MA1S11 (Dotsenko) Solutions to Tutorial/Exercise Sheet 4

Week 5, Michaelmas 2013

1. Which of the following limits exist (as finite or infinite limits)? Explain your answer and compute them.

- $\lim _{x \rightarrow+\infty} \frac{3-5 x^{3}}{1+4 x+x^{3}}$.
- $\lim _{x \rightarrow-\infty} \frac{3-5 x^{3}}{1+4 x+x^{3}}$.

Solution. Clearly, $\frac{3-5 x^{3}}{1+4 x+x^{3}}=\frac{-5 x^{3}}{x^{3}} \cdot \frac{1-\frac{3}{5 x^{3}}}{1+\frac{4}{x^{2}}+\frac{1}{x^{3}}}$, so $\lim _{x \rightarrow+\infty} \frac{3-5 x^{3}}{1+4 x+x^{3}}=\lim _{x \rightarrow+\infty} \frac{-5 x^{3}}{x^{3}}=-5$ and also $\lim _{x \rightarrow-\infty} \frac{3-5 x^{3}}{1+4 x+x^{3}}=\lim _{x \rightarrow-\infty} \frac{-5 x^{3}}{x^{3}}=-5$.
2. Which of the following limits exist (as finite or infinite limits)? Explain your answer and compute them.

- $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+x}}{3 x-1}$.
- $\lim _{x \rightarrow+\infty}(\sqrt{x+1}-\sqrt{x})$.

Solution. For the first limit, we note that $\frac{\sqrt{x^{2}+x}}{3 x-1}=\frac{\sqrt{x^{2}} \sqrt{1+\frac{1}{x}}}{3 x\left(1-\frac{1}{3 x}\right.}$, so

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+x}}{3 x-1}=\lim _{x \rightarrow-\infty} \frac{|x|}{3 x}=-\frac{1}{3}
$$

For the second limit, we note that $\sqrt{x+1}-\sqrt{x}=\frac{(\sqrt{x+1})^{2}-(\sqrt{x})^{2}}{\sqrt{x+1}+\sqrt{x}}=\frac{1}{\sqrt{x+1}+\sqrt{x}}$, so

$$
\lim _{x \rightarrow+\infty}(\sqrt{x+1}-\sqrt{x})=0
$$

3. Which of the following limits exist (as finite or infinite limits)? Explain your answer and compute them.

- $\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}$.
- $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}$.

Solution. For the first limit, we have
$\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}=\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \cdot \frac{x^{2}}{\sin x}=\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \cdot \lim _{x \rightarrow 0} \frac{x}{\sin x} \cdot \lim _{x \rightarrow 0} x=\frac{1}{2} \cdot 1 \cdot 0=0$.

For the second one, we have

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}=\lim _{x \rightarrow 0} \frac{\frac{\sin x}{\cos x}-}{} \sin x \\
& x^{3}=\lim _{x \rightarrow 0} \frac{\sin x(1-\cos x)}{x^{3} \cos x}= \\
&=\lim _{x \rightarrow 0} \frac{\sin x}{x} \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \lim _{x \rightarrow 0} \frac{1}{\cos x}=1 \cdot \frac{1}{2} \cdot 1=\frac{1}{2} .
\end{aligned}
$$

4. Show that

$$
-|x| \leq x \sin \frac{1}{x} \leq|x|
$$

for all $x \neq 0$, and explain why $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$.
Solution. Since $|\sin t| \leq 1$ for all t, we have $\left|x \sin \frac{1}{x}\right|=|x|\left|\sin \frac{1}{x}\right| \leq|x|$, therefore $-|x| \leq x \sin \frac{1}{x} \leq|x|$. Since $\lim _{x \rightarrow 0}|x|=\lim _{x \rightarrow 0}(-|x|)=0$, the Squeezing Theorem guarantees that $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$.
5. Let us consider function $f(x)=\left\{\begin{array}{l}\sin \frac{1}{x}, x \neq 0, \\ a, \quad x=0 .\end{array}\right.$ Does there exist a choice of a for which this function is continuous at $x=0$? Explain your answer.
Solution. No. If this were the case, this would mean that $\lim _{x \rightarrow 0} \sin \frac{1}{x}=a$. However, this limit does not exist, since as x approaches zero, since $\sin \frac{1}{x}$ oscillates between -1 and 1 in every interval containing zero.

