixed), and we will
omit it here. We however emphasize that in the following, the implicit constants do not depend
on k (nor n).

In order to explain how one finds a priori bounds through the INFR, we need to introduce some
notation to make the form more precise. To fix some ideas, let us consider an element of
resonant type, with an admissible tree of length J. If the j*"-subtree (the elementary tree whose
root is the node numbered j) is ternary,

e =/ will denote the frequency variables corresponding to two children (they are called the
represented frequencies); the choice of children is not important, as one can use the con-
volution relation in the integrals that follow to pass from one choice to the other. We call
the frequency corresponding to the unchosen child the unrepresented frequency (cor-
responding to the dependent variable in the integration). Furthermore, = = U <j =7
represents the total variables.

e It is convenient to number the frequency via word indices: {z = £ and if , represents
the parent node, the frequencies for its children will be denoted &,1,&,, and &g3.

e We write the convolution hyperplane as

I Hﬁa = {(§a17§a27§a3) 180 = &a1 + &a2 + §a3}'

The total convolution surface, determined by the convolution relations at each step k < 7,
18

—a — — —i—1 .

TV = {(€. a1, €2, &a3) 1 €€ T (La, a2, &a3) € T}

e the corresponding phase function as ©7 = ®(&,, €41, a2, Ea3)-

e the total phase function of the j-subtree as ©’ = < o7

e m’ will denote the multiplier introduced by the subtree. More precisely, it is the parent
frequency (coming from the derivative loss), together with any possible restrictions in
the domain of integration.

e if a child is a terminal node (leaf) of the full tree, then it is associated to f, where f is

one of the intervening functions. If { is the frequency associated to this node, we define
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its frequency weight as

[0 if £ =w,

(¢ if f =z,

(4.16) 11 if f =5,
<t1/3<:>(4/7)7 if f = Srega

Galks if f= K.

Notice that the weights are chosen so that
if K
| f - frequency WeightHLto?g < {22 ; ; i ng

(see Proposition , Lemma Proposition and (4.9)).

e For non-terminal nodes (parents), the associated weight will always be (()* (the same
weight in frequency as for w, with no weight in time).

In the binary case, still denoting &, the frequency of the parent, the child colored Ky has
frequency &, and the other has frequency &,2. The frequency set =7 is the variable of a single
child: the dependent frequency is the other one. The convolution hyperplane is simply the line
[V = {& = €1 + &a2} in R? on which we define the phase ©; = W(&,, &,1). The other notations
are modified accordingly.

A concrete example. Let us exemplify the INFR procedure and the notations above with a
particular case. Let us consider one of the bad behaved term at step 1, namely

¢
J f eis@gs(t’gl)z(&)w(t,gg)d&d&ds.
tp+1 JHe

According to the notations above, I'! is the hyperplane He = {(&1,&2,&3) € R3 1 € = & + & + &3},
El = (&,&), & is the unrepresented frequency, the phase function is ©! = ®(&, &1, &) and the
multiplier m! is simply &.

According to the INFR algorithm, we split the frequency domain into resonant and nonresonant
regions:

t .
f f e ®eSzwdg dEods
tk+1 Fl

t

t
= f frl els@§1|<1>|<N152Wd§1dfzds + J;q €ZS¢§HI¢|>N152wd£1d€2dS,
le+1

Tt

In the next computations, we systematically use (4.9), (4.14), (4.11) and (4.12). Using the

frequency-restricted estimate of Proposition [3.6] we are able to bound directly the resonant
term. Indeed,

|€1<E*"
L® < Slglp rt <§2>u<f3>u

1—p/3 ~y— 1-p/3 3 — -
< N, /3 =p 3 <l 13 3 g=147+p/3—p

[, e tetiopen, sewderdsy Ljojenidénde - S]] bl g

Integrating in s € [tg41,t] yields (using that p < 1— /3 < 11/3)

t
1—p/3 — - 1—p/3
<cl w/ EBJ s 1T H1/3=p g <cl B/ 37

tet1
Ly

t
J J "¢ g« N, S2wd€ déads
try1 JTT

For the nonresonant term, we integrate by parts in time:

t ) eis@ s=t
J ‘[ ew¢§n¢>AﬁSzwd§u%ads=:[J‘ .¢,§m¢>AﬁSzwdfuﬁg]
tht1 JI re s=tp41
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t eis(D
— f f - 0s(Szw)dé1dEads.
tk:+1 Tt Z@

The bound for the boundary term follows from Lemma together with (3.7): for either s = ¢

or tr41, there holds
1 M
< sup j Ry o waderdes - |8 el p ol
Ly

Szwd§1d§2

eis<1>
B d|>N-
HJ i L T Gy 1o
< NI—H/36387—p < Cl—#/3€38u/3+7—p < Cl—#/3€387

Regarding the integral term, we distribute the time derivative. As z does not depend on ¢, there
are two cases. If the derivative falls on .S, we obtain the derivative term

J~t J eis‘b
tk+1 Tt Zq)

The estimate for this term is very similar to that of the boundary term, the difference being
that the loss of a power of ¢, coming from ;S = O(et™!), is then compensated with the time
integration:

(01S)zwd&d€ads.

eistb
Ll 5 S Lial> N, (0S) zwd€rdEs

1 H
S L @] <5|f>§2 S LNy dadSs - [0S = 12l o]

—-u/3 - — —u/3 —p—
$N1 w/ L g IHY=p 3 $Clu/ 638H/3+’Y P 17

Ly

and so, integrating in s € [tg41,t],
Jt J ois®
thys Jr1 1P Ly
If the time derivative falls on w, we use the equation and the decomposition (2.13)) to write
¢ is®
Jo. )

t is®
B f fp o Elo=m Sz (FalS, 2] + Fial S0, Seeg: 2] + B[S, 2]
tk+1

(0¢S)zwd&1dEads

t
1—p/3 —p— —u/3
<cl 1/ 63] U3 s < o] w3 34y

Tt

Sz(opw)d&1dEads

(4.17) + LK,D(tk+1)[Z] + LK[U)] + LQ[S@, Sreg, Z, U}] + Q[S, Z, w])dfldggds.

(In the last factor of the integrand, the terms are evaluated at (t,tx+1,&3)). As mentioned, the
term with F5[S, z] is well-behaved: by Lemma (3.7) and (4.15)),

eis@
., S €tioro 5=, Adrde

Ly

1 M
SUP Ll |¢)‘ <§‘2€>|§§§ >M ‘@‘>N1d£1d€2 . ”SHLOO “Z”LZCHFQ[S, Z]HLEC

35 — _ —u/3 5 _
1u/ D 1Hv/3 4p$cl w/ e

<Ny

—H/3 5t7 which is €2 more than what was neces-

Then, the integration in time gives the bound ¢,
sary.
The remaining terms in (4.17) are badly-behaved terms, and are left to the second step of the

expansion.

In order to give an insight on how the frequency-restricted estimates propagate throughout the
INFR expansion, let us consider one of them, say:

Jt f eisd)
tk+1 T! Z(b

S(s,61)2(&2) Li[w](s, £3)dE1dEads
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t eisd) ) [
[ [ S et ([ el e K g gndien ) derdends
tppr JT §3=E€31+&32
=2

t is©
= L fz ei@l m'm?Lig1=n, S(s, 1) 2(€2) Ko(s, E31)w(s, E32)dE1dEadEsy ds,

where E9 = {31}, the dependent frequency is &3,
= q)(€7§17€27€3)7 @2 = (p<§7€17§27€3) +\Il(§37§31>7 ml :§7 m2 2537

and
= {(€,61,69,83,831,€32) e RO 1 € = & + & + &, & = &1 + €30}

The associated admissible tree is represented in Figure [I}

FIGURE 1. The replacement, in the tree on the left, of the w node with an

elementary tree yields an admissible tree associated to a badly-behaved term at
Step 2.

. : . L =2 :
As before, we split the integral into the resonant region |©°| < Ny and the nonresonant region
=2 . .
|©7| > Nj. Let us perform the estimate for the resonant term. First,

=2

ezs@
Lz 01 m!m*Lign |-y, L2 -y, S#Eowd81dE2dE 5

Ly

1 &€
565 o3 L -y, d1d6adénn

2 O] (Ea)r[E31]1/2 (€)1 lier

< Stgp "
S o2 e [ Ko l€1 2] oo ] e

LKo" SRS 5 —p—1/247
Supj? [O1] Gayndeayn 11O =M1 gy 172 o LBt <, He1 062l - s -

Using the convolution relations, the frequency associated with the last parent can be assumed
to be represented. In the specific case above, this can be achieved by replacing & with &3. This
we are left to bound

1 &Or §3(€3)"
Sup fQ ’@1‘ (&Y Exp Liex |>N1m 8%|<N, d&2d&3d&31.

