MA1S11 (Dotsenko) Solutions to Tutorial/Exercise Sheet 7

Week 9, Michaelmas 2013

1. Using implicit differentiation, find the equation of the tangent line to the curve $y^{2}-y=x^{3}-x$ at the point $(2,3)$.
Solution. Differentiating the equation, we get

$$
\begin{gathered}
2 y y^{\prime}-y^{\prime}=3 x^{2}-1, \\
y^{\prime}=\frac{3 x^{2}-1}{2 y-1} .
\end{gathered}
$$

Therefore, at $(2,3)$ we have $y^{\prime}(x)=\frac{12-1}{6-1}=\frac{11}{5}$, and the point-slope equation gives the tangent line $y-3=\frac{11}{5}(x-2)$, or $y=\frac{11}{5} x-\frac{7}{5}$.
2. Determine the roots, the relative extrema, the regions of concavity up/down and the limit behaviour for $x \rightarrow \pm \infty$ for

$$
f(x)=(x+1)^{2}(x-1)=x^{3}+x^{2}-x-1
$$

Then sketch the graph of f using all the gathered information.
Solution. Since $f(x)=(x+1)^{2}(x-1)$, the roots of f are $x=-1$ and $x=1$. Let us compute f^{\prime} and $f^{\prime \prime}$:

$$
\begin{gathered}
f^{\prime}(x)=3 x^{2}+2 x-1, \\
f^{\prime \prime}(x)=6 x+2 .
\end{gathered}
$$

The critical points of f are stationary, since f is differentiable everywhere. Computing roots of $f^{\prime}(x)$ using the formula for roots of a quadratic equation, we get $x=-1$ and $x=1 / 3$. We get $f^{\prime \prime}(-1)=$ $-4<0$ and $f^{\prime \prime}(1 / 3)=4>0$. Therefore, $x=-1$ gives a relative maximum, and $x=1 / 3$ relative minimum. Also, the only root of $f^{\prime \prime}(x)$ is $x=-1 / 3$, and for $x<-1 / 3$ we have $f^{\prime \prime}(x)<0$, while for $x>-1 / 3$ we have $f^{\prime \prime}(x)>0$. Therefore, on $(-\infty,-1 / 3)$ the function f is concave down, and on $(-1 / 3,+\infty)$ the function f is concave up, while
$x=-1 / 3$ is an inflection point. Using all this information, we obtain the following graph:

3. Determine the relative extrema, the inflection points and the regions of concavity up or down of the function

$$
f(x)=\frac{x^{4}}{4}+\frac{2}{9} x^{3}-\frac{5}{6} x^{2}+\frac{10}{9}
$$

Solution. Let us compute f^{\prime} and $f^{\prime \prime}$:

$$
\begin{aligned}
& f^{\prime}(x)=x^{3}+\frac{2}{3} x^{2}-\frac{5}{3} x \\
& f^{\prime \prime}(x)=3 x^{2}+\frac{4}{3} x-\frac{5}{3}
\end{aligned}
$$

The critical points of f are stationary, since f is differentiable everywhere. We have $f^{\prime}(x)=x\left(x^{2}+\frac{2}{3} x-\frac{5}{3}\right)$, so the roots of f^{\prime} are $x=0$, $x=1$ and $x=-\frac{5}{3}$. Computing $f^{\prime \prime}$ at the stationary points, we get $f^{\prime \prime}(0)=-\frac{5}{3}, f^{\prime \prime}(1)=\frac{8}{3}, f^{\prime \prime}\left(-\frac{5}{3}\right)=\frac{40}{9}$. Therefore, $x=-\frac{5}{3}$ and $x=1$ give relative minima, and $x=0$ a relative maximum. Roots of $f^{\prime \prime}(x)$ are $x=-1$ and $x=\frac{5}{9}$, and for $-1<x<\frac{5}{9}$ we have $f^{\prime \prime}(x)<0$, while for $x<-1$ or $x>\frac{5}{9}$ we have $f^{\prime \prime}(x)>0$. Therefore, on $\left(-1, \frac{5}{9}\right)$ the function f is concave down, and both on $(-\infty,-1)$ and on $\left(\frac{5}{9},+\infty\right)$ the function f is concave up, while $x=-1$ and $x=\frac{5}{9}$ are inflection points.

