PERTURBATION AT BLOW-UP TIME OF SELF-SIMILAR
SOLUTIONS FOR THE MODIFIED KORTEWEG-DE VRIES
EQUATION

SIMAO CORREIA AND RAPHAEL COTE

ABsTrRACT. We prove a first stability result of self-similar blow-up for the
modified Korteweg-de Vries equation on the line. More precisely, given a self-
similar solution and a sufficiently small regular profile, there is a unique global
solution which behaves at t = 0 as the sum of the self-similar solution and the
smooth perturbation.

1. INTRODUCTION

1.1. Description of the problem and motivation. We consider the modified
Korteweg-de Vries equation on the whole line

(mKdV) Ot + Opgot = +0,(u?),  (t,x) e R%  w(t,z)eR.

Throughout this work, the specific sign of the nonlinearity is irrelevant. To simplify
the exposition, we treat the focusing case (with the + sign), even though the results
presented also hold for the defocusing one.

This equation admits a scaling invariance: if u is a solution, so is uy(x,t)
Au(A3t, Ax), for any A > 0. As a consequence, one may look for self-similar so-
lutions of , which are invariant under scaling. A simple computation shows
that these solutions are of the form

(1.1) S(t,z) = tl%v (tl%) where V" — gV =V3+a, aeR.

The existence of profiles V' can be studied using either ODE techniques (|9} 10} 17
22]) or stationary phase arguments ([6]). Very precise asymptotics were obtained
in both physical and frequency space. Generally speaking, self-similar profiles have
the same behavior as the Airy function (which solves the linear equation), up to
some logarithmic corrections. In physical space, the profiles have weak decay and
strong oscillations as © — —oo. On Fourier side, a jump discontinuity at the zero
frequency appears for @ # 0 and no decay is available for large frequencies (see
Proposition {4 for a precise description).

As it turns out, self-similar solutions determine the behavior of small solutions
for large times. This was first seen by Deift and Zhou in [8] using inverse scatter-
ing techniques, under strong smoothness and decay assumptions. In Hayashi and
Naumin’s works [18, [19], the phenomena was proven as a consequence of modified
scattering. This was later revisited in [II] and [I5]. On the other hand, self-similarity
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induces a natural blow-up behavior at ¢ = 0. This singularity is directly connected
to some geometric flows. Indeed, appears in the modeling of the evolution
of the boundary of a vortex patch on the plane subject to Euler’s equations ([12])
and in the study of vortex filaments in R3. In these models, self-similar blow-up is
connected to the formation of logarithmic spirals (if & = 0, one observes a sharp
corner).

For geometric flows modeled by the cubic nonlinear Schrédinger equation, we advise
the reader to look at the series of papers [I1, 2, [3] by Banica and Vega, and references
therein. Both the cubic (NLS) and the (mKdV) equations are L!-critical. This
feature translates a critical polynomial behavior of the nonlinearity at ¢ = 0. In the
(NLS) case, using the pseudo-conformal transformation, one can reduce the self-
similar blow-up analysis at ¢ = 0 to a problem at ¢ = +00. Furthermore, self-similar
solutions are transformed to constants, which is of course a nice simplification.
However, for the equation, no such transformation exists. One must handle
the critical behavior and truly understand what happens at the blow-up time.

The Cauchy problem for is notoriously difficult at low regularity, even
subcritical. In the context of H® spaces, a long-standing threshold was s > 1/4
([20]), which is actually sharp in terms of the uniform continuity of the flow (see
[5, 21]). Recently, Harrop-Griffith, Killip and Visan [16] were able to show sharp
local well-posedness in H*(R) for s > —1/2, right above the critical exponent,
relying heavily on the complete integrability of the equation. Moreover, for the
critical case s = —1/2, the authors prove ill-posedness due to an instantaneous
norm inflation mechanism. Outside of the usual H® framework, Griinrock and Vega
[13] proved local well-posedness in the Fourier-Lesbesgue spaces

~ 1 1
H? ={ueS'(R): &) ,» <+o0} forl<r<2 s> 3 3
r
once again barely missing the critical space H . In any case, a well-posedness result
at critical regularity remains out of reach.

In a previous work with Luis Vega [7], we built a critical space on which self-
similar solutions naturally exist and proved local and global well-posedness for
strictly positive times. This is an even more constrained problem that the mere
Cauchy problem at critical regularity: on the one hand, as noted above, the loss
of derivative in the nonlinear term is difficult to handle at low regularity; on the
other hand, the rough properties of self-similar profiles imply very mild conditions
on the functional space. These ingredients had to be carefully balanced in order to
achieve a suitable framework on which we could analyze self-similar solutions for
large times. This framework will once again play a major role in the analysis at
blow-up time, as we will see later on.

The goal of this work is to give a first step in understanding the flow near
self-similar solutions at time ¢ = 0. There are two intertwined stability problems
which one may consider. The first is to start with a perturbed self-similar solution
at time t = 1 and to study the behavior as t — 0. The second, on which we focus
here, is to construct a solution u of (mKdV), defined on a small time interval around
t = 0, and such that, given a perturbation z,

u(t)— S(t) >z ast— 0 in some appropriate norm,

We shall prove that it is possible to construct such a solution u, for a large (open)
class of perturbations z, thus showing a first result on the stability of self-similar

blow-up for (mKdV).



This is in the same spirit as Bourgain and Wang [4] for the L?-critical (NLS), and
Gutierrez and Vega [14] for the cubic 1D (NLS). However, self-similar
solutions are localized neither in physical nor Fourier space, as opposed to solitons
(as in [4]), or constant solutions (as in [I4]). Even further, the L!-criticality of the
equation leads to modified scattering, involving logarithmic spirals (see [22]). These
critical features in both space and time create substantial obstacles in the analysis
of the linearized problem around self-similar solutions. To our knowledge, our result
is the first to directly construct solutions under such a rough background.

1.2. Definitions and statement of the main result. Given a function v : I
R — S§’(R), we define the profile

3(t,€) = "0 (1,€)
(we denote by * or F the Fourier transform in the space variable). Observe that, if v
is a solution of the Airy equation, then o is constant in time. On the other hand, a
self-similar solution S will satisfy (with a slight abuse of notation) S(t, &) = S(t!/ 35 ).

By canceling the linear evolution, the oscillatory behavior in frequency is completely
concentrated on the nonlinear term: the equation (mKdV|) writes for the profile @

0y = N[u](t), where

N[a)(t) := 4772 H HE S € )it &)t Ea)dE 1 dEs.
§1+&2+83=

One may use stationary phase arguments (pointwise in time) to extract the main
contributions of the nonlinear term. To bound properly the remainder in such an
expansion, we define

lulsy = @) Lo + =0 0ea(t)] 2 @ oy
and, for any interval I < (0, +0),
—{u: T S'(R) e B, L7(R)), deiie L°(I, LX(R\(0})}

endowed Wlth the norm

|ullecry = sup [u®)]es
tel

Remark 1. By L*(R\{0}), we mean the set of distributions whose restriction to
R\{0} identifies with an L? function. From Sobolev’s embedding, a function in &
is 1/2-Holder continuous in frequency, with the possible exception of ¢ = 0, where
a jump discontinuity may occur. One needs to allow this behavior in order to
include self-similar solutions with a # 0. Fortunately, the following proofs are
sufficiently robust to handle the extra difficulty related to this jump (observe that

the zero frequency is preserved by the (mKdV) flow).

Remark 2. We point out that the time weight t~/ is necessary to render the
&-norm scaling-invariant. Indeed, given u € &((0, +0)), the rescaling uy(t,x) =
u(N3t, Ax), A > 0, satisfies [ux] e = [ullerar)-

As it was proven in [7], the space & is sufficient to perform the stationary phase
analysis (see also [I8| for a similar development using a slightly stronger norm).
Here and below, (z) := 4/1 + |z|? stands for the Japanese bracket.

Lemma 3 (The profile equation, [7, Lemma 7]). Let uw € &(I). For allt € I and
£>0,

™ 3 o3
(LN, 6) = o (1P ) — e (1.5)) + Rlul(e.)
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& lu(t) Hzﬂ(t)

Consequently, if u is a distributional solution of (mKdV) on I,
5 1
(1.4) Viel, |[oau(t)|r=- < ZHu(t)Hg"(t)'

One of the main observations in [7] is that the & norm is enough to bound both
the nonlinear term and self-similar solutions:

Proposition 4 (Existence of self-similar solutions, [6, Theorem 1]). Given ¢, € R
sufficiently small, there exists a unique self-similar solution S € &((0, +00)) with

IS = 15Dy S +a®>  forallt >0,and
1
S(t) — ¢y + ap.v. (x) in 2'(R) ast — 0.

Furthermore, there exist A, B € C such that

ialn |t§3\—i%t§3

ialn [tY/3 e 3
S(#/3¢) ~ Ae 1' L + B ——m—, [te3] » 1,
c+ 32 sen(t¢?), [te3] « 1.

Remark 5. The &(t) norm of self-similar solutions is preserved due to this norm
being scale-invariant.

Our goal in this paper is to construct solutions u to which blow up at
time 0 as the sum of such a self-similar solution S and a prescribed (more regular)
perturbation.