Now observe that the only frequency that depends on £3; is his unrepresented brother, £30. This
means we can integrate in £37 first, leaving the factors corresponding to the first step of the
INFR algorithm on the outside:

L& ( _ &) )
e pL ot (. €112y 17 <o 681 | 452053

1 «o" . GG
: lsupfrl O] iy 1017 d&d&’] [S?p 0 e T '<N2d£““]

1 && _ £3¢€3)"
< [sup Jrl | <€2>H<§3>M1|¢|>N1d€2d§3] [?jgfr? 1531’1/2<§32>u]l|\1,_a<N2d§31] )
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This procedure has decoupled the integrals corresponding to steps 1 and 2. Applying the
frequency-restricted estimates,

p f £3(€3)"

€50 Jr2 |€31]1/2(Es9)H

Lig_aj<n,dé31 < N1/2

and, with Lemma

1« )
e L [CH] <52><u<>gg>u Lot |- n, dé2d€s 5 Ny %,

Hence (we use again p < u/3)

¢
e
LH fg ;01 m1m2ﬂ|91|>Nl11|@2|<N2SZK()wd&dfgd{glds

Ly

t
—n/3 \1/2 —1/2— —p/3 1/2
< N, w/ N2/ sV P ds < o w/ 02/ S

~

lkt1

The analysis of the nonresonant term can be made following the general approach described
below.

Remark 4.1. Here, one can observe the critical behavior of the linearized operator L. Indeed,
the gain of a full power of ¢ coming from the 1/M; factor is compensated exactly by a loss of

1/2

bt U2 12 coming from N21/2 and another loss of t=/% coming from the bound on K.

The general case. We now proceed to the estimates of a generic well-behaved term in the
INFR procedure.
Case 1. We begin with a general resonant term,

¢

(4.18) MNees = N(s,&)ds
tr+1
it@J (= mj =J\ =7
where N(t,&) = Lje jl:[li@jll|®j>Nj m ]lIe <N, F(t,&,27)dE",

and F is a product of intervening functions: counting double the Ky factors (and one for each
of other factors), there is a total of 2J + 1 factors, as can be seen by immediate induction.

Our goal is to derive an LZO bound for this term, in terms of some weighted L® bounds on the
intervening functions. We multiply and divide each of the factors f in F' by the corresponding
frequency weight according to , so that the numerator g can is bounded in Lffa by € (or

€2 if f involves Kg). Denote G the products of the g: then

HGHLOO _J S 62J+17

6,2

and the tree structure allows to us to rewrite:

J , J ) - mJ x weight for node j
(4.19) " Hmj F= H./\/l] G, where M’ = el et
j=1

[T weights for its children’

j=1
Then
|m| —J\ =]
J—1
|Mj| J =J
< — 1 1 d= o
NSlélp fr‘] <J1_[1 ‘@9’ [®7>N; M7 |87 1<N; Gl
(4.20) =17 x |G L.
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We now decompose the estimate for I/ (which can be seen as an LZO(Ll:J) estimate) into J

estimates of the same type, each one involving a single subtree. This comes from the iterative
scheme, which induces a lower triangular dependence of the phase functions ©7 on the frequencies
Z7. Indeed, the crucial observation is that, after ensuring that the last parent is represented,
the only frequency which depends on Z7 is the unrepresented frequency of the J*-subtree. In

particular, in I/, only M” and @J depend on Z/. This allows us to split the integration as

follows:
J—1 ;
J_ . (M|
I _blglp L"‘l (U 7|@j| ﬂ|@J>Nj> (J M7 |]l‘@ <N )du

|M] =J—1 J ,_J
S [ Jl 1 <H ‘@] |®j|>Nj d= ' i%pl JFJ |M m|@ |[<Nj ’

¢E
Now, as @J = @ a + ©” and © only depends on /71,

J —J J —J
5 =] < _ =7 ).
Sup <LJ M m|@‘]|<NJd ) ?}13 (LJ (M| Ligr_qj<n,d >

&2
Therefore,
(4.21) I <1’ sup (f MJ|]1|@JQ<NJdEJ>
€J7a rJ
J—1 ;
- M| —=J—1
with 1771 .= sup f |T]1—j d=" .
e Jprt H |@J| |©7|>N;

As I’71 has the same structure as I7, we can repeat (a small variation of) the above argument:

o MJ |M7L 1\ =2
7t J | : J . 2 d=/1 ) d=
sup =2 ( ’@J |®J‘>N]' /-1 |@J71| |®J 1|>NJ—1
7 ML =2 M7 —J-1
sup j“’ 9 (Jl:[l @J |®J‘>N d= -55513132 . |@J—1‘ 1|§J_1|>NJ,1d“

MJ_1| 1 :Jl)

< 7-sup
7‘]2

—

R — il SN
F‘] 1 ‘6] 1+@ ‘ |@ +0 |>NJ_1

J—1
FJ—2 M | =J-1
<! iy (LH |©/-1 jﬂleJ f-al>Ny )

An inductive application of this procedure yields

i1 M i1
1 Hsup <Lj1 Wﬂ@a 1 _a|>N;_1 =i-1)

Jlga

Combining this with ) and n,

t J—1 |M‘7’
(4.22) [ Nies| sf [ ] sup f Ligi—af>n;d=?
terr \ j=1 &a JII ‘GJ al

sup ( [ |MJ|1@JQ|<NJdEJ) PRI
fJ,a TJ

So, due to Lemma it suffices to estimate quantities of the form

L (M1 g5 —a|<nrdE’
J

for 7 < J, which will follow from a direct application of the results of the previous section.
33



For boundary, derivative or Fa-terms, one can proceed as above. Indeed:

e A boundary term of length J can be written as
N(t,€) = [N(s, O,

where

J .
_ ite’ m o = =7
(423) N(tvé.) - J‘I € <H i(_)j]l|®]>Nj> F<t7§7‘—‘ )d_‘ :

r j=1

The differences with the resonent term are the lack of integration in time and the non-
resonance condition at the last subtree. Therefore, we get

J .
M i
(4.24) Whal < [HE?P Lj mﬂ|ej—a|>de:] : \|G\\Lw(1k)-
j=18
e We can write derivative or Fa-terms of length J as
¢

N(s,§)ds with N as in (4.23)),

tht1

with the feature that in the last subtree, one of the children is colored 0;Sp, 0¢Sreg OF
0:Ko (for derivative term); or F5 (for F» term). According to Propositions and
Lemma [3:2] the correct frequency weight associated to this node is

t if f = at‘Sba
tEBENDT it F = 0,8,
(425) § ) 1C2> 1 f tFregs
¢ if f = Ko,
=7 OH if f=Fs.
Notice that each weight gains a ¢ factor compared to the corresponding weight for the
non derivated function in (4.16[), and they are chosen such that
e if f=0:Sp or 0Sreg,
| f - frequency WeightHLgoC <K e if f = 0Ky,
63 if f = FQ.
The above discussion can be summarized as
RS M| -
(4.26) INatl, Nl SJ sup f ——Tigi_al>n.dZ | ds - |Gl po(r,)-
? tet1 jljll&',a TJ |@] _a| (07 =al>N; (k)

We emphasize that in the following, implicits constants are independent of j and k.
We first consider the case of an intermediate subtree, that is when j < J.

