MA1S11 (Dotsenko) Solutions to Tutorial/Exercise Sheet 8

Week 10, Michaelmas 2013

1. Investigate fully the rational function $f(x)=\frac{x^{2}}{1-x^{3}}$, and sketch its graph.

Solution. The graph does not possess any of the usual symmetries. The only x-intercept is at 0 , the y-intercept is at $f(0)=0$. The only vertical asymptote is $x=1$.

The points 0 , and 1 divide the x-axis into the intervals $(-\infty, 0),(0,1),(1,+\infty)$. Signs of the corresponding factors result in the following signs for f :

interval	$(-\infty, 0)$	$(0,1)$	$(1,+\infty)$
signs of factors $1-x^{3}, x$	$(+)(-)$	$(+)(+)$	$(-)(+)$
sign of f	-	+	-

The limiting behaviour at infinity is given by

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{1}{-x+\frac{1}{x^{2}}}=0 \\
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{1}{-x+\frac{1}{x^{2}}}=0
\end{aligned}
$$

therefore the x-axis is a horisontal asymptote of the graph.
The first derivative of f is

$$
f^{\prime}(x)=\frac{2 x \cdot\left(1-x^{3}\right)-x^{2}\left(-3 x^{2}\right)}{\left(1-x^{3}\right)^{2}}=\frac{x^{4}+2 x}{\left(1-x^{3}\right)^{2}}=\frac{x\left(x^{3}+2\right)}{\left(1-x^{3}\right)^{2}} .
$$

Its roots are $x=0$ and $x=\sqrt[3]{-2} \approx-1.2599$.
Signs of the corresponding factors result in the following signs for f^{\prime} :

interval	$(-\infty, \sqrt[3]{-2})$	$(\sqrt[3]{-2}, 0)$	$(0,1)$	$(1,+\infty)$
signs of factors $x, x^{3}+2$, and $\left(1-x^{3}\right)^{2}$	$(-)(-)(+)$	$(-)(+)(+)$	$(+)(+)(+)$	$(+)(+)(+)$
sign of f^{\prime}	+	-	+	+

This suggests that f is increasing on $(-\infty,-\sqrt[3]{-2}]$, on $[0,1)$, and on $(1,+\infty)$, and is decreasing on $[-\sqrt[3]{2}, 0]$. Therefore, there is a relative maximum at $x=-\sqrt[3]{2}$ and a relative minimum at $x=0$.
The second derivative of f is

$$
\begin{aligned}
f^{\prime \prime}(x)=\frac{\left(4 x^{3}+2\right) \cdot\left(1-x^{3}\right)^{2}-\left(x^{4}+2 x\right) 2\left(1-x^{3}\right)\left(-3 x^{2}\right)}{\left(1-x^{3}\right)^{4}}= \\
=\frac{\left(4 x^{3}+2\right)\left(1-x^{3}\right)+\left(x^{4}+2 x\right)\left(6 x^{2}\right)}{\left(1-x^{3}\right)^{3}}=2 \frac{x^{6}+7 x^{3}+1}{\left(1-x^{3}\right)^{3}}
\end{aligned}
$$

To find its roots, we denote $x^{3}=t$, and solve the equation $t^{2}+7 t+1=0$, obtaining $t_{1}=\frac{-7+\sqrt{45}}{2}$ and $t_{2}=\frac{-7-\sqrt{45}}{2}$, which approximately are -0.1459 and -6.8541 . Recalling that $t=x^{3}$, we obtain the following approximate values for x : $x_{1} \approx-0.5264$ and $x_{2} \approx-1.8995$.
Signs of the corresponding factors result in the following signs for $f^{\prime \prime}$:

interval	$\left(-\infty, \sqrt[3]{t_{2}}\right)$	$\left(\sqrt[3]{t_{2}}, \sqrt[3]{t_{1}}\right)$	$\left(\sqrt[3]{t_{1}}, 1\right)$	$(1,+\infty)$
signs of factors $\left(x^{3}-t_{1}\right),\left(x^{3}-t_{2}\right)$, and $\left(1-x^{3}\right)^{3}$	$(-)(-)(+)$	$(-)(+)(+)$	$(+)(+)(+)$	$(+)(+)(-)$
sign of $f^{\prime \prime}$	+	-	+	-

This suggests that f is concave up on $\left(-\infty, x_{2}\right)$ and on $\left(x_{1}, 1\right)$, and is concave down on $\left(x_{2}, x_{1}\right)$ and on $(1,+\infty)$. Both x_{1} and x_{2} are inflection points.
Based on these computations, we sketch a graph as follows:

2. Determine the relative and the absolute extrema of the function f on the closed interval $[-2,3]$, if

$$
f(x)=-\frac{1}{4} x^{4}+\frac{1}{3} x^{3}+x^{2}+1 .
$$

Solution. This function is differentiable everywhere on the open interval ($-2,3$). Its derivatives are

$$
\begin{gathered}
f^{\prime}(x)=-x^{3}+x^{2}+2 x=-x(x-2)(x+1), \\
f^{\prime \prime}(x)=-3 x^{2}+2 x+2 .
\end{gathered}
$$

Solving $f^{\prime}(x)=0$ we get $x=0,2,-1$ as candidates for relative extrema. Applying the second derivative test we see that

$$
\begin{gathered}
f^{\prime \prime}(-1)=-3-2+2=-3<0 \\
f^{\prime \prime}(0)=2>0 \\
f^{\prime \prime}(2)=-12+4+2=-6<0 .
\end{gathered}
$$

Therefore, -1 and 2 are relative maxima and 0 is a relative minimum. The values of f at the relative extrema are

$$
\begin{equation*}
f(0)=1, \quad f(2)=\frac{11}{3}, \quad f(-1)=\frac{17}{12} \tag{1}
\end{equation*}
$$

This is to be compared with the values of f at the endpoints $-2,3$:

$$
\begin{equation*}
f(-2)=-\frac{5}{3}, \quad f(3)=-\frac{5}{4} \tag{2}
\end{equation*}
$$

We conclude that f has an absolute maximum at $x=2$. and an absolute minimum at the left endpoint $x=-2$.