Let us outline the scheme to derive a precise statement and its proof. Using estimate
, one can hope to bootstrap the L® norm of @. In order to control the & norm,
we need another key ingredient: the scaling operator Iu, formally defined as

T
Tu:=zu + 3tJ Orudx’,
—0o0

or equivalently in Fourier variable:
—~ 3it
(1.5) Tu(t,§) :=i0¢t — ?ata.
As it can be seen in Fourier variables, the L? norm of Iu is intimately related to
that of d¢ti. A direct computation yields

(0 + 03)Tu = 3u*(ITu),
and thus

(1.6) %Hfu(t)H%? < Juz(Iu)qudx
(recall [7, Lemma 6]). As it is clear from and ([1.6), the problem is marginally
singular at t = 0. This should not come as a surprise, due to the L!-critical nature
of the equation. For positive times away from ¢ = 0, these estimates are
sufficient to construct a solution over the space & (see [7]). To explain how to
improve the behavior at ¢ = 0, let us look closely to and forget the R term.
If, for some reason, one had |u(¢,£)| < (£)~¢ for some € > 0, then

2
u
< Uuuz(Iu)2dx' < ||f(”|1u(t)liz-

3—e
2091 < Tz sup {10 1O} < 52,

which can now be integrated in (0,¢) to produce an L* bound on @. There are two

problems with this approach: first, as one may expect, self-similar solutions do not

enjoy any extra decay in &; second, an a priori bound for the extra decay would
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have to go through the profile equation, where one finds once again the 1/¢ behavior
at t = 0. On the other hand, if one had |a(t, &)| < t¢, then

31€ 1
|0v(t, €)| < é;@sgp{teﬂ(lﬁ)lliw} S

and the integration becomes possible on (0,t). Unfortunately, this assumption is
even more problematic, since it implies that @(0,£) = 0. It becomes clear that an
extra decay in either frequency or time would suffice to derive an Lzo bound. The
key idea is to decompose u as

(1.7) (t, &) = S(t, &) + 2(t, &) + w(t, §),

where z has extra smoothness and we aim at bootstrapping information on
The self-similar solution, despite its singular behavior, is an exact solution with
precise asymptotics in both space and frequency. The regular term Z can be chosen
sufficiently smooth in space and frequency: in fact, as no polynomial bound in
time is necessary, we will assume Z constant in time (that is, it corresponds to the
linear evolution of the perturbation). The remainder term w will satisfy a bound
|w(®)| e <t and it will measure the interaction between the self-similar solution
and the localized linear solution. The equation for the remainder w is

(1.8) W + Opppw = 0, (u® — S*),  w(0) = 0.

Observe that, since the evolution of the regular part z is linear, no a priori decay
and smoothness estimates are necessary. The problem is completely reduced to the
existence of w over & with a polynomial bound in time. From the above discussion,
the L® bound on @ should hold and we are left with the a priori bound on Iw, for
which the equation is

(0 + 2w = 3 (u*(Iu), — S*(I1S),) .

It is at this point that another decisive feature is revealed: due to the self-similar
nature of S, (I5); = 0. Thus

(0 + 02 Tw = 3u2(Ie_taiz)w + 3u?(Tw),
A direct integration yields

d
$le\|2L2 < U o lwdz| + U (Tw) Twdz
[ —— u Hgt
S (T B ) ol Tl + —2 2w,
Since
, 3t . ,
F(Ie™ % 2), = —ieF(Ie "% z) = ¢ (ag - 56t> (e 2) = £ 02,

the factor |[(Te=%%2), |2 = [€0¢Z| L2 causes no further singular behavior at ¢ = 0.

As Iw =0 at t = 0, this inequality can now be integrated to produce a polynomial
bound on Jw. Here we see the importance of I: it provides essential a priori bounds
while completely canceling out the self-similar background.

The decomposition of u is quite natural. If S = 0, then w is just the Duhamel
integral term, for which one may indeed expect a polynomial bound by applying the
H? local well-posedness theory. The point of this work is that self-similar solutions
do not disrupt the classical theory, even though they do not belong to the usual
spaces involved in the Cauchy problem. A solution with a self-similar background
can still be obtained as a perturbation of the linear flow.
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Remark 6. Speaking loosely, self-similar solutions appear from the underlying struc-
ture of the equation and not from any specific balance between nonlinearity and
dispersion (as it is for solitons). Their blow-up behavior is caused by the equa-
tion itself. Being unavoidable, it should also be stable. This is in strong contrast
with soliton-related blow-up, where the singularity comes from the precise structure
of the solution. There, small perturbations may obviously lead to strong unstable
behavior.

We now state the main result of this paper. Define the space of admissible pertur-
bations

Z:={2e S'R): |l2ll := lz|cr + [KE)*2NLr + I<E)0e2] Lr + [60¢2] L2 < +o0}.

Theorem 7 (Stability of self-similar solutions at blow-up time). There exists dg > 0
and C > 0, such that, given z € Z and a self-similar solution S € &((0, +0)) with

(1.9) 0 := ] < do,
there exists a unique w € &((0,40)) N LP(R*, L*(R)) satisfying
(1.10) V>0, [w®t)|sw < CB*tY? and |w(t)|p2m < C6* VS,

such that u(t) = S(t) + e %z + w(t) is a distributional solution of [MKAV)) on
R* x R and

as t— 0T .

u(t) — S(t) —» 2z in L*(R)
a(t) — S(t) » 2 in L(R)
Remark 8. From time reversibility, one may solve the problem for negative times
and glue the solutions together. Thus one may actually go beyond the blow-up time.

After some careful considerations, this is not that surprising: over &, the self-similar
solution does not present any sort of blow-up behavior at ¢ = 0.

In order to prove this result, we first need to understand how the various components
of u interact in the nonlinear term. This is done in Section[2} Afterwards in Section[3]
we construct an approximation sequence by cutting off high frequencies (Proposition
and prove the necessary a priori bounds in & through a careful and well-suited
bootstrap argument (Proposition , where the structure of the approximation is
crucial. Finally, in Section [ the limiting procedure yields the claimed solution
on a small time interval, which can then be extended for all positive times using
the global results of [7]. The uniqueness statement follows from a direct energy

argument (Proposition [L6).

1.3. Acknowledgements. We would like to thank Luis Vega for his encourage-
ment and insightful remarks, and the anonymous referee for his careful reading and
comments which improved the manuscript.

2. LINEAR AND MULTILINEAR ESTIMATES

In the following, the variables £, &1, & and &3 are linked via the relation

§=6&1+& +&3.

We will perform a stationary phase analysis, with the phase

P =P(&,86) =8 (§+E+8) =3(-&)(E—&)E-&).

Consider the trilinear version of N defined by

N[F. 3. h(t.€ j f ¢ F(t,€0)(t, E2)(t, £3)dE 1 dEs.

51 +&2+E€3=



Before we give some bound on N with terms in w or Z, we first study an anisotropic
version of N. Indeed it turns out in the energy estimates involving the dilation
operator I, that some terms can not be interpreted as a full derivative (mainly
because the equation for w has a source term). Therefore, we will also need a
bound on a term of the form N [5’ .S, v], but where the weight & (associated to the
derivative in physical space) only falls on the v term.

Lemma 9. For any 0 <t <1, if f,g,h e &(t),

ey |[[erieneshennda| < islololaolbleo

@
Le

Compared with the expression N, the difference is the multiplier £3 instead of £. We
could present an almost identical proof as done in [7, Lemma 7 and Appendix A]:
there, the estimates are more precise, with an expression of the leading term and a
sharper bound on the remainder. For the convenience of the reader, we provide a
full proof of in Appendix A.

As an immediate consequence, there hold a trilinear version of Lemma

Lemma 10 (L® bounds in &). For anyt >0 and f,g,h € &(t),

- 1
(2.2) INLf. 9. 81,1 < S flewllglsw Plls .

Proof. As £ = & + & + &3, it suffices to invoke and the symmetry in the
variables.

Of course, estimate (2.2) can also be derived from polarizing —. We refer
to [7, Lemma 7]: actually its proof (in the appendix there) is done for the trilinear
version N[ 1.3, iL], and gives in particular . O

The 1/t decay in cannot be improved, in view of the leading terms in ;
one can also notice that the 1/t rate is optimal because the bound only involves
only the critical norm &(t). For the same reason, the 1/t decay is optimal in
as well. However, if one of the functions involved in N is better behaved, namely
belongs to Z, we can gain some decay in time. This our next result.

Lemma 11 (L* bounds on terms with z). For any0 <t <1, z€ Z and v € &(1),
one has

o 1
(2.3) INE2, 9, 8]0 = w7 l12lllo ),
L 1
(2.4) INE2. 28]z < S ll2l*lvlew,
(2.5) INTE 2 2]l e < 211

¢
Proof. Estimate ([2.5)) is direct : we simply bound by

IN[2, 2, 2](t,6)| < (J ([&2] + |&2] + §3|)2(51)2(52)5(53)d51d§2>
§1+E€2+E3=¢
S 2171820 L < l2)1°

We now prove , simultaneously. For each fixed t € (0,1] and € € R, we
split R? into several domains .27, %, etc.. For each of them, we consider various
cases depending on the relative size of the frequencies involved with respect to ¢ (of
course, the implicit constants do not depend on (t,£)).

To shorten notation, we denote

I = N[2,5,5)(t,6) and I» = N[Z,2,7](t€),
7



and, if 2 = R2, we denote 1(2), I5(2) the corresponding integral where the
domain of integration is 2 instead of R2.