Lemma 4.1. Let t € [ty11,tk] and, in a term corresponding to a tree of size J, consider the
factor given by the j elementary subtree, for some j < J. Then

VM >1, VaeR, f MLy d= < 110005,
TJ

As a consequence,
M| - 1

su — 1o d=7 < (tN;) P,

&‘EJN |07 —af 1&/7al= (N3)
Proof. In a non-terminal subtree, the frequency weights are among those in (4.16]).
a) We start with the case ©/ = ® and denote £ = &7, Z7 = (£1,&2). Then the children are colored
among Sp, Sreg, 2, w, and there is at most one Sy and at least one w/z.
We split the analysis on the various possibilities of weights for the j“*-subtree:
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e at least two children have weights corresponding to w and/or z. Then, the third child
has frequency weight = ¢, and up to permutations on the frequencies,

: 1"
M| < .
M= ey
Then it follows from (3.7]) that

Sgqu M| Lp—aj<pr,dr1dés < f?’pMjl_“/g-
e

e one child has a w-weight, one has a S;ee-weight and the remaining has a weight corre-
sponding to either S.ez or Sp. In this case,

e leker

M| < — < :
(E (3L YT PBLE I Eg M

and

. 1 3

Supf|Mj“l|<I>—a<Md£1d£2 < TMl Hi3,

g s

e one child has a z-weight, one has a Syee-weight and the remaining has a weight cor-
responding to either S.g or Sp. This corresponds to a source term: the construction

of the term from the tree tells us that the the region of integration is restricted to
Dy = Dy (tx+1,€) (it is an Fia-type source term, see (2.12)). Therefore

» HI3
M= paspngymm 1o

Proposition then implies
SUPJ M| Lo« prdérdéa < (EM)PE1H7.
£’a

b) We now turn to the case ©/ = WU, and denote &/ = & and Z/ = (. There are only two
possibilities:

e one child has a Ky-weight and the other has a w-weight, then

el
(PIC[EE— G

M| <
and Proposition implies
Sgllp f ‘Mj|]]-\\1/fa|<Md€1d§2 < t*l/QMl/Q‘
,Q

e one child has a Ky-weight and the other has a z weight. Then

[€1<E"

M= e — g e

and Proposition [3.10] gives that
& f MLy afenrd€rdéy < ¢71270750 M2,
§a

In all cases, in view of the definitions of 8 (#.6) and p (4.13), the bound ¢t~'*#M? holds.
The second bound claim is an immediate application of Lemma [3.11] g

In the above lemma, we have bounded all but the last subtree of any given tree of length J,
uniformly in time. However, our goal is to gain a power t7, in order to bootstrap the estimates
for w. This gain is achieved at the last subtree:
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Lemma 4.2 (Final subtree). Let t € [tgi1,tx], and consider a term corresponding to a tree of
size J.
a) For resonant terms, the contribution of the terminal subtree is bounded by

sup [ 1ML apo, =7 S (V)1

é‘J,a

b) For boundary terms, the corresponding bound is

(M| - -
(427) E}lp J;J ml‘@‘]704>]\/1]d:‘{] g (tNJ) 1+18t'7.
Q

c¢) For Fy or derivative terms, the corresponding bound is

M| =J 14814y
S}lp . m:ﬂ'|®j_a‘>NJd: $ (tNJ) t .
5 7a

Proof. The argument follows closely the steps in the previous proof. However, it is necessary to
split between the source terms (where no child has a w-weight, and frequencies are restricted
according to (2.12))) and the remaining ones.

a) We begin with the case of a resonant term. First consider the case ©/ = ® and denote & = ¢/
the frequency of the parent J, and &; and 27 = (&1, &).

If at least one child has a w-weight, there are two possiblities:

e another child has a w or z-weight: then as in the previous lemma, we don’t take into
account the last weight (which is 2 ) and

MJ < |§‘<£>M 120
KSPEKSYG
We apply (3.7), it yields
zljlp y M Ligs_ gy, d27 < (NP0 < (tN))P72P70 < (IN,)Pt 1.
,Q

(we used the fact that —2p — > —1).
e another child has a S;eg-weight: in this case,

MJ < |§|<£>M < |§|<€>“ t’y—u/?)
T EH BT T (L&t '
The estimates follows from .

Otherwise, if no child has a w-weight (which corresponds to a source term), we consider two
alternatives:

e two children have a z-weight, then the frequency set is restricted to Ds:

s leker

MR erE
and the estimates follow from Proposition [3.8|

e one child has a z-weight and another has a Se-weight. Then the frequency set is re-
stricted to Dy:

1<
! S tp<§1>u<t1/3§2>(4/7)* :H'D17

and we apply Proposition (3.9

We now consider the case © = ¥, and denote & = ¢/ and 27/ = (. There are two cases.
e One child has a w-weight and the other has a Ky-weight. Then

€<
MS o

and we use Proposition
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e One child has a z-weight and the other has a Ky-weight. Then the frequency set is
restricted to D(tg11):

K9S
M5 (& = OrEIR|¢|12 ID(th 1)

and the estimate is then a consequence of Proposition [3.10

b) For boundary terms, we can bound using the same argument as in case a) to obtain, in all
configurations and for any M > 1,

sup [ M Ligs_ppdZ < MPEP=147,
¢l ,aJr7
Using Lemma we infer that

sup v MJ:H.|@J_Q|>NJCZEJ < Nf_ltfj*l*"y — (tNy) "B,

& a JTVY
c¢) For derivative terms, the computations are the same as in b), taking into account that one of
the children is a derivative, so that its frequency weight is given by (4.25)). Compared with the
corresponding weight for the non derivated intervening function in we see that there is a
t extra factor. Therefore in this case

(4.28) sup | M7 Ljgr_oopd= < M2
EJva FJ
Hence
(4.29) sup | M7 Ljgi_ysn, d=7 < NPT = (1N) T

For an F5 term, the frequency Weight is the one of w, with an extra t factor. So we obtain as for
the derivative tree, the bounds and (| - U

Remark 4.2. Tt is in the above proof that one sees the optimality in the frequency-restricted
estimates. Indeed, it is necessary to match the power in M with the singular powers of £ coming
from the self-similar solution in order to recover the exact polynomial growth t7.

Corollary 4.3. Given J > 1 and t € [tj41, 1],
Jk Jk Jk J—1k J
WEE®] |+ IV Ol + NGOl + IV Ol < 0T
yn
where C' is the absolute constant defined in (4.7).

Proof. First consider N5 (). It is the sum of at most Card(AT) terms, each of which can be
bounded in Lj? norm, due to (4.22), by

J—1 t
f H (sN;) 718 (sN;)Ps™1H7ds - |G z», < H cf_l . cg . J s 1 ds - 2711
t ’ t

k+1 5= j=1 k+1

1:[ 62‘]+1t7.
(We used and Lemmas and [4.2] . From (4.7) and (4.5)), we infer that

HM‘éf(t)HL < Card(ATY) H c 2T < 02Ty
i

For ./\/',;] ék (t), in view of (4.24) (and using Lemmas 4.1 and E and (4.8])), each of the terms can
be bounded by

J—1
Z H(ij)—l-s-ﬁ . (SNJ)—l-i-ﬁSv . “GHL;O H 1+Bt7 €2J+1

se{tpt1,t} J=1 =
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T
D

B-1 B _2J+14y
< c; cy-€ th.

1

<.
Il

(because ¢y = 1). As before, there are at most Card(AT;) boundary terms, and so we obtain
the same bound as for resonant terms:

Vi) s ol
m

For NV, (i]t’k (t), in view of (4.26]) (and using Lemmas |4.1{ and E and (4.8)), each of the terms can
be bounded by

+ J—1 _ "
f H(SNj)71+B . (SNJ)71+6571+7 ds - HGHLZC H —1+ﬁ J s~ 1t dg . 2+
lkt1 =1 = tot1
J
<[ e/t
j=1

(again we used ¢y > 1) and the computations are the same as for /\fr‘é’sk.

For N }}]2_1’k(t), the computations are the same as for the derivative terms N, (i]t_l’k(t), except that
the I factor (multiplied by its weight) contributes €3 instead of €, so that the final elementary
tree (with parent numbered J — 1) contributes cgje‘r’t'y. Therefore,

” J 1, k‘( )HL;‘? < 062(‘]_2)4_1657‘57 < C€2J+1t7. 0O

Remark 4.3. As a consequence of the above analysis, each of the space-time integrals corre-
sponding to well-behaved terms in the INFR expansion is absolutely convergent (independently

of n).

We recall that from Proposition w = wy, is defined in a suitable space on a time interval
(0,Ty) which a priori depends on n. The analysis performed above translates directly to w,, so
that if ke N and t € [tk+1,tk],

J
(4.30)  wn(t) = wp(tps1) + X2 (Z (-/\/;“jegn Nbdn() thn( T)+ NFz n(T )>

+NELVE) + R;{*Lk(t)) ,

where the bounds of Corollary (4.3 hold:

. .
(4.31) INEEL @)z + 1N (Dl + NG )l + INES, (Bl < 617,

We have now all the tools to prove existence and bound on w,, independently of n (which is why
we write the index n in the next statement).

