MA1S11 (Dotsenko) Solutions to Tutorial/Exercise Sheet 7

Week 9, Michaelmas 2013

1. Using implicit differentiation, find the equation of the tangent line to the curve $y^2 - y = x^3 - x$ at the point (2,3).

Solution. Differentiating the equation, we get

$$2yy' - y' = 3x^2 - 1,$$
$$y' = \frac{3x^2 - 1}{2y - 1}.$$

Therefore, at (2,3) we have $y'(x) = \frac{12-1}{6-1} = \frac{11}{5}$, and the point-slope equation gives the tangent line $y - 3 = \frac{11}{5}(x - 2)$, or $y = \frac{11}{5}x - \frac{7}{5}$.

2. Determine the roots, the relative extrema, the regions of concavity up/down and the limit behaviour for $x \to \pm \infty$ for

$$f(x) = (x+1)^2(x-1) = x^3 + x^2 - x - 1$$

Then sketch the graph of f using all the gathered information.

Solution. Since $f(x) = (x+1)^2(x-1)$, the roots of f are x = -1 and x = 1. Let us compute f' and f'':

$$f'(x) = 3x^2 + 2x - 1,$$

$$f''(x) = 6x + 2.$$

The critical points of f are stationary, since f is differentiable everywhere. Computing roots of f'(x) using the formula for roots of a quadratic equation, we get x = -1 and x = 1/3. We get f''(-1) = -4 < 0 and f''(1/3) = 4 > 0. Therefore, x = -1 gives a relative maximum, and x = 1/3 relative minimum. Also, the only root of f''(x) is x = -1/3, and for x < -1/3 we have f''(x) < 0, while for x > -1/3 we have f''(x) > 0. Therefore, on $(-\infty, -1/3)$ the function f is concave down, and on $(-1/3, +\infty)$ the function f is concave up, while

x = -1/3 is an inflection point. Using all this information, we obtain the following graph:

3. Determine the relative extrema, the inflection points and the regions of concavity up or down of the function

$$f(x) = \frac{x^4}{4} + \frac{2}{9}x^3 - \frac{5}{6}x^2 + \frac{10}{9}$$

Solution. Let us compute f' and f'':

$$f'(x) = x^3 + \frac{2}{3}x^2 - \frac{5}{3}x,$$

$$f''(x) = 3x^2 + \frac{4}{3}x - \frac{5}{3}.$$

The critical points of f are stationary, since f is differentiable everywhere. We have $f'(x) = x(x^2 + \frac{2}{3}x - \frac{5}{3})$, so the roots of f' are x = 0, x = 1 and $x = -\frac{5}{3}$. Computing f'' at the stationary points, we get $f''(0) = -\frac{5}{3}$, $f''(1) = \frac{8}{3}$, $f''(-\frac{5}{3}) = \frac{40}{9}$. Therefore, $x = -\frac{5}{3}$ and x = 1 give relative minima, and x = 0 a relative maximum. Roots of f''(x) are x = -1 and $x = \frac{5}{9}$, and for $-1 < x < \frac{5}{9}$ we have f''(x) < 0, while for x < -1 or $x > \frac{5}{9}$ we have f''(x) > 0. Therefore, on $(-1, \frac{5}{9})$ the function f is concave down, and both on $(-\infty, -1)$ and on $(\frac{5}{9}, +\infty)$ the function f is concave up, while x = -1 and $x = \frac{5}{9}$ are inflection points.