Case o . Let o = {(&1,&) € R? : |&1| = max(|€], |£2])/100}.
The bound in this case is direct. Indeed,

L) % I¢ (6 (j d@) ol < | JeiPlaeide ol
|€11=1¢1/10 1€2]<10[&1] R

< K& 2l vl -

Similarly,

[I2()| 5 [€] L |2(61)2(82)|d61d82 0] = < K2 L1 2] Lr vl sey < M2 0] e)-

Case B. Let B = {(&1,&) € R? : [€] = max(|¢€2]/10,10[&1])}. Here we consider
several subcases depending on the size of t£3.
Step (£.0). If [t&3| < 10%, then
111 (2)] < |€|J [8]d&2|2] 21 3] e < €72 L0l < t%\l\ZlHHvHi@w
|€2|<10]¢]
We bound similarly

[12(B)] < €212 0] < ﬂ%HIZ\Hzllvllgm-
For the remaining computations in Case %, we assume that
te3] = 10,
and we further split the domain % by letting
B ={(61,62) € B ||&] — |&2l] <a} and By = B\%,

for some 0 < a < [£|/10 (depending on &) to be fixed later. We will perform an
integration by parts using

P _ o (pit® 7
& (<) itde, P
where j = 1,2 and recall that
O, @ = 3(532, - 532') =3(& + &) (63— &)
Notice that on 4, |(7§j£j<1)| < |€]. Also, an extra care should be taken with the
boundary terms, as © may have a jump at frequency 0. To this end, the domains
of integration are meant to be deprived from the lines £&; = 0 or {5 = 0, while the
boundary terms are always meant to contain the corresponding portion of these
lines. This is why, throughout this proof, we change from the standard notation

and denote by JA the boundary of A\({{z = 0} U {{5 = 0}). This does not weigh
on the estimates, as we will use the ||0|» bound to control the boundary terms.

Step (%.1). On %y, we have [& + &3 —&| = [&1] < [€]/10 so that |§; + &3] = 9]€[/10.
On the other side, ||&2] — €3]] < a < [€]/10 is small relative to |2 + &3] this implies
that |§2 — gg‘ = ||52| — ‘53” < |§|/10, and we infer

&2 — £/2], & — £/2| < [€]/10.

As a consequence, |&3] — |€1] = [€]/2 — |€]/5 = |€]/4 and so |0, ®| = [£]. Therefore,
we perform an IBP with respect to &;:

nel<fe [ e (Grgaeite) ) i ehade
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+ €] |2(&)0(t, €2)0(t, &3)[do (&1, &2)

_r
0% t|a (I)|

IE\J t||§||4z &)||o)2- + tmz|a€z(£1)‘”71”modfld§2

T j@ @v €0)10¢(E3) 5] - dé1 d

1 .
vl eplllElEdo(e &)
On Ay, for fixed &1, &2 — (€ — &1)/2]| = |&2 — &31/2 < a/2, so that

£
)|dé1d dés | d
|§|J t|§|4| A&l £2~tlfP’f' &)l (flﬁz—(ﬁ—fl)ﬂsa/? 52) “

< -2l
tl¢[? ’

1 1
02 (6)|dErdEr S — | |0e2 dé, | d
|§|Lg1 tlfl2| et )ldhndts = tl¢] JR‘ o) (LQ(E&)/KW £2> ‘

a
< —— 02| 11,
tlel"*
and

1 . 5
€] f TRl lI0cH(E) derde

t|«5|f (@) (f . §1>/2|<a/zafﬁ(5§1£2)d52> de,

1/2
1/2 oy
z a Z v

We see on the second bound that one requires a « |€] in order to gain over the 1/t
bound.
For the boundary term, we have

€[ eplEelanten ) <

[20zr-

t|§|
Therefore,

a a
(2.6) |I1(<@1)| < <tf| + 7t5/6‘§| + m

1/2 1

) s ol

Step (2.2). On P, ||&2| — |€3]| = a. Also, as |&1] < [£]/10, [&] + [€5] = 9[¢/10 and
0 |0g, ®| 2 al€|. Here, we perform an IBP in &:

S (mj FU(0. (0.6 ) (6 derde

I | e )R 0 €9l 6 &)

Ie
skl | §|2 Al + sog

el Lg g Sl i) dérde

12(€0)[1060(E2)|[[0]| L= dE1dE

1 . N
el L T PN do 6 &),

9



Observe that all derivatives fall on @ (or @, but not 2), the point being that [|0¢0| .2
is better behaved than |9]p«=. To complete the bounds, we now only use that
€11, 1€2] < €] on %2 as follows

) = 2|§| 2(6)ld6rdes < 1211,

€] g 2010260 + ei(Elderdes

1 N - -

<o | el ( | et + e - & - @)d@) e,
@ Jr [2YN1
Los 1205 (SRS

S ol 2t 3 el ol e

For the boundary term, we simply have
1 1
—|2 d < —|I2|| -
., et &) < st

Therefore,

5 f 1 2
@1 ()| 5 (t" P L) e ol

Step (%.3). We now optimize in a, choosing a = |£|>3. As |¢|'/3 = 10t~ > 10,
a < |£]/10, which justifies the above computations. Using (2.6) and (2.7)), and that
€171 < t1/2, we get

1
L(B)| < [L(#)] + [1(%B2)] < WHZ”WmH”Hé(t)'

We now bound I5(4%). The bounds are obtained in a similar fashion as for I (%)
(they are in fact simpler). However, to sharpen the bound, the frequency splitting
is slightly different:

By = {(§1,62) € Z: [|&s| — &Il < [§]/10} and B5 = B\,
(this corresponds to the choice a = |£|/10).

Step (B.4). For Iy(By), as |0¢, ®| 2 |€|? on By, we perform an IBP in &;:

() <g [ e ( Hei(1.60)) Heiende

it0g, ®
el [ Wwfl)z@z)a(t,£3>|da<sl,§2>

1l ]
|§|f t|§|4 el + 7z

T Lg w|z<51>2<§2>a@<§3>|d§1df2

1 .
Tl Ja el

The gain over the case (#.1) comes from the two factors in z which insure an
LY (d€1dés) bound:

|2|553(51) 2(&2)[0] L dErdE,

(€1,82).

[I2(#4)| 5 |2IIzHL1HvHLw+ 102 ] Lo [ 2l |9] e

t|§|

10
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[20zr19ev]L2 112l 2 + T |21 L 12 ] Lee |19] ee

t|€|

[2l [2lw ol
tlél

tlfl

where we used the Sobolev embedding ||Z|z2 < |2|w1.1 in the last estimate. As we
assumed |¢] = t~1/3 here, we infer

1 . .
(2.8) [12(%4)| < tg?HZHLlHZHWLlH’U”éa(t)-

Step (#.5). For I2(%s), |0e,®| 2 |€]2, so that we perform an IBP in &:

@) < e[ o (rgrent.) Heade

el | ngl)z(@)a(t,53>|do<el,52>

2(&)|10g2(&2) [ 0] Lo d€1 dEa

A

el 1
€[ g eI +

el Lg @|z<sl>||é<§2>||agﬁ<sg>|d§1d52

+¢] L% ﬁli(&)llli\\mHﬁHLwda(&,ﬁz)

A

1
A2 N~ . A
t|f‘2H ”LlHUHL t|£|HZHL1H §ZHL1 HUHL

&l Lr 22210l L2 + S [20r 2] oo 8] Lo

b =
7 7

<
S tmHZHLlHZHWHIIUHg(t)
(recall that 0 < ¢ < 1). Together with (2.8)), we infer

1 . -
112(2)] < |12(B0)| + [12(%5)| < g El e |2lwa [0l -

Case €. We finally consider
=R\ (o U B)
= {(&1,&2) € R? : [&1] < max([¢], |€])/100, [¢] < max(|&]/10, 10&])}.

Observe that on ¢, [§| < max(|¢2[/10, max([¢],[2])/10) = max(|¢]/10,|£2(/10)
so that || < |£2|/10, and therefore |&1] < [€2]/100. Hence |&3 + &2 < |&2|/5,
|€5] = 4|&2|/5 and & and &5 are the highest frequencies (of the same magnitude).
In particular, |6§i§7¢>\ < |€2] on 7.
We argue in € in the same spirit as we did for case %. We split

o = {(&1,62) € € : |1€3] < 10%)

61 = {(€1,&) € € : [1€3] = 10° and [€ — & | < &%},

o = {(€1,6) € € : [1€5] > 10° and [€ - &1] > [&[7°).

(& is now playing the role of £ in Case A).

Step (€.0). On %y, we bound as in (£4.0):

i) < [ leidadlills < 2ol | o, ol
0 2| St
11



1 . -
(2.9) < WHZHLIHWH%OO,

B(@) <lel | €0l lole < 2ol loe [ el

&2|St—

Lo an s
(210) = ilelce |2l o]z

Step (€¢.1). On %1, we integrate by parts in &;: observe that in this domain |£;] <
|€2]/100 and |&5| = 4|¢2]/5 so that

|0e, ®| = 3|67 — ] 2 &%

Hence,

L&) < ]s [ e ( s, @)) B(t, £2)de 1 dEs

té’ @
Tl f{g wlé(&)ﬁ(t§2>«7(t,£3>|da(§1,52)

|0¢2(60)10] 7 d€1dEs

|§|J t|§2|4 N — t|§ ;
T L @\5(51”|a£5(f3)||\17”Lood§1d§2
1
T L eI do(er ).