Proposition 4.4 (A priori estimate for wy,). Suppose that, for some T < min{T{}', T},
Vi€ [0,T],  [x wa(t)|re < et
Then, given J,k = 0
Vi€ [teanste], RV (Olne s0t71%€,
As a consequence,
Ve [0,T], |xn wa(®)]rz <€

where the implicit constant does not depend on n.
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Proof. a) Observe that Riﬂ’k(t) has exactly the same structure as a boundary term of step J,
except one terminal node is colored dyw instead of w and one also integrates in time. By ([2.4)),
_ 1
0w Oy Snse ey
Proceeding as in Corollary [1.3] we get
t
||R;{+1’k(t) ”Lff Sn.sz J s732ds . 27 Sn.sz t—1/2€2J’
tht1
as claimed.
b) We now consider the w,, estimate, where the bound is independent on n. Let x € N, and

T € [tx+1,tx]- Due to equation (4.30]) with the bounds (4.31) and a), we can estimate
Ixn " (wn (1) = wi (1)) |2

(7
0 .
< 0 (N Dl + NG (Dl + INGE () e + N () o)

.
[y

J
th 25+1 +C 7_71/2 2J < €3tfy +C t 1/2 2J
7j=1

Now, let J — 400 (while n, k and 7 are fixed) to infer

I (wn(7) = wtes1)) |z < €1,

Finally, fix t € (0,7p) and let k& > 1 such that ¢ € [tg41,tx]. The above estimate holds for all
k= k+ 1 and for 7 =t or 7 = t,, hence

I wn ()2 < Ixn (wn(8) = walter ) lze + . Ixn " (walte) = wa(tesr)) |z
rk=k+1

3 (tg + > tl) <) <l O
k=k+1

Remark 4.4. The sucessful derivation of low-regularity estimates through the INFR hinges on

the first bound on R. Indeed, even though the remainder R;/*1(#) grows as n — o (or as t — 0),

one can first take the limit in J to drop the remainder and arrive, for each fixed n and t > 0, to

an infinite sum of well-behaved terms.

Remark 4.5. The problem with the strategy presented in [28] is the reduction to a trilinear
operator estimate (see the proof of Lemma 3.10 therein). Indeed, it is not true that a general
multilinear term in the infinite expansion may be written as a successive composition of a
trilinear operator, as one cannot separate properly the dependence in the various frequencies. The
difference in our approach is the replacement of an operator bound with a multiplier bound - the
frequency-restricted estimates. These multiplier bounds, when inserted in the infinite equation,
reveal a lower triangular dependence structure (see (4.21])). As a result, the estimate for a term
at step J is reduced to the product of J frequency-restricted estimates and the a priori estimates
follow.

4.4. A priori estimates on Aw, and uniform time of existence. Recall the scaling operator

(L.9)

A:ag—?’;at

Due to the self-similar structure of S, the homogeneity of ® and A being an order-one operator,
we have the identitied’t

EAS =0, Az =0¢z, and
TFor the identity involving AN, one can either work in physical space (cf. [5]), or use the Euler identity

EDe® = 3% on T.
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[0, A]lu = —zatu, AN[u] = 2N[§Au, u,u] — 2N[u]

Hence, for the solution wy, € Y;, 7 to (2.3|) given by Proposition
3 2
OrAw,, = %N[{A(wn + 2), Uy U] + 2Xn X (N[vn] — N[S]), with v, =S + 2, + wp,
Aw,(t =0) =0.
As we have done for wy,, we want to perform a bootrap argument for Aw,, starting from
| Awn (t)| e < €t”
and recovering, through the INFR,
[ Awn (8| < €47

When compared with the normal form algorithm for w, we see that few changes arise:
(1) the set of intervening functions is now w, z, So, Sreg, Ko, Aw and 0¢z.

(2) As done in (4.13)) and (4.14)), define T} = EHZHI;I//;O’ 5o that
[t7€€)" Oc2ll e S €, VE<TY.

(3) the frequency weights for terminal nodes associated with an intervening function f are

O if f=w or Aw,

tP{C if f =z or ez,
11 if f =29,

<t1/3c>(4/7)* if f= Sreg’
L2 [¢]M2, if f= K.

(4) when distributing time derivatives, one may find either d,w or d;Aw, which one then
replaces with the corresponding equation.

In other words, one may view the problem as a coupled system for (w,Aw). The nonlinear
terms in both equations have exactly the same algebraic structure, allowing for the application
of the algorithm described in Section . Handling Aw (resp. 0¢z) as if it were w (resp. z), by
inspection of Section the a priori bounds derived for Proposition hold for the expansion
of the equation for Aw, and we have the following result:

Proposition 4.5 (A priori estimate for Aw). Suppose that, for some T" < min{T7", T} },
Ve 0,71, I wa(®)log + I Awn(®)] oz < €.

Then
Vi [0,T),  xn wa(®)re + Ixy ' Awn(t) e s €47, Ve [0,T],
where the implicit constant does not depend on n.
Having the a priori bounds for w (Proposition , Aw (Proposition and dyw (Lemma

3.12)), we are now in position of closing the bootstrap argument for w. We recall the definition
of the Y,, norm (2.8)).

Proposition 4.6 (Uniform local time of existence). Under the conditions of Theorem there
exists T = T (¢, |z] y1.0) > 0, independent of n, such that the solution wy, defined in Proposition
is defined up to a time Ty (S, z,n) > T and

(4.32) Ve [0,T] Jwaly,o < €.

Proof. Let

1 =
vy<¥<-min(g,v—p) and T =min |Ty,T7, <
3 HzHWl}a"C
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Recall T] < T} < 1 are given by Proposition and Proposition , and T is chosen so that
(4.33) T + |23 n00) 2] oo < 26%
Fix n e N. For 7 € [0,T) define

A(r) = sup t |lwnly, ), and 7 =sup{r € [0,T) : A(T) < €}.
te[0,7]

By Proposition 7% > 0. Let ¢t € [0,7*). Then, since x, < 1,
lwn ()1 < I wn @z + x5 dwnly < et <.
We claim that

< .

(134) |V - NTS) -

We use Lemma to control the trilinear terms obtained when expanding N[v,] — N[S,],
distinguishing two cases:

e If there is one factor z,, it takes the place of h and we choose a = bV = v and a’ = u so
that ¥ < 1 min(a, b’ — a’). Keeping in mind (4.33), the term is then bounded by

0

J 2 2 2
0 (ISOR g oy + Ion O+ Tn Ol ) Ll

v
<t (!S(t)!iv&,fo(m{o}) + 12l 0 + Hwn@)yiﬁ,w) Izl
< el oo (€ 4 121 100) < EE7.

e If there is no factor z,, there is at least one w, which takes the place of h; we choose
a=0b=panda = p—39 > 0so that ¥ < $ min(a, b — a’). The term is then bounded
by

tﬂ t 2 [5e) nt 2 0 nt ,0
(IO, ooy + I O ) B

< (IO g + 1m0 ) T

0
<Y <l
This proves (4.34). Hence, for ¢ € [0,7*), there holds

t
G O] <V - M)
€l <12
and, using as well the bound from Proposition

-1 _1t0rwn(t)
||Xn a§wn(t)HLﬁ3 < Xn ”S‘

+ ||X;1Awn(t)\|1:;e < .
L

This proves that

Vt e [0,7-*)7 Hxﬁlwn(t)HLff + X m‘ + nglﬁgwn(t)Hng < 016375’7.
r

(the absolute C; does not depend on n). Choose € > 0 so small that C1e? < 1/2. A continuity
argument gives that 7* = T". Due to the blow-up criterion of Proposition (4.5)), we infer that

. . 3/y
T1(S,z,n) > T = min 7 ,
20 \ 2l
14

and (4.32) holds. O
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5. PROOF OF THEOREM

5.1. Existence. Before we move to the proof of the existence of w, we need some very mild
control in physical space for the linear evolutions whose Fourier transform lies in W;}’OO

Lemma 5.1 (Boundedness in physical space). Let u > 0 and w € W&ﬁo. Define v = etV
Then, for 0 <tg <ty and R>1

Ve fto,til, [0 wrononm) St By

Proof. By linearity, we can assume |w| 1,0 = 1. Then we write
O,p

_ A imerate? _ 1 iTE4ited w(§) >
vlt,2) = 27 JRB T w(ede = 27 JR g G (1 + i€ (x + 3t£2) &
)

_ 1 izE+ited i(z + 9tEH)w(€) Jew(& )
"o Jﬁe ’ <<1 rige + 3t T 1 ig( 3w ) ©

Since w and dew are bounded by 1

(z + 9t&)¢
r | (14 i&(z + 3t&2))?

