MA1S11 (Dotsenko) Solutions to Tutorial/Exercise Sheet 6

Week 8, Michaelmas 2013

1. Differentiate

$$
\begin{equation*}
f(x)=\frac{1}{x^{2}}+4 x^{3 / 2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x)=x+\frac{1}{x}+\frac{3}{4} x^{4 / 3} \tag{2}
\end{equation*}
$$

Solution. We apply the rule for differentiating power functions, and the fact that derivatives agree with sums and scalar factors:

$$
\left(\frac{1}{x^{2}}+4 x^{3 / 2}\right)^{\prime}=\left(x^{-2}+4 x^{3 / 2}\right)^{\prime}=-2 x^{-2-1}+4 \cdot \frac{3}{2} x^{3 / 2-1}=-\frac{2}{x^{3}}+6 \sqrt{x}
$$

and

$$
\begin{aligned}
\left(x+\frac{1}{x}+\frac{3}{4} x^{4 / 3}\right)^{\prime}=\left(x^{1}+\right. & \left.x^{-1}+\frac{3}{4} x^{4 / 3}\right)^{\prime}= \\
& =1 \cdot x^{0}+(-1) x^{-1-1}+\frac{3}{4} \cdot \frac{4}{3} x^{4 / 3-1}=1-\frac{1}{x^{2}}+\sqrt[3]{x}
\end{aligned}
$$

2. Show that for the curves $y=1 / x$ and $y=1 /(2-x)$, their tangent lines at the point where those two curves meet are perpendicular to one another.
Solution. Let us find the intersection point for these curves. If $1 / x=y=1 /(2-x)$, then $x=2-x$, so $2 x=2, x=1$. In this case, $y=1 / x=1$ also. The slope of the tangent line to the first curve is

$$
\left.\left(\frac{1}{x}\right)^{\prime}\right|_{x=1}=\left.\left(-\frac{1}{x^{2}}\right)\right|_{x=1}=-1
$$

and the tangent line is $y-1=-(x-1)$, that is $y=-x+2$. The slope of the tangent line to the second curve is

$$
\left.\left(\frac{1}{2-x}\right)^{\prime}\right|_{x=1}=\left.\left(-(-1) \frac{1}{(2-x)^{2}}\right)\right|_{x=1}=1
$$

and the tangent line is $y-1=(x-1)$, that is $y=x$. These two lines are manifestly perpendicular to one another.
3. Using the chain rule and rules for derivatives of trigonometric functions, compute the derivative function of $f(x)=\sin ^{2} x+\cos ^{2} x$. Explain why your answer is consistent with the trigonometric identity $\sin ^{2} x+\cos ^{2} x=1$.
Solution. We have
$\left(\sin ^{2} x+\cos ^{2} x\right)^{\prime}=2 \sin x(\sin x)^{\prime}+2 \cos x(\cos x)^{\prime}=2 \sin x \cos x+2 \cos x(-\sin x)=0$.
This agrees with the fact that $\sin ^{2} x+\cos ^{2} x=1$, since the derivative of a constant is zero.
4. Differentiate

$$
\begin{equation*}
f(x)=x \cos x+\sqrt{1-x^{2}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x)=\frac{\sin x}{x+3 \sqrt[3]{x}} \tag{4}
\end{equation*}
$$

Solution. Because of the product rule and the chain rule, we have

$$
\begin{aligned}
&\left(x \cos x+\sqrt{1-x^{2}}\right)^{\prime}=(x)^{\prime} \cos x+x(\cos x)^{\prime}+\frac{1}{2 \sqrt{1-x^{2}}}\left(1-x^{2}\right)^{\prime}= \\
&=\cos x-x \sin x-\frac{x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Because of the rule of differentiating quotients, we have

$$
\begin{aligned}
&\left(\frac{\sin x}{x+3 \sqrt[3]{x}}\right)^{\prime}=\frac{\cos x(x+3 \sqrt[3]{x})-\sin x\left(1+3 \frac{1}{3 \sqrt[3]{x^{2}}}\right)}{(x+3 \sqrt[3]{x})^{2}}= \\
&=\frac{\cos x(x+3 \sqrt[3]{x})-\sin x\left(1+\frac{1}{\sqrt[3]{x^{2}}}\right)}{(x+3 \sqrt[3]{x})^{2}}
\end{aligned}
$$

5. Let $f(x)=\sin x$, with the domain $(-\pi / 2, \pi / 2)$, where this function is increasing and therefore is invertible. Apply the chain rule to the equation

$$
\begin{equation*}
f\left(f^{-1}(x)\right)=x \tag{5}
\end{equation*}
$$

to show that the derivative of $f^{-1}(x)$ is $\frac{1}{\sqrt{1-x^{2}}}$. (Hint: you may need the identity $\cos ^{2} x+\sin ^{2} x=1$).
Solution. Applying the chain rule to $f\left(f^{-1}(x)\right)=x$, we get

$$
f^{\prime}\left(f^{-1}(x)\right)\left(f^{-1}(x)\right)^{\prime}=1
$$

so

$$
\left(f^{-1}(x)\right)^{\prime}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{\cos \left(f^{-1}(x)\right)}=\frac{1}{\sqrt{1-\left(\sin \left(f^{-1}(x)\right)\right)^{2}}}=\frac{1}{\sqrt{1-x^{2}}}
$$

since on $(-\pi / 2, \pi / 2)$ we have $\cos t>0$ and hence $\cos t=\sqrt{1-\sin ^{2} t}$, and since $\sin \left(f^{-1}(x)\right)=f\left(f^{-1}(x)\right)=x$.