On %1, €] < |&|, and for fixed &, |¢€ — &| < [€2]*/3, so that

| ! 3 1
|£‘ J\ t|§ |4 | 51 |d§1d£2 N ; J|\£2|>t s |§2‘2 H ”L < t2/3 ”ZHLI
: ; dés
[3 Lﬁ @W&Z(&”d&d& <7 J|52|Zt_1/3 f (1€ = & + |&1]]0e2(&1)1déq) e
1 &

<1 ( 2B ogz) e + azl>7
tflﬁzlztl/s [&al™ 102 ] 1 + €02 e

1
S agl©les,
1 . . 1 A dés
€[ pep el e < | fR'Z(&)'U&Z“/S' B >||§>d§1

1/2
L de
< -2 0eU f 16,12
tH HLl H 3 HL2 ( |&a|2t—1/3 §2|2>

1. . 1.
S e lEle 1060l e = G lElcvlsq

On 0%, since |&5] = €] and [&| = t~1/3, one has ||£2 < tY3. Thus

) N
(2.11) €[ rep el &) < gl
Therefore, we get

1 . .
(2.12) 1L(6)| = 557 (K€ 2] e + 121z lv]Z -

12



Step (€.2). On %, we integrate by parts in &»: observe that in this domain
106, ®| = 31¢3 — &3] = 3l&2 — &lle — &1] 2 &,
Hence we can estimate
) 1 .
@) < ¢ [ oo (agitaie) ) e
(7 zt@ (I)

1
06> t|a q)|

+ €] 12(&1)0(t, §2)0(t, &3)|do (€1, €2)

<lél f tK'ﬁio/g $(60) 1513 0 d€1 6

+ 1€ L Wlé(fl)l(laﬁ(ﬁz)l +10c0(&3) ) |0] o d€1dE

1
wlel [ el Ellidete. ).

On %27 ‘€| < |§2|, so that

1 . 1 dés 1.
e lderdgs <+ < ==llo,
|£|J;€2 t|§2|7/3‘z(£1)| El 52 ¢ j52|>t . ‘§2|4/3 H HLl t8/9 ”ZHLl

1 . - . . dé
|§| J{g2 t|§2|5/3 ‘Z(fl)afv(éé)'dglde g ; fR |Z(€1)| <J|§2|2t1/3 |8§v(§2)| §2|22/3>

1/2
1 N d&s 1 N
<S =2 13U2f —_— < =12 ;1|00 2t1/18
Lt uatocals ( o €2|4/3) Ljsptocil.
1.
< =
~ 7/
€]

On 0%5, we have, as in |§ |5/3 < t2/9 5o that

R 1.
€] L% W|Z(£l)‘d0(€l,€2) < ﬁ”ZHLl-
Hence, we obtain
.
10(%2)] < l2le ol

Together with (2.9) and (2.12), we infer that

1
L@ = w5zl -

Step (€¢.3). We now bound I on
%3 = %\% = {(51752) €T : |t€2|3 > 109}.

For Iy, we don’t need to further split the domain. As for %), on %3 we integrate
by parts with respect to &;. In this region, |£3] = 4]&2]/5 and |&1] < |€2]/5 so that
|0, ®| = 3|&F — &3]% 2 |&2/*. Hence we bound:

) < ¢ [ e (m 526006 ) dedrde

+ €] 12(€1)2(&2)0(¢, &3)|do (&1, &2)

0Gs t|a P|

3 .
<t | B+ n

13



’ L @'2(51)2(52>965<£3>Idfldgz
vl s o6, 6.

On 63, [¢] < |&2| and ﬁ < #1/3. Hence

A

&l s
€[ geailetens(edcidss

1 R
€ f(g el e

1 1
o [ ez < e,

A

1 R 1 ) X
2/3 JR |0e2(&1)2(&2)[d€1dEe < %HaEZ”LIHZ”IA
and

1 ) - )
€] Lg w|Z(51)Z(£2)8£U(t,53)|d£1d§2 S ah J |2(&1)| <j |z(£2)65v(t,§3)|> dés

1 . N . 1 . .
S i el l2lca1060] e < el 2l e lvlec-

On 0%3, we have similarly

1 1

€], dep o6 &) < gl

Therefore
1. .
[12(%3)] < tg?”'zHLlquwlvluvng(t)-

Together with (2.10), we conclude that

Lo s
12(€) = el [2lwa vl s

Conclusion.
Summing up the bounds obtained in cases &7, % and ¥, and observing that these
cover R?, we conclude that

1 .
1] 5 55 KO2wa lolz ),
Lo s
12| 3 £l [2lwaavls ). O

Lemma 12. Given te (0,1), z€ Z and v € &(0,1),

1 T . 1
lo(t,z)] < WHU@)H&@), e "% 2(z)| < min (1» W) (4B

<:L'/t1/3>1/4 s
1020t 2)] S 55— v(®)ls ), |0ze ™" 2()| < |2l

In particular, u = v + etz satisfies
s () = < %Hv(t)\\g(t)(l\v(t)||g<t) + 121 + =112,
lu@)] L= < t%llv(t) lew + Izl
and  fu(t)|ze S ts%\\v(t)l\gm + 2]l

In the above bounds on u, observe the gain in powers of ¢ on the z terms.
14



Proof. Since (€)% € L*(R), one has directly e=*%z € WL (R). Also, 2 € L%(R), so
that e~% z € L2(R). In particular,
_ 423
le™% 2]z < |=Il.
Furthermore, by [, Lemma 6],

1

vt S T Olsw,  lato)l s </ ()

It remains to prove the pointwise spatial decay for

(et 2)(z) = tl% J Ai (i;;’) 2(y)dy.

Recall the well-known estimate for the Airy-Fock function,

| Ai(x)| < (o)~

).

If |z — y| < |z|, then

(7% 2)(2)| < (tll/3f| —yl<] |<xt1—/3y _1/4<$>_1dy> el

(=N 1
S\ s (@) H|Z\H~WH|Z\H~

If |z — y| = |z|, then

%, T —y 1/4 1
(e S an J< 173 12(y)ldy < WWHLL

For the uu, estimate, one notices that

—tod

Wiy = VU + vge P2z 4 ve 1% 2y 4 (e‘tazz)(e_wlzm)

The first two terms are estimated by observing the cancellation of the (x/t'/3)1/4
factor. For the third term, the estimate is even better:
2 423 1
o 2l e < folzele™ 2o < oz lo@llog 2]
The quadratic term in z is bounded by a constant. The other estimates on u are
easy consequences. O
3. CONSTRUCTION OF AN APPROXIMATION SEQUENCE

Now that we possess the necessary estimates, let us begin the construction of the
error function w in the same spirit as [7]. Fix x € S(R) such that 0 < x < 1 and
x =1on [—1,1] and let x, (&) = x*(£/n). Given u € S'(R), set

ITn\u = Xn’a
and define the approximation space at time ¢t > 0
Xo(t) :={ueS'[R): |u|x,@ <o},

where

lulx. ) =

eit&BﬂX#HLw n Hag (eitg?’ﬁ) X;1/2‘

L2’
If I < [0,+0o0) is an interval,

1/2HL27

lullx, 1) == sup [u(t)] x,, ) = sup |[a(t)x,  |ze + |Oci(t)x
tel tel
and
Xo(I) = {u e C(I,S8'(R) : ix;' € €(I,6(R)), dciy; 2 e €I, LQ(R))} .

15



Keeping in mind we are looking for a solution that decomposes as u(t) = S(t) +
et 2 +w(t), we consider a suitable approximation of the error w by cutting off the
nonlinearity at large frequencies. However, as we expand the nonlinearity, we need
to address the linear term in w, (SSw),: for this, we also truncate the self-similar
solution. In order to keep the self-similar structure, we set

Sn(t,€) = xa(t°€)S(t"%¢).
This cut-off is well-behaved in &
1Snllg(0,00)) = [Snley = 1%nSlLe + [0 (xnS) |22
S ISl + 1025 L2 + 102X 2[5 e
< [Sleq)-
The resulting approximate problem is
Oty + 03uy = T,0,(ud),  un(t) — Sp(t) » 2z ast— 0T,
Writing
un(t) =: S (t) + ez + w, (1),
one arrives at the (equivalent) problem for the error wy,
(3.1) Oywn, + 03w, = 1,0, (ud — S3),  w,(0) = 0.
Observe that, in frequency space, this equation reads as
215 = X (NTiin] — NTS]).
Proposition 13. Given z € Z and a self-similar solution S € &((0,+)), there
exists T, = T, (2, S) > 0 and a unique mazimal solution w, € X, ([0,T,)) of (3.1),

in the sense that if T, < +c0, then |wy|x, ) — +o% ast — T, . Moreover, there
exists 0 < TV < T,, such that

Vi e [07T2]7 HwnHX () Snt /3

Remark 14. Since w,(0) = 0, @, will not have any jump discontinuity at £ = 0.
Therefore 0¢1,, will be bounded in L?*(R) (see Proposition .

Sketch of the proof. In this proof only, the implicit constants in the notation <
are allowed to depend on n (without further mention). The proof follows from a
fixed-point argument in X,,([0,T]) for the map ¥ defined as

B[] (t,€) = xn@)j (N[in] — N[8,]) (5, €)ds.

0
for some 0 < T <1 to be determined later. Let us consider the source term
NSwSn At =i | f G (1, €0) St €2)3(65)d61dEs.
§1+8&2+8&3=

The idea is to place the z factor in L! based spaces. To bound the L® term in the
X,, norm, we estimate

IN[Sy, Sn, 2](t, )]
<513 j j I6a] + €] + 1D xn (F/360) xn (H362) 265 dErdes

§1+&2+83=¢
[S]13 ) 15]2.. )
< tg/Lg, 1€xn Lo [xnll 2 [ 2] 22 + tl/Lg, Ixnll o [ xnll L1 [KED2] 1
1 R -
< 2 [xn]z= Ixn L2 IKE)2 ) L1 1S oo -

16



Therefore, for t € [0,1],

850,20 0ds) 5 [ D KOl bl KOs
LCD
(32 S OPKExnl e bn |2 K2 1810

For the estimate of the L? term in X,,, we have to bound in L2

G200 (xal6) [ [ (VT80 05,0085 ).