§
‘1 + i&(x + 3t&2)

v(t,z)| < 3

We split the integral between different regions. In the region || < 1, the integral is O(1).
In the region |z + 3t£2| < tp&?, it is bounded by

[ o+ bl iy 1

In the region |z + 3t£2| > to&2, we bound it by

J (14 || + t1€?)|¢]
g[>1 t5&8

d§ Sto,lfl 1+ ‘$|
For the derivative, we have

1 i3 1 o3 '
ﬁxv(t,g:) = % Rif@m&-zt& w(f)df _ % JR gezxf-&-ztf ag (1 " Zzi:(f)?)th)) d¢

1 it vited i(z +9te2)icw(E)  i€dew(€) +z’w(§)>
B wfﬂfe " <(1—|—i£(:n—|—3t§2))2 * 1 +ié(x + 3t€2) dc.

Thus
€2 (2 + 9tE*)(E)~*
r | (1 +i&(z + 3t£2))?

We use the same region decomposition as earlier, and we bound the integral in a similar fashion,
with an extra |z|'/2: this yields the desired estimate. O

|Ozv(t, 2)| <

‘I£|2<€> "4 IERO e

1+ i€(x + 3t&2)

We can now prove the existence part of Theorem

Proposition 5.2 (Existence of w at t = 0). Under the conditions of Theorem there exist a
time T = T(e, u, v, |2]y1.0) > 0 and w € €([0,T] x R) such that u = (S + 2+ w)Y s a
distributional solution of (mKdV)) on (0,T) x R and

t@tw(t)
£

< 3.
Ly

el Tl + |

The proof follows similar arguments to that of |4, Proposition 13|, with some changes in the
details which we provide for the convenience of the reader.
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Proof. Step 1. Convergence of the approximating sequence. For each n € N, let w,, be the solution

of (2.3). By Proposition there exists T = T'(e, |2/ ;1.0) such that wy, is defined on [0, 7]

and, as y, < 1,

tétwn(t)
€l

In particular, given R > 0, (wy)n is equibounded and equicontinuous on [0,T] x [-R, R]. By

Ascoli-Arzela theorem (and a diagonal extraction), there exists w € I/Vli’coo((O, T] x R) such that
(up to a subsequence)

< .

Vne NVt [0,T],  Jwa(t)|y1 + ’
L

VR>0, w,—w in%([0,T]x[-R,R]).
Moreover,

tﬁtw(t) t&twn(t) < e3t7.
€ & o) ®

The uniform decay in ¢ implies w, — w irﬂ %([0,T],S’(R)). As such, if we define, for ¢t € [0, T
and n € N,

Un(t) 1= e 72 (S(t) + zn(t) + wn ()Y and  w(t) = e % (S(t) + 2 + w(t)" |

we can conclude that u, — u in €((0,7),S’(R)). We need to improve the convergence in the
physical space in order to pass to the limit in the nonlinear term. For ¢ € (0,7") and R > 0 fixed,
Lemma implies that (uy(t)), is equibounded and equicontinuous on [—R, R]. By Ascoli-
Arzela, there exists a subsequence (up, (t))r (which may depend on the chosen time t) such
that

T o)y + |

< lim inf <|wn(t) lyproe + H

Un, (t) = h(t) in Lj,(R).

Since, by Lemma [<z>~2un (t)| L= < 1, the convergence must hold in S’'(R) and thus h(t) =
u(t). As the limit h is uniquely determined, we can conclude that the whole sequence converges
to h = u, and so

(5.1) Un(t) = u(t) in LP({(x)"2 da).

Step 2. (mKdV)) is satisfied in distributional sense. Define for v € S'(R), IL,v = (x2(£)9(¢)) '
this is a continuous operator on S§’(R). Then we may rewrite (2.3) as

(5.2) (0 + ﬁg)un = Hnax(ui)-

As u, — u in 2'((0,T) x R), we have (0; + 02)u, — (0p + 03)u in 2'((0,T) x R). For the
nonlinear term, first observe that, by (5.1)),

(t) > ud(t) in LP(2) 8" dz)
and we have the bound uniform in ¢ € [tg, 77,
[<2) ™% ()| oo, <) ~0u? (8) [0 < 1.

Fix ¢ € €°((0,T) x R), with supp ¢ < [to,T] x R for some tg > 0. As II,¢(t) — ¢(t) in S(R)
for all ¢ € [to,T], and that for sufficiently large integer a > 8, one has the uniform (in n) bound

Vo e S(R), [<a)’Mndapplpr < [K2)*(1 = 8¢z,

we can conclude by dominated convergence that

Vt e [to, T], ud

n

T T
I,05(u2), §dprxp = Jt JR ud ()0,0,¢(t)dxdt — L JR w3 (t) 0, () ddt = (0p(u3), )ik,

and so 11,0, (u}) — 0,(u®) in 2/((0,T) x R). Taking the limit n — +o0 in (5.2), we see that u
solves the (mKdV) equation in the distributional sense. O

8In the sense that for all p € S(R), SUPyefo,7) [{wn(t) —w(t), )| — 0 as n — +oo.
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Remark 5.1. Through the INFR procedure, one can actually prove that (wp)nen is a Cauchy
sequence in L/‘f’. This allows for the extraction of a limit w and could allow us to lower the
assumptions on the perturbation, not requiring anything on the derivatives. However, there are
two caveats: first, the control of Fy depends on integration by parts in frequency, which uses
information on 0O¢z; second, the proof that the limit w satisfies uses the control on
physical space given by Lemma @, which depends once again on a control of dgw.

Remark 5.2. Another possibility to construct the solution w of Theorem could be to use a
Picard iteration scheme. Setting

@Wo =0, forneN, Ouini1 =N[S+ zn+ @n] — N[S],

the bounds of the INFR would show that (@), is a Cauchy sequence in weighted L} spaces.
However, we do not know how to justify the normal form algorithm, as it requires a control on
the time derivative of 1, see the proof of Proposition [5.4]

On the other hand, one could define the Picard iteration for the expanded equation directly.
In this case, the bounds given through the INFR do show that the Picard iterations form a
Cauchy sequenceﬂ7 producing a limit object w’. The problem is to identify w’ as a distributional
solution to . This is in fact the case a posteriori: since the solution given through
Theorem also satisfies , it must coincide with w'.

In our approach, using the approximating equation , the normal form reduction can be
rigorously justified to produce the required a priori bounds for each fixed n € N, circunvent-
ing the obstructions explained above. We pay the price later on: instead of proving that the
approximating sequence w, is a Cauchy sequence in Wﬁ’oo, we prove only that it is bounded
in this space and then resort to Ascoli-Arzela theorem to show the weaker convergence in LZO.
Fortunately, this is sufficient to prove that the limit satisfies .

In conclusion, we have two equations, (the one we are trying to solve but which behaves
badly) and (which is better behaved, but equivalent only under additional assumptions).
Our approach permits us to work on both equations at the same time, while the Picard iteration

scheme only works on (5.3)).

. . . . . 1 1
5.2. Uniqueness and continuous dependence. Given S and z of size € in W ’loo and W™,

respectively, let w € L*([0,T1, Wﬁ '*) be any function that satisfy the condition of Theorem
it is a solution to ([2.2)) such that
< .

Vte [0,T],  Jw(t)|yre + | Ouw(t)

o

As it was done in [28|, uniqueness and continuous dependence in Theorem will follow from
proving that w actually satisfies the infinite normal form equation

(5.3) 2 (Aal®) + M) + N () + N ().

To do this, we need to prove that, for any J > 1 and t € [t;41,1] (where t, = T/2* and k € N)

J
w(t) = wtern) + Y (M) + NGEW) + NG + M) + N + R,
j=1

and that, when J — o0, N, ék (t) and R7*TLE(t) tend to zero in some appropriate norm.
Lemma 5.3. Forany J > 1 and k € N,

62J+1t'y.

