## MA1S11 (Dotsenko) Solutions to Tutorial/Exercise Sheet 5

Week 6, Michaelmas 2013

1. Let $f(x)=x^{5 / 3}$ and $g(x)=\sin x$. Compute $f^{\prime}(0)$ and $g^{\prime}(0)$.

Solution. By definition,

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{h^{5 / 3}-0^{5 / 3}}{h}=\lim _{h \rightarrow 0} \frac{h^{5 / 3}}{h}=\lim _{h \rightarrow 0} h^{2 / 3}=0 .
$$

Also,

$$
g^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\sin h-\sin 0}{h}=\lim _{h \rightarrow 0} \frac{\sin h}{h}=1,
$$

as proved last week.
2. Find the equation for the tangent line to the graph $y=\sqrt{x}$ at $x=4$.

Solution. Since, as we checked in class,

$$
y^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}=\lim _{h \rightarrow 0} \frac{(x+h)-x}{h \sqrt{x+h}+\sqrt{x}}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{2 \sqrt{x}},
$$

we have the equation of the tangent line at $x=x_{0}$

$$
y=\frac{1}{2 \sqrt{x_{0}}}\left(x-x_{0}\right)+\sqrt{x_{0}}=\frac{x}{2 \sqrt{x_{0}}}+\frac{1}{2} \sqrt{x_{0}},
$$

so for $x_{0}=4$ we get $y=\frac{x}{4}+1$.
3. Is the function $f(x)=\left\{\begin{array}{c}x^{2} \sin \frac{1}{x}, x \neq 0, \\ 0, \quad x=0 .\end{array} \quad\right.$ differentiable at the point $x=0$ ?

Solution. By definition, we would like to know if the limit

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}
$$

exists. We check that directly:

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} \sin \frac{1}{h}-0}{h}=\lim _{h \rightarrow 0} \frac{h^{2} \sin \frac{1}{h}}{h}=\lim _{h \rightarrow 0} h \sin \frac{1}{h}=0
$$

by Squeezing Theorem (see last question of the previous tutorial).
4. Find the values of $x_{0}$ for which the tangent line to the graph $y=x^{3}-x$ at $x=x_{0}$ is parallel to the line $y=x$, and write down equations for the corresponding tangent lines.
Solution. Since

$$
y^{\prime}(x)=3 x^{2}-1,
$$

and the slope of the tangent line is equal to the derivative, the points where the tangent line is parallel to $y=x$ are given by $3 x^{2}-1=1$, that is $x= \pm \sqrt{\frac{2}{3}}$. The corresponding equations

$$
y=\left(3 x_{0}^{2}-1\right)\left(x-x_{0}\right)+\left(x_{0}^{3}-x_{0}\right)=\left(3 x_{0}^{2}-1\right) x-2 x_{0}^{3}
$$

simplify to

$$
y=x \mp \frac{4 \sqrt{2}}{3 \sqrt{3}}
$$

5. A person drops a coin from the roof of a skyscraper which is 218 metres above the street level. The position of the coin (in metres above water) as a function of time (in seconds) is given by

$$
s(t)=218-\frac{1}{2} g t^{2}
$$

where $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (metres per seconds squared) is the acceleration due to the gravitational force.

- How long will it take for the coin to reach the street level?
- What is the instantaneous velocity of the coin as a function of $t$ ?
- What is the instantaneous velocity at the end of the fall?

Solution. Solving the equation $0=s(t)=218-\frac{1}{2} g t^{2}$, we obtain the time needed to reach the street level. From this equation,

$$
t^{2}=\frac{218 m}{\frac{1}{2} g m / s^{2}}=\frac{400}{9} s^{2},
$$

so $t=\frac{20}{3} s \approx 6.66 s$. The instantaneous velocity is the derivative of the position $s(t)$, that is $s^{\prime}(t)=-g t$. (It is negative because the velocity has its direction towards the earth, opposite the direction of growth of the height.) For the end of the fall, $t=\frac{20}{3} s$, so the (absolute value of) velocity is $9.81 \mathrm{~m} / \mathrm{s}^{2} \cdot \frac{20}{3} s=65.4 \mathrm{~m} / \mathrm{s}$.