This requires us to consider the following three terms:

Xn 20 (Exn(£))

%N[sn,smz]u,o

< 122152 H X (360 (3 2) 5(65) d
§1+82+83=¢

1 . _
< 10:(Exi2(€)) ml\xn\\LIIIZHLIHXnHm 1513

X2 (e) ﬂ HEe®) €5, (1, 61) 5 (1, 2) 31, E3) dEr s
§1+E2+E3=¢

< 1 2©N15)3- ﬂ HE? + €2 + E2)xn (360 )X (1/382) | 2(63) | dErde
§14+&2+E3=¢
< X2 ONKE 11 IKE 2 11 1€ X 11512,

NL2E)N[Bn, 8 062](1,6)
< 211512 ﬂ (€0 X (1362) 0 (63 d €

§1+82+83=

< 6 () tl/g Ixalzsl2lwa lxal e S7e.
Since Xn € S(R), these terms are bounded in L? and
;1/2(5)65 (XnN[gn,Sn72](S,£)) 12 <

After integration in time, we get for ¢ € [0, 1]

a0 (xan A9 )

and so, together with ({3.2] ., we conclude
¢

‘ Xn J NSy, Sn, Z](s)ds
0

The others source terms (where z is quadratic or cubic) can be treated in a similar
fashion (and are actually better behaved).
Similarly, let us consider the linear term N[S,, Sy, W,]:

I[85 ] (1,))
5 (X 1 f f JEr] + 1€l + €31 xn (/360 X (/362) v (€3) dErdEs

17

3510 2]

\ < P13,
L2

< P1S(Z 1.
X5 (1)




- 1 1
< 81 lwnlx, 0 (tmlfxnllm XnlZr + tl/?,xnlleanﬁxnu)

1 -
< i [xnlz= [xn 2 151200 1wl x., 0)-

Hence, after integration in time,

(3.3) < 43 wn x, 0,01

L®

t
J N[5, 5,1, (s, €)ds
0

For the L? term, we have

x;”%g@xn(f));mémSn,wn]@,s)\

< 1€ ENNIS 2w i (B j f N (030 X (1/36) o (€3

1 .
< |65(€X}1/2(§))|ﬁ|‘XnHL°OHXnH%IHSH%T« wnl x, @),

() H HEe®) € S (1, 1) (b, €)1 (1, €5)dE1dE
E1+Ea+E3=¢
< 1312 i () e [EX2(E)]

« [[ 16 + 8 + D Pemn P eE dads
< 12O Xl e Il 1 r hwal . 0
(€N TS0, S eal (1,6))
< IS [ a6 (0562) et ) derde
A e I

1/2
x f ( f xi@”?’sl)xn(fg)d&) o (£33

O 1 1/2
~ 71Lz %00 nll Xn () 7173 IXnII L [ Xnll g1 n|Lt-
< 1632187 [wal 775 IXnll e lxnl 2l

Therefore, taking the L? norm in & gives

20 (0 NS, S 0] (1))

Lo SIS |

Xn(t) :

Integrating in time, we get, for ¢ € [0,1],

' X /0 (xn J: N[5y, Sy, 2](s)ds>

and with (3.3)), we obtain

All the remaining terms can be estimated similarly (and enjoy in fact better bounds)
and the difference estimates can be performed in the same way as well. Choosing
T sufficently small, ® becomes a contraction over X, ([0,7]). This concludes the
proof.

< )8 2 o

X, ([0,¢])»
L2

t ~ ~
o f N[So, S, ] (s, €)ds
0

< 1S L o0
Xn(t)

18



In order to take the limit n — 00, one must prove that the maximal existence time
T, does not tend to 0 and also that the approximations remain bounded in &. To do
this, we actually prove a priori bounds in the stronger spaces X,,, thus tackling both
problems at once. The methodology to prove this follows the heuristics presented
in the introduction, formalized in a suitable bootstrap argument; we emphasize
that the specific structure of the X,, spaces will be used throughout the proof of
Proposition [T5] below.

In the remainder of this work, we now assume that, for some small § to be fixed

later on, (|1.9) holds:
2l + 1510, +00)) <9

In order to bound J¢w,,, the scaling operator I comes into play: we recall its defi-
nition given in (|1.5)

—~ ) t

IMLQ=MM3G¢—Zam>
Proposition 15. There exist 6o > 0 such that, given 6 € (0,d0], the solution w,
of Proposition |15 satisfies T,, > 1 and
(3.4) Vie (0,1, Jwn(®)]s@ < 837 and  |wn(t)] e < 851,
Moreover, O¢iiy, (t) € L*(R), dpby,(t) € LP(R) and

53

(35)  vie©1] [0l <P and 0], <

Proof. We perform a bootstrap argument. Fix dg € (0,1) and A = A(dp) = 1 to be
chosen later on. For now, we only require A53 < 1. We let 6 € (0, &o].
Define, for any t € (0,7},),

Fult) = 79 (it o+ et 2] 2

and

T, = sup {t € [0,min(1,T},)) : Vs € (0,¢], fn(s) < A5},
In the following argument, the implicit constants in < do not depend on § or A.
From Proposition [13] f, is continuous on (0,T,) and f,(t) < tY/*® for t € [0,TY],
so that f,(t) — 0 as t — 0". In particular, 7, > 0.

Step 1. Improved estimates on the nonlinear term.
First observe that

(3.6) Vte (0,7n),  [wn(t)] e <t falt) < APV,
Using the estimates from Lemma [12] for all ¢ € [0,7,],
Ju = S22 < (Jwnlfe + 1Slie + 1™ 230 ) (lwalis + e 2] 10)
1 2 1 2 2 1
S M\\wn(t)“g(t) + W\\Sn(t) I + =l m”wn(t)”g(t) + l=ll
1 3\242/9 | 2 A§3tH/0
$EE(M6)t +0°) o).

Recall that 462 < 1 so that A83tY/? < 6, and so

3 3 A& 53
(37) Vt e [O,Tn), Hun — SnHL2 < M + W
Let emphasize the gain of t'/9 with respect to the rough estimate of Lemma
) . ol
HU HL2 = H’UHL() ~ T5/6

19



Step 2. A priori estimate for Iw,. In this step, we prove that
(3.8) Vi e [0,7), HIw ;WH < (t1/18 + A52> .
L

Let us notice that from the equation for w,,, Lemma [I2] and Proposition given
t<TP,

[Twn®x 2] < 106 (X |1 + 3 2 F = S2)] 2
< 10ea (DX /2 2 + 3t — 531
< wn(®)x, 0 + /908 + ()%, ) S 672 + 8505 +1).
We conclude that

(3.9) Yy < 1/6, len S20 — o) as t—0T.

L2

Now that we have a control near ¢ = 0, we aim to control Tw,, for 0 < ¢ < 1. Denote
I, u(§) = X, (§)u(§).
A simple computation yields
(0r + 02) Twy, = 310, (u2 (Tun )y — S2(1Sn)s) + I, (ud — S2),
— 310, (u (Twy).) + 311, (u2 (Te™'% 2),) + T, (u® — S2),,

where we used the decisive property (1S,), = 0. Equivalently, on Fourier side it
writes

— L a 13 . .
O Twy, — i&3Tw, = 3xnF (ui([wn)x) + 3xnF (ui([e ¢ Tz):c) + X F (ui - Sfl)

We now multiply by I/w\nxr_l I integrate on R and take the real part. Due to the jump
of u, at £ = 0, an extra care should be taken in the computations: one should first
integrate over R\(—¢,¢) and let ¢ — 0. This procedure shows that no unexpected
term occur, we refer to [7, Lemma 13] for full details. This justifies the following
computations-

5 J|Iwn\2 Slde = 3Jf(ui(lwn)x)l/z-u\nd§ + SJf(ui(Ie_taiz)w)I/w\ndf
Xn 3 3\ 7o
—Im §X—]—'(un — S Tw,d€.
Now by Plancherel and integration by parts,

f}'(ui([wn)w)lwndg = — Jui([wn)w(lwn)dx =3 J(un)$un(1wn)2d:)§
2 s
02 —
| Pz Tonde] < S irnli < 1w,

U F wi(fewxz)xﬂwndf‘ < w2 (I 2), | 2 | Twn 12

—td3

< JunlZoe 1(Te™*% 2)0 | 22 | Twn | 2

2

1)
<
~ $2/3

UfX”fu 59 Iwnd£’—2U£ L2Y F(ud — %) Tan v /2de]

i 5~
1€0¢2] 22 {wnllz2 S 57 Hwnl Lz,

< 10 uellul, = Sl | Twax 2 e

A BN\~ i,
<t13/18 + t5/9> | Twn x| 2.
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(We also used (3.7)) for the last estimate). As 0 < x,, < 1, HI/w\nHLz < Hl/w\nxﬁlpHLz.
Therefore, we obtain, for t < 7,,

2 &3 As® 1
-1/2
2 <t2/3 + <t13/18 + t5/9>) le” )Xn

This implies that, for some universal constant C,
d (t—zca H —1/2H ) < 201205
dt

Now, for § < &y small enough, 2C6% < 5/18 so that the right hand side is integrable
in time and due to (3.9), ¢—209° H.ﬁv\n(t)xﬁl/QH — 0 as t — 0%. Hence, we can
L2

integrate the above estimate on [0, ] and get

vt € [0,7,), len ;1/2HL2 < 534518 (t1/18 - A52> :
which is .
Step 3. A priori estimate for dyw,. We claim that for all n € N,

. _ 1
Ve (0T, o0 e < len®low (len® ) + 15130

1
(3.10) + il (@l + 18T + l=12)

Indeed, we have

71/2

I
2dt H wn(t

< N ”I/u}\’ﬂ(t)X’r_Ll/z

L2

L2’

&3 AS°
#2/3 T 413/18

Ovn ()Xt = N[S, + 2 + 0, (t) — N[S,](t).