V€ [trer, e, B(t) + RJ“’k(t))

i

Ly

90ne can even apply a fixed-point argument in weighted L* spaces.
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The bounds of Corollary also hold for w: for [tii1, k],

k Jk Jk J—1,k
(5.4) W]+ NG Ol + NG Ol + IV Ol 5 524
"

The choice of this norm is essentially guided by the control of Aw and (|1.12))

Proof. We use a sequence (c;); as in (4.7)) and set N; = ¢j/tr41, as in (4.§).
Step 1. Adaptation of the INFR bounds. Observe that /\/j,gk(t) + R7+LE(t) corresponds to the
nonresonant terms at step J where, in the last subtree, one child is colored d;w. More precisely,
each term will be of the form

t t L =J J m.y —J —J
(5.5) N(s,&)ds = f ¢'s® — 1 |- F(s,6,E)d2",

tht1 trpr JT7 31:[1 i’ &71>N;
where F'is a product of the intervening functions w, z, Sg, Sreg and/or Ky, and exactly one dyw.
We now derive a bound for this term based on the analysis performed in Section [£.3]
Consider the associated tree, where every node is colored either w, z, Sg, Sreg 01 Ko, except one
terminal node, which is colored d;w. Define the weights as follows:

e for a terminal node colored f (see (4.16))), its weight is

(1O if f=w,
PG if f =z,
1 if f =Sy,
) BT if f = Sreg
t2|g |2 if f = Ko,
G THOR i f = dw.

e for a node which is an ancestor of the d,w node (so it is non-terminal), the weight will

be (CHI¢]

e for the remaining (non-terminal) nodes, we set the weight to be ({)*.

Then, defining (analogously to (4.19))

~ . mJ x weight for the parent

M =

weights for the children
the procedure described in Section [4.3] gives

+ J
i
tey1 j=1 | &, JIY

Step 2. We claim that Lemma holds for w, that is, given j < J and t € [tx11, tx], one has

t

5.6 —
A .

N(s,§&)ds

- . 0711
M‘]‘:ﬂ_lej_a|>de:{7] ds - e’ 1,

Ly

VM =21, Va e R, f MJILI@J'—akMdEj <t AP
T

and
sup Mj]l‘ej_a|>deEj < (th)_Hﬁ.
Indeed, let us we repeat the proof of Lemma we compare the multipliers M7 and M.

e If the j/ parent is not an ancestor of the d;w node, then M7 and M7 are the same and
Lemma [£.1] holds. y

o If the j® parent is an ancestor of the d,w node, then the change between M7 and M7
is the extra factor |¢|™! coming from the parent and one of its children. In the proof
of Lemma this corresponds to replacing the |{| factor with the slightly stronger
weights max;_1 23 || (for ternary trees) or max(|¢|,|n|) (for binary trees). Fortunately,
the frequency-restricted estimates of Section hold for these multipliers and thus

Lemma (.1 is still valid.
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Step 3. We have the following analogue of Lemma the contribution corresponding to the
terminal subtree is bounded, uniformly in [tx11, %], by

sup MJII|@J,Q‘>deEJ < (ENy) P,

Indeed, this term is analog to that of case b) in Lemma and as in the previous step, we
repeat the proof. The change between M” and M is now twofold: the extra |¢ ]*1 coming from
the parent and the d;w child (Whlch as in the previous step, is harmless); the + factor coming
from the d;w-weight. Therefore ) holds with an extra t~! factor and the Clalm follows.

Step 4. Conclusion. We argue as in Corollary [£.3] Inserting the estimates from Steps 2 and 3
into (5.6) and recalling that N; = c¢;j/ty41, we see that each term in ./\/}];k + R7+1F is bounded
by

1 t
‘§| tk+1

Therefore, as there is at most Card(AT}) terms involved,

t J J
N(s,&)ds < f st H(ij)_1+'6ds 2T < 2y H ¢
trt1

j=1 j=1

Ly

Vt € [tpsr, th], H () + RJJrl’k(t)) < 2
’€| Ly
as desired. The proof of (5.4]) is similar and the same as that of Corollary U

Remark 5.3. As a byproduct of the above proof, we see that, for each £ # 0, the integrals (/5.5
are absolutely convergent.

Proposition 5.4. Let w satisfy the conditions of Theorem in particular (1.12)). Then, for
any J =1, ke N and t € [tg41,t],

(5.7) w(t) = w(te) + Z(Mzgs ORRROESY O

(with convergence in L= (({H*|¢|71dC)). In particular, if one sets
Ni(t) = NIFt) + > NIF (tw)  for = € {res, bd, dt, Fp},

k'>k
(with convergence in L} ), then the relation (5.3)) holds (with convergence in L7 ).

Proof. The result is a consequence of the INFR expansion as long as one can rigorously apply
the procedure described in Section [4.1] at the level of regularity of w. More specifically, we need
to justify the integration by parts in time, the product rule for the time derivative and the decay
in J of the badly-behaved terms.

First, notice that the condition on w implies after integration that

w(0) =0 and we@*([0,T], L*(E)"|¢[ ).

Step 1. The integration by parts in time are justified. Indeed, observe that both S(-, ) and w(-, &)
belong to W1®((0,T)) for any ¢ € R a.e. Therefore the product rule for the time derivative
(which is applied for fixed frequencies) is valid.

Then, we focus for example on the integration by parts for nonresonant terms in the generic
form (4.3} . We claim that the following sequence of equalities holds:

t zs@ lo
f f mﬂ|@|>N H fl fl d_dS = J f at < > mﬂ|@‘>N Hfl(s,fl)dzds
th1 JT lk41 =1

thﬂf ‘ ( 54 > d“d‘s_LkHL o) (m]lewﬁfz(s,&)) dZds




L 150 lo
dsd= —f f —0; | m1 fi1(s,&) | d=ds
” ( ) % ( opn | 1056

6@5@ t 62'5@ lo
= ml fi(s, & dE—f J ——0; | ml fi(s, &) | d=Eds.
L[ 5 \G)|>NH ! z] ) |@>NH 1(5,61)

The first equality is immediate. By Remarks .3 every integral appearing in the INFR
iteration is absolutely convergent (in time and frequency). In particular, the second equality
holds: one applies the product rule in time and then splits the integral. The third equality is just
the application of Fubini’s theorem, which is again a consequence of the absolute convergence of
the integral. In the last equality, we use once again the fact that, for each = fixed, the integrand
is Wbh®([tr41,t]) and so absolutely continuous. Thus the integration by parts can be made
rigorous at the current level of regularity.

t

tet1

Step 2. Equation (5.7) holds for w. Let us write the equation for w at the J* step:
w(t) = wte) + 2 (MEE®) + AT + N0 + M) + RTA@).

Then, by Lemma [5.3]

J
— (w(t) - [w<tk+1) + 2 (Nﬂ;’é( )+ Ni (8) + NG )+ Ny it )>]>

Jj=1

Ly

—-0 asJ — o0.

Jk(t) n RJ+l,k<t>>
Ly

_ ‘1
€]
from which (5.7)) follows.

Step 3. Equality (5.3) holds for w. Due to (5.4)), the series below are absolutely convergent: for
x € {res, bd, dt, Fy},

Ingk @)

+ ) H/V:Z’k/ (i)
K=k

< et <t7 + Z tz/> < 2ty
Ly

0
Li k'>k

Hence A, € L7 is well-defined. For any k' >k + 1,

k-1

w(t) = w(t) = wtpe) + Y, (Wlte) = w(tes1)) + w(ty)

k=k+1

SN D M CORSYRle

Jj=1 \ x€{res,bd,dt}

k-1 oo

+ Z Z Z Nﬁﬁ(tn)'i_-/v}j?";l’n(tn) +w(tk')

k=k+1j=1 \ xe{res,bd,dt}
0 k' —1 K —1
1k 1,
S n (e Y wea) o Y NG00 |+t
Jj=1 | #€e{res,bd,dt} k=k+1 k=k+1

Let " — +o0. Then, in L;7, w(t) — 0 (due to ) Furthermore, the above computations
show that the series are summable We thus get (4.4]) and the proof is finished. U

We are now ready to complete the proof of Theorem
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Proof of Theorem[1.3 Recall that the existence of w has been shown in Proposition SO we
are left with the proof of uniqueness and continuous dependence : in fact it suffices to show
the latter, which we do now.