For the nonlinear terms with at least one z, we use Lemma which gives the
pointwise (in &) bound

1
75 ISlsq) + lon®)llsw)’llz Hl+t2/3(\|5\|g + Jwn (@le@) 121 + 2]

The remaining terms are N[S‘n, S, Wp], [Sn, W, Wy ]| and N[y, Wy, Wy ] (they all
have at least one w,,). Using Lemma they are bounded pointwise by

1
;(Hsﬂg(l) + [wa ()l e @) [wn -

This gives (3.10]). If we restrict to the interval (0, 7,,), using (3.6), and Aé% < 1, this
rewrites simply

5 N §3
(3.11) Vi€ (0,tn), [orin()xn'], . < vk

Step 4. Bound on f(t). Let us bound separately the two terms of f,. First, after
integration in time of (3.11) (recall that |@, (t)x, |L= — 0 as t — 0), we get

(3.12) Vie [0,7],  lwn(t)x; e < 0562,
Second, in view of the definition of I, we can write
D¢ty = —ie€ T, + %atwn = i Tw, + 3te "y, F(ud — S3),
and so, using (3.8) and (3.7), we infer
H%wx”w < P2, + 3t — S3e

< 53t5/18(t1/18+A62) +A65t5/18+53t4/9
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(3.13) < 033 4 ASPE1S,
Estimates (3.12) and (3.13) give that, for all ¢t € [0, 75,],
£ult) = 7 (a0 | + 701 ey e
<19 (53151/9 +t71/6(53t1/3 +A§5t5/18)) < 6% 4 A8

Let us remark that both terms in f,, contribute (the leading powers of ¢ cancel for

both).
Since A2 < 1, there exists a universal constant M such that
(3.14) Vte [0,7.], folt) < M.

Step 5. Closing the bootstrap. Choosing

1
0o = min{m,q/ggc} and then A =1/62,

Step 2 and (3.14)) imply that
A

Ve [0, falt) < 50

From a continuity argument, we necessarily have 7,, = min(1,7,,). But if 7,, < 1
then we also have

sup [wn(t)x,0) < sup fu(t) < A5,
te[0,Ty) te[0,T)

which contradicts the maximality of T, in Proposition[I3] Hence T,, > 1 and 7, = 1.
As |wy(t)|s@ < tY°fa(t), this gives the first part of (3.4). Also notice that
|02t (t) |2 < 98 f,(t), and in view of (3.11)), we also obtain both estimates
of (B.5).
Step 6. L? bound on w,. Finally, we will prove that
(3.15) Vie [0,1],  [wn(t)xi 2|2 < VAS /S,
(3:12) gives that, for each n, [[w,x,; 1> < Ad%tY? so that one has for free that
wnX;U2 e L*([0,1], L?) and for all t € [0, 1]
(3.16) i (X2 2 < im0 [ XY 2 S ASP,
Since
Opty, — i€y = —i€xnF (uf) — 5),

multiplying by w,x;;}, integrating in ¢ and taking the real part

2dt f|wn 2y tde = —ReJig}'((u — S3 )i, de = J — 830wy dz.
We claim that

1 .53
a0 | [ - showunde] 5 ¢ (lual®llacy + 1SuT0) + 113

(lwalZe + 12l ot [wa (®) o)) -

To see this, we expand the terms (made of 4 factors) and split them depending on
whether w,, occurs at most once or at least twice. In the following discussion, the
factors vy, vo stand for either one of w,, S, or et 2.

For terms where w,, occur at most once, e —t92 2 also appear, and they all can take

the form
J’Uﬂ/‘Q( 2)Opwndx = f]: (v1v20,wy ) F (e —to z)d§,
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which is bounded by

A3 ~ ~ e~ N
| F (010200wn) [ L= [ F (€™ 2) [ 21 = [ N[D1, D2, itn] (8) ] 2= 2] 21

1
Tlor@®ls @ llv2(t)

where we used Lemma [J]in a crucial way.
For terms where w,, occur at least twice, by integration by parts, we see that they
can all take the form

A

e llwn ()o@l

J~aw<v1v2>uun>2dx

and so, they are bounded by
1
102 (vr02) @) [ [0n (B 72 < S lor (Bl o o2l lwn B2
This proves (3.17).
Since |wy|r2 < Hwnxgl/2|\L2, and, by Step 5, |wn(t)|s@) < A83tY9 (valid for

€ [0,1]), (3.17) implies that

d —1/2

. & -
OG22 | < 5 (i (x5 25 + A6*)

Recalling that from (3.16]), Hzizn(t)X;l/QHLz = O(t'/?), a Gronwall argument as in
Step 2 gives (3.15). By Plancherel, the L? bound in (3.4) follows. O

4. PROOF OF THE MAIN RESULT

Proposition 16 (Uniqueness). There exists a universal constant K > 0 such that,
given n > §2/K? and T > 0, there exists at most one solution to (1.8) satisfying

Ve (0,71, w®lew < Ky and Jw(®)]z <.

Proof. Suppose wi,ws are two solutions in the above conditions and set w = w; —
wq. Then

3

Ovw + Bw = (U3 —u3)a, uj(t) =S(t) +e %z wi(t), j=1,2.

Observe that
lur(B)[ ey, lua(t)|e@w <6< Kyn.

Define A = supye(o 7t~ "|w(t)| L2 (which is finite by assumption). Direct integration
and Lemma [12] give that for all ¢ € [0, T7,

t 1 t
Ol < | [0t = d)owdods < 5 [ 108+ -+ et s
t 2 2
< CJ B0 g omgs < %A%Q".
0 S

Dividing by #? and taking the supremum in ¢ € [0, 7], we get A% < CTKZAQ, which
implies A = 0 for K2 < 2/C. O

Remark 17. In [1], forward uniqueness of solutions in & was obtained for strictly
positive times. The argument goes through an estimate for the L2 norm on positive
half-lines (which is finite for elements in &). The bounds given by Lemma give a
behavior of 1/¢, which must then be integrated in (0,7"). This can be compensated
if one assumes the polynomial growth [w(t)|zz < 7. In conclusion, this strategy
can be used to provide an alternate proof of Proposition but not to further
improve it.
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Proof of Theorem[7 Consider the approximations w, defined in Proposition
By Proposition [15] these solutions are defined on [0, 1] and
(4.1) ()o@ < O, Jwa®)llze < 6°415,

Notice that we also have, for ¢ € (0,1],
3

|Octin ()22 < 6°°/* and |0y (8)] 1= < 7
so that, by Sobolev embedding,
(42)  Vte[0,1], Vé, &R, |Ba(t,&1) — @a(t )| < 8 B[6 - &|'V2,
and,
(43)  Vintoe[0,1], VEER, |ia(t1,€) — dalta, )] < 8°117 — 15°).

onsequently, for any R > 0, (W, )nen is equibounded and equicontinuous on [0, 1] x
C ly, fi R> 0, (w i ibounded and equi i 0,1
[-R, R]. By Ascoli-Arzela theorem,

Wy, — w  uniformly in [0,7T] x [—R, R]

and  satisfies (4.1)), and ([4.3). In particular, w € &((0,1)) nL*((0,1), L*(R))
and bound (|1.10) holds.

We now prove that w solves in the sense of distributions. Since w,, is uni-
formly bounded in &((0,1)), Lemma (12| implies that w,, is also equibounded and
equicontinuous on [g,1] x [-R, R] for any € > 0 and R > 0. Thus

w, — w uniformly in [g,1] x [-R, R].

Since
1

{173 [1L/3Y1/A
the uniform convergence implies that w,, — w in L ((g, 1), L5(R)). The exact same
reasoning also yields S,, — S in L®((e, 1), L5(R)). These convergences can now be
used to conclude that
(ud - 83), — (u® = S83), in 2'((¢,1) x R)
and that w satisfies ([1.8) in the distributional sense on (0, 1).
To extend the solution up to ¢t = +00, observe that
43 .
vie (0,11, [u®)]ew < 1SO)]ew + le % 2lew) + C5** < 34.

Thus the global existence result of [7, Theorem 2| can be applied (at t = 1/2) to
extend w for all positive times. Finally, Proposition with n = 1/18 gives the
uniqueness property (decreasing the value of dy further, if necessary). O

[wn (t, )| <

APPENDIX A. PROOF OF ESTIMATE ([2.1))

Proof of Lemma[9 As we are to prove a trilinear estimate, we can rescale and we
will assume, without loss of generality, that

Iflew = lgleq = IRlew =1,
so that
(A1) [fle <1 and [0¢f]re <t

and the same for § and h.
As in Lemma given a domain 2 < R?, we write

1) = f f ¢ F(€0)3(62)Esh(€3)dé 1 dés.
9
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We will only do the proof when the integral is restricted to the domain

o = {(&,&) e R? 1 [&] > |&] = |41},

where {3 is the largest frequency: this is actually the worst-case scenario, and it
is clear from the computations below how to adapt the estimates to the others
domains.
1) For small frequencies, we have a crude bound: let @4 = {(£1,&) € & : |&3] <
t=1/3}. Then

1

3 < [ lalderdsal Fl e g Bl < 5.
A

2) We now consider the case when |£z| is significantly smaller than [£3| (and so |£1]
as well):

= {(6eo € vt o e > 1)
Notice that, on <7,
|0g, @| = 3(§§ *ﬁ) b ‘€3|2 and \(}glrm < &, |

which allows us to perform an IBP in & using that e”® = 7250¢, (¢''®):

(A2) I(oh) = H 0 (g leiehe) ) dadss

e'Lt'<I>~ B
+j S i€ h(Es)do(ér, &).
0

oy zt&’l(I)

Unfortunately, one can check that a direct bound on these integrals (after distribut-
ing the derivative ¢, on all factors of the first integral) lead to at least a logarithmic
divergence.

For the terms in where the derivative in &; does not fall on fz(fg), we perform
a second IBP, this time in &, writing this time e”® = 7750, (¢"*®). Notice that
on @, [02®| 2 |€3]? and [V2®| < |&3], [V3®| < 1. For example, when the derivative
in falls on the phase 01 P

J j | “@(53(’“ Fleiteite) ) dedss

H g, (ﬂ 5361)1262 f(£1)§(§2)13(§3)) d€1dé,

eztfbf?) all

" oct Wﬂgl)g(&)h(&)da(&,52)

1 1 o
< & || pderdeal Flus el
aly

USTLS)
&3]

+ 3 || 171 (oeatea) 1Rl e + 111 2eh(€2))
ot

1 do (&1, &)
2 Jow,  1&1*

1

I £z 13l oo [ zoe
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Now with (A.1)) in mind, and with the change of variable in &5 defined by &) = &3 =
§—& — 52 and B = {(51’52) (&1, — & — &) € S} we estimate

058 = L (e ) 2

Similarly, using the Cauchy-Schwarz inequality,

1/2
derdsy . ds
2cd < Ocg> ¢
H' e0(&) P th—l/s 196l (Lzm |f2|8> ‘

d&; . '
= flé st-1/3 [€1]72 10eg] 2 < t/FVBHYE <)
1=t

which allows to take care of the two terms the second last line. As for the boundary
term,

f M:J do(&1,6) _,
ooty 0% T

€34 BEEE
We hence obtained

Ji <

~+ | =

As mentioned, similar computations can be done for all terms, except for the term

with a derivative on h:
itP R
Jj <zt(9 CI:’ (52)55}1(53)) dédés

Here, we first perform the change of variable in &; defined by & :=¢&—& — & =&
so that &5 1= § — & — & = &, with #] = {(§1,&2) : (€ — & — &, &) € A}

zt‘IZ'gQ o . I
Jf <th91 D(&5,62) f(§3)g(£2)afh(§1)> dgyd&s.

Then we are in a position to perform once again an IBP in & (because there will
be no derivative falling on d¢h). On %1,

O(&5,6) = 317 — &l 21617, [02D(85,&)| = 3167 — &I = €1,

€] = t=/3 and |€)| = |€] = |€4]. These estimates allow us to argue as for .J; and
derive

[J ()] =

| =

3) We then consider the case when only &; is significantly smaller:

1€s]

o= {(61.80) € \eh: [l - el < 2

nd o] - 11> 21

We start as in 2), first performing an IBP in &;:

(43) T(h) = f [emaq (epfenieie) dade

itd _
i L% Ei;ltb f(€1)9(&2)h(€3)do (&1, &2)-
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Except on the term where the derivative J¢, falls on h (see step 3.3 below), we
perform on (A.3) an IBP in &, using the slighlty different identity

; 1
e _ itP
S T g e )
For example, if in (A-3) the d¢, derivative fell on f, we are to bound

H “* (7ors

Jf < 1+ Zt§2%2§3)(it(?1c1>) 5§f(€1)§(§2)ﬁ(§3)) dé1dés

F(€)d (Ez)ﬁ(fs)) dé1de

5253 3 ~ 7
] e e e (€1 )
0.2t

We now split into two cases.

3.1) Let B = {(61,6) € o+ |6 — &] < &1},
On %y, [01®| = 3|65 — &7 2 |&3)° and

02®] = 3|¢5 — &3] R [€3]1€5 — &af = |€3]1€ — &1 — 26a].
Also using that |&| 2 |€3] = |&2] and |[V2®| < |&5], we infer

621106 f(61)] T
(A0 J“H A+ 6T — P o e e

ocf -
42 ﬂ T e e

. f 62110 F (€111 (€2) 17l 1o + 15100 |0€h(Es)])
(1 + t]&2[?[Igs — &2l)t]€2]?

+ €106/ €0 oty e0)10e [l
oaly

d&idés

(1 +t&2?(I€3 — &2l )t[&2/?

Then for fixed &, we can bound

|5gf(§1)| ( d& >1/2 -
Ll iriere e < wrimme s —smp) 1l

1 -
<——1|0
< gy 19 flee

so that for the term in

|&2][0¢ (&) 1 dés
Jf I+ t|§2| |£3 _€2|)t|§2|2d§1d§2 ~ t3/2 |Ea|t-1/3 |£2|2 Haf.fHL

—_

< ¢B/2H3H1/6 2

~+

Similarly, for

JJ & \agf §1)119:9(82)|
(14 t|€2]21€3 — &a| )E|E2

|2 dé-l de
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1 N |0¢ f(&1)]déx
<! 2 f d
t me %5(%0) ( 51 A+ 16— & —25) )
1 1
< = 0ci Oc fllre < t3/2H1/31/210. 5 2|0 < -,
B | 1060 >\|£ 106 |0egl 2 10e 1oz < 5

One can bound the other terms in J5 in the same fashion.
3.2) Let 62 = {(£1,62) € o : |&+&| < L8}, Then on %3, |0,®| = 3|63 — €3] 2 &)
and

|02®] = 3|65 — &3] 2 |¢5]163 + &l = |€5]1€ — &l

We still have €| 2 [€3] = [&2] 2 [€], 161 and [V2®] < [&5).
We can then proceed as in 3.1), integrating first in &; for &; fixed.
Summing up, as @% = By U 6o, we get that

1
JQ,V;.

3.3) To complete the bound on J(#%), it remains to consider the term in (A.3)
when the derivative 0, of the (first) IBP falls on h:

Jf " <zta o f(€&)3 (52)5571(53)) dé dé,

As in case 2), we perform the change of variable in &; defined by &} := £—§ —& = &3
so that £ 1= € — & — & = &, with 5 = {(§1, &) 1 (£ — & — &, &) € wh}):

th>€2 o . I
H <mal @5 (53)9(52)(75h(§1)> dg}dés,

and then we are in a position for an IBP in £&. We conclude by doing the same
computations as in 3.1) and 3.2), and we obtain, as desired,

1

J () < T

4) We are now in the case when |&1],|&2], |€3| are similar, which corresponds to

the stationary points. There are two cases: either they all have same signs (corre-

sponding to (£/3,£/3,&/3)), or they don’t (corresponding to (§,&,—¢&) and its two
symmetric). We thus consider

oy = {(51752) € 1€ — &l |8 — &l < |1&E)}

oy = {(61 §)ed |+ &l |63+ & < |f:8|}

The other two stationary points can be treated as for 7.

In these stationary regions, we must exploit as much as possible the phase oscil-
lations. To that end, we adapt our reference frame to the directions of maximal
oscillation (see ) This analysis was crucial to derive the refined estimates in
[I8] and [7]. The computations below follow closely the arguments therein.

As &1, &9, &3 are all of the order of ¢, it is convenient to rescale and denote ¢; = &;/¢
so that ¢1 + q2 + g3 = 1, and the phase

D(£1,&) = E2Q(q1,¢2) = 3831 — 1) (1 — g2)(1 — g3).
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By symmetry, we can also assume without loss of generality that £ > 0, and we
denote the rescaling factor

T:=13>1 on s U .

(|7] < 1 corresponds to «%). Denote the nonlinear function without the &3 factor

F = f(€41)3(€a2)h(égs).
We now introduce the change of variable:
l—qu=X—p, l-—g@=XA+tp 1-g=2(1-2X),
so that
Qlq1,92) = 6(1 = M) (A= p)(A+ p).
The stationary point correspond to (A, u) = (2/3,0) and (0,0) respectively. We
integrate by parts using the relation
1
1+ 12iTp2(1 = A)
so that, with 2" = {(\, p) : 1= (A—p),1— (A + p) € 2} where 2 is an integration
domain and

eiTQ _ au (ueiTQ)

A=1+12itp*(1 =), 0,A=2ditpu(l—\)
and depending whether the derivative falls on the phase or not:

|J(2)] = 2¢° ﬂ eTOF(2\ — 1)d\dp = 263 ” 10n (e T F(2) — 1)d\dp

A( 2
— 268 ﬂ ¢irQ@ phouARA — 1) A D ardy +2§3H R0, F%(D\du

, 2\ —
—o¢3 ” e”QagF%dAdu

=:263(Jy(2') + J,(2') + J,(2))).

(observe that there is no derivative on h in this computation). By symmetry between
01F and 02 F, it suffices to bound J4(2') and J,(Z2').

5) Here we bound Jy. We do yet another change of variable of u defined by v =
/1 — X so that @ has separate variables:

(A.6) Q=6(1—-NA\—602 0\Q =6A(2—3)\).
We perform an integration by parts using for fixed Ag € {0,2/3}
4 1 ,
e = (X = X0)e™9).