Let z1, 29 € LY are two perturbations and let solutions wq,ws € L*([0,T], Wl}’oo) be two corre-
sponding solutions satisfying the conditions of Theorem in particular . By Proposition
both satisfy . We observe that the r.h.s. of can be seen as a bounded multilinear
operator acting in weighted L® space More precisely, denoting .45’ (t,w) the terms appearing
in related to the expansion of w, 4¢ (t,w) is a homogeneous polynomial of degree 2J + 1
in its variables So, Sreg, 2, w, Ko (counting Ky as quadratic), and estimates as in Corollary
allow to bound, for ¢t € [0,T]

| A2t w1) = At w2) [ < €% ( up, s7wi(s) —wa(s)|Lp + 1721 — zQ|Lm> :
s€(0,t

Indeed, in each difference of a term appearing in .4;’, we can factorise either w;, — ws or z1 — 2o
(since Sp, Sreg, Ko do not depend on 21, 22), and bound the result according to the weights
indicated in (4.16)).

Therefore, similar to Proposition [£.4] the difference between the two solutions satisfies, for ¢ €
[0,77]

sup [lwi(s) — wa(s)|rz < Coe® <1t7 sup [wi(s) —wa(s)|ry + 721 — Z2||Lff> :
s€[0,t] s€[0,t]

Choose T' > 0 so small that 7' < T} and Cpe?T? < 1/2, then (1.13) holds on [0, 7] (with implicit
constant 2Cy). O

6. PROOF OF THEOREM [L.4]

In this last section, we present a sketch of the proof of Theorem [I.4] In fact, it follows from
a simplification of the arguments used to prove Theorem [I.3] Before we begin, observe that,
through the scaling invariance, it suffices to work on the time interval (0, 1) with 0 < tp < 1. We
start by writing the equation for w,

dw = N[w + S| — N[S] = Q[S,w] + 6N[S, Sreg, w] + Lr|w],
w(to) = Wy,

where @ contains the terms which are at least quadratic in w; 6N[S, Sieg, w]| corresponds to a
linear term in w without two Sy’s; Lx[w] is the linear term in w with two Sp’s, written as in

29).

We then approximate the problem by cutting off large frequencies as done in Section [2.1

6.1) Oywn = X2(N[S + wy,] — N[S]),
w'n«<0) = XnWo,

and construct, by a fixed-point argument, a solution in Y,,(I) (recall the definition (2.8)).

Proposition 6.1. Under the conditions of Theorem there exists 0 < T < 1 and a unique
wy, € Yo ([T, TY]) (integral) solution to forte (T2, T7). If T} < +oo, then |wly, ) — ©
ast — TV, and an analogous alternative holds if T" > 0.

Moreover, there exists t"™ > 0 such that

Ve [to— " t0 + "], |wally. (o < 2¢.
The second step is the derivation of a priori bounds for w, and Aw, through a bootstrap
argument, starting from
lwn ()|, |Awn ()| < 26, ttoel
10This is the main advantage in working with the normal form equation. By replacing the nonlinearity with a

sum of well-behaved terms, a priori bounds can now be obtained without having to resort to any auxiliary space.
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and reaching
3
lwn(@®lzg, [Awn(®)]re < Se.

As done in Section [] this will follow from the application of the INFR over dyadic intervals. We
consider intervals of the form [ty 1, %] = [to/2FT!, to/2] for k € Z and set

w1
=1-=>_.
p 3 2
Then we take ¢; as in (4.7) and define the frequency thresholds N; = ¢;/ty41 (see (4.8)). One
simplification with respect to Section [4|is that only finitely many intervals [txy1, ] will play a
role.
We can now perform the same argument as in Section [1.3} this allows to write the expansion,
for t € [tk-i-la tk] N (TB,T?),
J
j i,k i,k ,
(6.2) wn(t) = waltier) + X, (Z (N (6) + NS () + NG @0)) + R ’“(t)) :
j=1
(indeed, as there is no longer a source term z, there is no Fy term in the INFR here), where the
terms in the above formula are as in (4.18]) or (4.23]).
Having defined the INFR development, let us perform with care the estimates for resonant,
boundary and derivative terms. Define the frequency weight for a terminal node colored f as

O*, if f=w,
1, if f =50,
<t1/3c>(4/7)_7 1f f = Srega
2], if f = Ko.

When compared with (4.16)), the difference is the lack of a weight in time when f = w. For
non-terminal nodes, we set the weight to be ({)*. Arguing as in Section we are led to the

bound (4.22)).

The following results are the analogous versions of Lemmas [4.1] and [£.2]

Lemma 6.2. Lett € [tyi1,tx] N[0, 1], and in a term corresponding to a tree of size J, consider,
for some j < J, the factor given by the j** elementary subtree. Then

VM > 17 VOC € R’ f Mj]l|@j—o¢‘<MdEj S t_1+ﬁM/B'
TJ

As a consequence,
sup | M lgi_azn, dZ < (EN;) 7
éjva FJ
Proof. There are three possibilities. If the subtree is ternary so that ©7 = ®:
e If at least two children have w-weights, then
, 0
i < leKer
SSPEKSY
Due to (3.7),
sup [ M7Ljq o casdiadéa < M5 < B,
§7a
e Otherwise, there is one child colored S and another colored S;eg, so that

Mi < 39 - lEKoH
TBEAN T o T tHB(E I Eg Yt

and applying again (3.7)),

SUPJMj]l|'I>—a<Md§1d§2 S IR,
§7a
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Now, we have the case where the tree is binary and ©/ = W: the only possibility is that a child
is colored K and the other w, so that

; €]
M < .
t1/23/Inl€ — myr

The conclusion now follows from (3.10)).
This concludes the first claim. The second is then a direct application of Lemma O

Lemma 6.3 (Final subtree). Let t € [tg11,tk] N (0,1], and consider a term corresponding to a
tree of size J.
a) For resonant terms, the contribution of the terminal subtree is bounded by

sup | M7 gi_gan,dZ < (EN;) 71

b) For boundary terms, the corresponding bound is

sup MjﬂleJ_a|>NJdEJ < (ENy) P,
¢i,a JrJ

¢) For derivative terms, the corresponding bound is

sup Mjl‘@J_a‘<NJdEJ < (tNy) AL

Proof. The proof for resonant and boundary trees follows from the arguments of the previous
proof. For derivative trees, the multiplier is as for boundary trees, except for an extra t~!
factor. O

The estimates for the subtrees give the analogue of Corollary [£.3]
Corollary 6.4. In the normal form expansion (6.2), given J =1 and t € [ti11,tx] N (0,1]

k J.k J.k
WD+ IV Ol + NGO e < 4
1
In particular, if ¢ € [tx41, tx] N (0,1],

I (wn () = wa(to)) e < I (wn(t) = walter )z + 35 I (w(t) = w(tesn)) g

k'=0
12
J,k Jk , Jk Jk
S INGEE () + N (8) + N (Ollze + 3 INGE (t) + N (8) + N () iz
k'=0
t
< \/{]63 <lIn|—|é.
and therefore, if t € (T, T}) N [toe*QCGQ, min{17t0€20/62 1,

t

Ixa wn ()| < x5 wn(to) |z + Cln o € < 2.

This bound essentially closes the bootstrap argument on ||x;, wy,(t)] rx- The bootstrap on
I L Aw, (2) e also follows from the INFR procedure: indeed, the algebraic structure of the
nonlinearity in the Aw, equation and the required frequency-restricted estimates coincide with
those for w,,. To summarize this discussion, there exist a constant 7. > 1 (depending on € only)
such that denoting

T_ :=to/7e and T4 := min(1,7ctp),
then
(63)  WneNVte (TT!) AT Ty], i wa®lze + I Awa(®)p < 2.

The last step that ensures the existence of a uniform time of existence for w, is a bootstrap
argument for d,w,,, as in Proposition
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Proposition 6.5 (Uniform local time of existence). In the conditions of Theorem there
erist T_ < ty < T4, independent of n, such that

Ve [T, 1], |lwnly,@ < 2e

In particular, [T_,Ty] < (T, T}) (where T} are the maximal times of existence of wy, in

Proposition[6.1]). Furthermore, (1.14) holds.
Proof. Fix n € N. Define
T = sup{7 € [to, min(T, T7)) : [lwnlly; ([o,r)) < 6€}-

By Proposition (6.1} T > to. Given t € [to, T'}), the a priori estimates (6.3) given by the INFR
yield
X twn ()| + X Awn (1) e < 2.