1+ 6i7(A— Xo)A(2 —3N)
Denoting
B=146ir(A—X)A2—=3X), B =06iT(A(2—3X)+2(A—Xo)(1—3N)),

we have

Ai
J(2') = H r@p 2Tl = My A)“ d\dp

- 24iT1? 2\ — 1
_ _ iTQ
J N = )P e dhy
. 24ir(A — A2 2\ — 1
_ He @0 — 0oF 4 205 F) x g SN
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6 24iT(\ — A2 1 OB\ 2\ —1
TRR 2 dAd
+ﬂe A2B 2Nt B )i
@/
24iTv? 2\ — 1 <
+ ] (A=) F—— A,
Jo, O Aol SR o)
5.1) On 2%, we choose A\g = 2/3. Then we have |A —2/3| < 1/10 and |v| < 1/10 so

that
AL—=XA1-=-3)\21-1
can be bounded (above and below) by uniform constants. In particular, letting
A=\ —2/3,
Al 21+ 712, |Blz1+7)%
and we can bound
CIMFATE ﬂ

TV2|)\|

(1+7v2)2(1 + )\2)

2 \ ~
H il 14 Y prasan
1 +7')\2 )1+ Tv2)? 14+ 72

2 ~
+f kil |Fldo (X, v).
oatf (

1+ 7A2)(1 + 1v2)?
First consider the first term. Recall that |F|p= < ||f]z[dz<]h|r= < 1 and

(|61 F| + |02 F| + |03 F|)dAdv

AN\ 12 . .
( | alFFdA) < Ve["210¢ Fl 2] Lo < 7,

and similarly for &, F and d3F. Keeping in mind that A € [—1,1] uniformly on
Af = {(M\v): (A p) € 4}, we bound

~ .~ 1/2
1 . 1 2
AL 0, F|d\ < |0;F)| 2 _Adh < TV63A L =123
)\2 J J ( )

1 1+7 —1 (1 +7)A2)2
Hence the first term in (A.7) is bounded by
2
7_1/6—3/4f TV dv < 1/6-3/4—1/2 < F—13/12
(1+712)2

(we used that 7 > 1).
Similarly, for the second term, observe that

L -
J A — 1+ T|A|~ A<t ' In(l4+7)+ 7 V2 <2,
114+ 7A2 14+ 7)2

so that the second term is bounded by

2
~1/2 v dy < 71
T J(1+w2)2”” '

The boundary term can be bounded accordingly by

1 3

f Tlp’ldp
L )
[ Jy()| < 777

5.2) On &7/, we choose A9 = 0. Then we have |A| < 1/10 and |v| < 1/10 so that

1—XA1-3)\2-3)

30
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can be bounded (above and below) by uniform constants and
|A\>1—|—7'1/2 |B\Zl+7’)\2.
Hence, we can bound (with &7/ = {(\,v) : (A, p) € &7}

FACAIRS H | (|01F| + |02 F| + |05 F|)dd
4 ~ 1+ (72)2) (1 +7A2) ? ° g

V%) Al
1 Fld\d
Jf +7A?) 1—1—7'1/2)2( +1+7')\2>| |dAdy

2
TV Al
+ do(\v).
L%u (14 722)(1 + 712)2 (A v)
The exact same computations as in 5.1) give the bound
[Ty < 77
6) Here we bound .J,. We consider the change of variables
30+ x—2 )\_Q—C—i—x
2 ’ 2 '
One may obtain this transformation by going back to the £ variables, switching
q1 with g3 and then redoing the A, u transformation. In this way, ¢; depends on a
single variable ¢, and more precisely
=20 l-g@=C+x, 1-@¢=C—x
This permits the integration by parts in x without the introduction of second-order
derivatives in f. In this coordinate system, the stationary points are

(x,¢) = (0,2/3) and (—1,1).

Also
Q=6(C+)(C—0)(1 =0, hQ=12x(C~1).

6.1) On %, we use the relation

1

ei'rQ _
1+ 12imx2(1—0) X

O (xe'™?).

Define
A=1+4irp* (1= X) =1+it(3C+x —2)*(C —x)/2, C =1+12it}*(1 ().
We now integrate by parts:

1T ILLa F 1 T M
niet) = [[ e A andn = [[ Goutxe™) Jyanracax
/ I)

= f J x€'T [<019F + 013F] ——dxd(

QAC

0 (314 60
H ”Qixc( ‘”( 4 te ))d’(dc

irQ XH
H S0y Fdo (¢, X).

ot?
On %b, 1 —(, ( — x are bounded above and below and

AZ1+7p2, Cz1+7x% |0y A| < 7lul,  [0xC| < Tlx|-
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Therefore, after changing again the variable ¢ back for u (and o7 = {(x,n) :
(A, 1) € A3},

Ixu|

A. F F
( 8) |Jb ‘Q{S |~ JJ‘ 1_’_7_,” )(1+TX2)|612 ‘J’_ |813 |)dXd,U/

le |7|p? Tluxl
(A.9) H i T TaeE T ) [0Fldxds

Ix |
Al Fl|d .
( O) J:[ +TM 1+TX2)‘61 ‘ U(Xhu)

0@{"

By the Cauchy-Schwarz inequality,
1/2 3 )
([[1orarraxan) < elioclloealia e < 7.
1/2 ~ )
([107Pax) < 1€P106A10alalie il < 75, so hx
|6y Flrerz, |01 F g 2 101 F 2 owsy < 76
and the first bound also holds with ¢15F. Hence the integral in (A.8]) is bounded

Mz |X|2 V2 2 V2 3/2+1/3
(H 1+ 7p2)? (1+ 7x2 )Qdudx> (J (10| + 1) dxdu) ST

< T=7/6,

The first two terms of the integral in (A.9) can be controlled as

2 1/2
f 1 J:lﬂ 2 (J 1 +X( dX2)2> |OLF || o2 S 77 Y273/4F1/6 < £ —18/12)
TH TX wbx

while the third term in (A.9) is bounded by

2d 2qu \Y? e Y
J( X dx <J( |l u) ) |01 Pl py 5 r= /234416 < 1312

1+ 7x32)2 1+ 7u?)?
Finally, the boundary term (A.10) can be bounded by

1/2

2 2
p _ _
‘|61F|‘L2(0%;) (J <(1 n Tp2)2> dp) < T1/6 5/4 <7T 13/12

and we obtain
T 5 77,
6.2) On 27/, we use the relation
1
1+ 12irx(x + D1 =)

€' = O ((x +1)e'™?).

Let
A=14+4itp*(1=X) = 14+i7(3¢ +x —2)*(C—x)/2, D =1+12irx(x+1)(1-).
The integration by parts yields

n_ ([ ir@raE :”l irQy M
atet)) = [[ e oL dnau = {[ Joutoc+ vem@) Lo Fagax
’ b
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= — JJ(X + 1)6iTQ [—612F + 613F] %d}(dc

A
- O1F oA  0,D
_JJ(X—i—l)e”QleD (1—,u< i<4 + XD ))dxd(j

EH
~ [[ o vere Mo airastc. .

ot
On ), 1—¢, ¢ — x are bounded above and below. Moreover, denoting ¥ = x + 1,
¢ =1—(, there holds
Az l+rp®, D 1+7IXC Al S 7lul, 0D < 7IC)-
After we perform once again the change of variable (1, x) — (¢, %) with { = 1—¢ =

2“—3_’2), we find

, 7 )
(A1) || < i f T e+ P

(A.12) +H 1X] (14 a_ il |01 F|dxdp
o (L+7p2)(1 + 7[x¢]) L+7p® 14 7(x](|

Ixul _
(a13) | T gy e )

Asin 6.1),
1/2
(JJ(|512F| + |613F)2d)~(du) S 7'1/3,
|01 Fllzrzs [01F | prz 101F | ooy < 76
Hence, rescaling ¥ = /7%, ft = /T and using

2 . -

X“dx 2 dx §

(A.14) J o Sf XdX+f —=——< i
(%2 =)D ™ J2p-xi<y/ial 2—x/=1/l| (2= X)?

we can bound the integral in (A.11) by

B

1/2
. bl S
012F |12 + || 015F | 12|73/ ﬂ ( . L dxdp
(I012F L2 + 013 F || 2) 7| 0+ 20+ X2i=0D)
], <104/
|v|3 1/2
< TY/3732 j ) < fm+ ) <L
jal<toyr (1 + f12)?

We now consider the integral in (A.12)). For the first two terms, we do Cauchy-
Schwarz in X and rescale as before ¥ = 4/7x and fi = 4/Tp, 80 as to get the bound

2 e 1/2 4
oFln | (] h_
P < U @+ Irxe)? ) (L4 7e?)

9 e /2 .
< 7_1/6—1/2—3/4J f XQdXV de < 7_—13/12’
lal<10v7 \Jxi<toyr (14 [XC[)? (L+42)

where we used once again ((A.14]).
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For the third term of the integral in (A.12), we do Cauchy-Schwarz in ¥ and rescale
again X = /TX, fi = 4/Ti, and get the bound

~ 1/2
J dx pdp
\

g (L+|rxd))?) (L4 7p?)
. 2
< 7_1/67171/4J‘ J dx v |fildja < ;1312
- a<tov7 \Jixi<toyr L+ [xCD? ) L+ 42~
Indeed, we show that the integral < 1 as follows. We can assume |fi| > 10. Then,
for fixed ji,

orFluzs |

[nl<1

dx . dx
g S dx + S YT E
1o<)x (1 + X2 = X)) 27—x|<1/Iil Vll<l2i-x1<ll/100 £ (2 = X)
dx 1
+J Vixﬂ -
[2f—x|=|]/100 (21— x) |fi]

A

Hence

J J dy fudf J a2 _
lal<10vF \Jixl<iovF (1 +[XC])? (I+p2) ) (L+p2)~

Finally, we consider the boundary term (A.13)): there, ¥, u and f are proportional;
by Cauchy-Schwarz inequality, this term is bounded up to a constant by

1/2

4
prdp 1/6—5/4 —13/12
HalFHL2(£¢4b) J‘[Ll] 7(1 T ’Tp2)4 ST ST .

7) In summary, (recalling 7 > 1), we proved in 5) and 6) that
[ Ja( )| + | To()| + | Te ()] + | o ()| < 771

Hence |J ()| + | ()| < 771€3 < 1/t. Summing up with the bounds in 1)-3), we
infer that |J(</)| < 1/t, and the same estimate holds for J(R?), as claimed. O
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