The bootstrap assumption gives that |wp(t)] ;1.0 < 6€ for t € [tg, T} ). Then we use Lemma
"
(witha=a' =b=p)to produce a control for the time derivative: as xy, <land 0 <t < T} <1
torw
) H NTS + ] — N[S))
2 2
Y (E R
(6.4) S e <e,

for € < ¢y small enough: indeed, one argues as in the proof of Proposition with the simplifi-
cation that there is not z term here. Therefore for ¢ € [to, T7),

"l
and 80 |[wny, ) < 5€ < 6e. A continuity argument (using the blow up criterion of Proposition

1) implies that T'f = Ty < T7. One argues in a similar fashion for ¢t < o, and this yields the
result. (|

+ I Awn ()] < 3e.
Ly

“X;Lla&’wn(t)HLfg S ‘X

Having w,, defined over the interval [T, T’ ], the existence of w is done exactly as in Proposition
for uniqueness and continuous dependence, one exploits once again the INFR, as in Section
we leave the details to the reader. This concludes the proof of Theorem [I.4]

Remark 6.1. The smallness of the initial data wg comes up only in the control of the time
derivative. The estimates given by the INFR on the interval [T_, T ] hold regardless of
size of e. However, there is no time factor in to compensate for a large e.

One could attempt to work only with w and Aw in order to bypass this difficulty. The limiting
procedure through Ascoli-Arzela would would still give a limit profile w, continuous in the self-
similar direction 7 = #1/3¢, but not necessarily in the transverse direction. This lack of regularity
makes it impossible to prove that the limiting profile gives a distributional solution to (mKdV).
One could also ask whether it is possible to construct w without using Aw, so as to obtain a
result for data wg € LZO. This approach raises the same concerns as those explained in Remark
b-2} the INFR bounds allow to show that w,, is a Cauchy sequence, but it is unclear if the limit

solves the (mKdV|) equation.
7. PROOF OF THEOREM [[.1]

Finally, we prove Theorem through the Fourier restriction norm method. Given b, u € R, we
define the adapted Bourgain norm

83
[l e == KT Fra (e u) | p2 e

associated to the space
X ={ue SR xR): |uf yuo < o0}
o0

Observe that, for b > 1/2, Xk < ¢/(R, EEO(R))
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In order to handle the nonlinearity, it is also convenient to introduce the auxiliary space Yo’é’b,
defined through the norm

33
[ullypo = IKTEH Fealeu)| e 2.

For the remainder of this section, we fix ¢ € C°(R) with suppy < [-2,2] and ¢ =1 in [—1,1].
For 0 < § < 1, define 5(t) = ¢ (t/d). Our goal is to prove

Proposition 7.1. Fiz u > 0. Given ug € ff:o, there exist 0 > 0 and a unique u € Xfo’b satisfying

t

u(t) = B(t)e " Pug + 5 (t) fo (=93 (43, ds.

This will follow from a standard fixed-point argument. In particular, we derive Theorem

Lemma 7.2 (Basic properties in Xib spaces). For p e R, b > 1/2 and b—1 < b < 0, there
exists C' > 0 such that

408 . —~
(7.1) [e taIUOHXéLO,b < Clio|re,  for all ug e Ly,

and

t
w(g(t)J e_(t_s)agf(s)ds for all f e Y

/.
0 <oty

/
Yo‘ol”b bl

(7.2 |

X
Proof. The linear estimate (7.1]) follows from a direct computation:
—103 VIR N
[e™" % uol| xpo = IKTY*E D (T)a0(€) 121 < N0l

For the proof of (|7.2)), we follow closely the computations of [16, Lemma 2|. Let g = etls f. First,
we write

t it
%(t)j g(s)ds — cwg(t)Je LR )i = I+ I+ T,
0 1T
where
I = cys(t) Z tkf (i) (Feg) (7, x)dr!
=R i< ’ ’
I — —cthy(t) f (i)Y (Fog) (7' ),
|T]6=1
and Iz = cw(g(t)f eitT(iT’)_l(th)(T', x)dr'.
|T]6=1

We begin with ;. Taking the Fourier transform in (¢, x),

_—
Fal=cy “p]j'(” fl Tlégl(irl)k_l(fmg)(f,é)dT’.

k=1

Due to the Cauchy-Schwarz inequality we can bound for each k and & the integral in 7/ by

j L B

< ( | |r’|2’f—2<7'>—2b/d7') 67 Fiaa(©)l 2
|7]6<1
< 82 MY Fraglers.
On the other hand,
ey aliy = [0 ) Par = 5242 (o190 or)Par
< 52k+2—2b—1J<T>2b|¢;(k)(7_)|2d7_ < 52k+1_2b\|<t>k¢\\§{1 < §2k+1-2b92k 2
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Therefore, as k > 1and v/ < 0,2k +1—2b<2(1+V —b) and

KT Fralill iz e < Z 51”" I Fragliore < 8N Fraglers-

For I, notice that

1/2
f (i) " (Frag) (7', §)dr" < (f \T’!‘2<T’>‘2”'d7’> )Y Frag(€)l 2
|T|10=1 [T|6=>1
S 51/2+b,H<7—>b/]:t,xg(§)HL2°L$-
Hence, as b> 5, (1—2b) + (3 +b') > 1+ b —b and
KT Fralalpe e < 1Cr) sl 1262 <)Y € Fraglpz e < 6" I Fragliz 2

Finally, taking the Fourier transform of I5 in (¢, z), and by Cauchy-Schwarz inequality,

’]:t,xIB| =

J‘ Do(r — ) (ir) " (Fiag) (', €)dr”
[76=1

1/2
s (J . I%(T—T’)IQIT’!2<r’>2b/d7’) Y Frwg(€) 2.
T'0=
Therefore
1/2
K€ Fralslzzry < <J| ‘WT—T'>I2\T’|2<r’>2b’<7>2bd7fd7) ) Fraglpore

< 51%,71)H<T>b/<€>“]:t,x9HLZ°L3-
Summing up together the estimates for Iy, Is and I3, ([7.2]) follows. O

T6=1

Lemma 7.3. For pn > 0, there exist b>1/2 and b—1 < < 0 such that
Joweauzus)y o < il ol o sl o

Proof. We work in space-time Fourier variables: by duality, the multilinear estimate is equivalent
to proving that the continuity of the quadrilinear operator 7" : (L2L°°)3 x L2 — L defined by

=W eor (1
Tuy, u2,u3,v] L{J 1_[] 7 e <H (75,&5) | v(1)d€1déadmidadr,

where I'c and I'; are the surfaces defined respectively by

§=6+&6&+E&, and T=71+ 71+ 73+ P(E6,6,83).
We first prove the continuity of the operator 17 : (L}LOO)2 X LOOLOc x L¥ — Lgo, where

— E)MEKO"
T [u1, uz, uz,v] j HU] (75,&5) | v(7)d&1déadmidradr.
L JDr <T3_ >2bH] 1
Assuming unit norms HulﬂL;ch = HUZHL;L? = HU3”L70_OLZO = |[vlre = 1, and as b > 1/2, we

bound
Slgp T [u1, uz, u3, v](§)|

3\2b/
S?FH@Z;O%2éémmm@mmmqmmmym@
e 1 1;j=188;

_EKO" P dr
s Sup Le H] 1<§J>“ [J 2 HUI(Tl)HL?HUQ(m)“L? ( R <7’ —T]1 —To — q>>26> dTldT?] dfld&
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€1

< déqd o odTtid
a Jr (H?=1<£j>“) (@ = o)~
1 €[E)
< 1ip—al<rrdérd
o e B M, T o-el= s
< sup Z Ezb,Ml_“B < 1,

& M1, dyadic

as soon as 1 — u/3+ 20" < 0, which is possible as soon as b < 1/2+ /6 (we used in the frequency-
restricted estimate (3.6)) in the penultimate inequality). Similarly, one can show the continuity
of Ty : (L;‘.OLEO) x L L x L} — L®, where

€KKE ’
Toluy, ug, us, v] = J f i(15,&5) | v(T)d&1déadTidradr.
re Jr, (11— 1) — )% H] 16" gljl
The claimed boundedness of T' follows by Stein interpolation between 77 and T5. (|

Proof of Proposition[71. The proof is standard. Take b as in Lemma and C as in Lemma
[Z.2l Consider the closed ball

B ={ue XL |ul gpo < 20|01},

of the complete space Xé‘o’b and the map
t

O[ul(t) = w(t)e " Pug + s (1) j e~ =92 (43), ds.

0
Applying the estimates of Lemmas [7.2] and [7.3]

v —b
[8[ulll o < Clito]zgp + CO = luf Sy
and
v —b
[8[u] = O]l o < COF P (ulSmn + 015l = v o
Therefore, for § sufficiently small, © is a contraction over B, yielding the result. (]
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