MA1S11 (Dotsenko) Solutions to Tutorial/Exercise Sheet 8

Week 10, Michaelmas 2013

1. Investigate fully the rational function $f(x) = \frac{x^2}{1-x^3}$, and sketch its graph.

Solution. The graph does not possess any of the usual symmetries. The only x-intercept is at 0, the y-intercept is at f(0) = 0. The only vertical asymptote is x = 1.

The points 0, and 1 divide the x-axis into the intervals $(-\infty, 0)$, (0, 1), $(1, +\infty)$. Signs of the corresponding factors result in the following signs for f:

interval	$(-\infty,0)$	(0, 1)	$(1, +\infty)$
signs of factors			
$1 - x^3, x$	(+)(-)	(+)(+)	(-)(+)
sign of f	—	+	-

The limiting behaviour at infinity is given by

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{-x + \frac{1}{x^2}} = 0,$$
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{-x + \frac{1}{x^2}} = 0,$$

therefore the x-axis is a horisontal asymptote of the graph.

The first derivative of f is

$$f'(x) = \frac{2x \cdot (1-x^3) - x^2(-3x^2)}{(1-x^3)^2} = \frac{x^4 + 2x}{(1-x^3)^2} = \frac{x(x^3+2)}{(1-x^3)^2}.$$

Its roots are x = 0 and $x = \sqrt[3]{-2} \approx -1.2599$.

Signs of the corresponding factors result in the following signs for f':

interval	$(-\infty,\sqrt[3]{-2})$	$(\sqrt[3]{-2}, 0)$	(0,1)	$(1, +\infty)$
signs of factors				
$x, x^3 + 2,$	(-)(-)(+)	(-)(+)(+)	(+)(+)(+)	(+)(+)(+)
and $(1 - x^3)^2$				
sign of f'	+	—	+	+

This suggests that f is increasing on $(-\infty, -\sqrt[3]{-2}]$, on [0, 1), and on $(1, +\infty)$, and is decreasing on $[-\sqrt[3]{2}, 0]$. Therefore, there is a relative maximum at $x = -\sqrt[3]{2}$ and a relative minimum at x = 0.

The second derivative of f is

$$f''(x) = \frac{(4x^3 + 2) \cdot (1 - x^3)^2 - (x^4 + 2x)2(1 - x^3)(-3x^2)}{(1 - x^3)^4} = \frac{(4x^3 + 2)(1 - x^3) + (x^4 + 2x)(6x^2)}{(1 - x^3)^3} = 2\frac{x^6 + 7x^3 + 1}{(1 - x^3)^3}.$$

To find its roots, we denote $x^3 = t$, and solve the equation $t^2 + 7t + 1 = 0$, obtaining $t_1 = \frac{-7+\sqrt{45}}{2}$ and $t_2 = \frac{-7-\sqrt{45}}{2}$, which approximately are -0.1459 and -6.8541. Recalling that $t = x^3$, we obtain the following approximate values for x: $x_1 \approx -0.5264$ and $x_2 \approx -1.8995$.

Signs of the corresponding factors result in the following signs for f'':

interval	$(-\infty, \sqrt[3]{t_2})$	$(\sqrt[3]{t_2}, \sqrt[3]{t_1})$	$(\sqrt[3]{t_1}, 1)$	$(1, +\infty)$
signs of factors				
$(x^3 - t_1), (x^3 - t_2),$	(-)(-)(+)	(-)(+)(+)	(+)(+)(+)	(+)(+)(-)
and $(1 - x^3)^3$				
sign of f''	+	—	+	—

This suggests that f is concave up on $(-\infty, x_2)$ and on $(x_1, 1)$, and is concave down on (x_2, x_1) and on $(1, +\infty)$. Both x_1 and x_2 are inflection points.

Based on these computations, we sketch a graph as follows:

2. Determine the relative and the absolute extrema of the function f on the closed interval [-2, 3], if

$$f(x) = -\frac{1}{4}x^4 + \frac{1}{3}x^3 + x^2 + 1.$$

Solution. This function is differentiable everywhere on the open interval (-2, 3). Its derivatives are

$$f'(x) = -x^3 + x^2 + 2x = -x(x-2)(x+1),$$

$$f''(x) = -3x^2 + 2x + 2.$$

Solving f'(x) = 0 we get x = 0, 2, -1 as candidates for relative extrema. Applying the second derivative test we see that

$$f''(-1) = -3 - 2 + 2 = -3 < 0,$$

$$f''(0) = 2 > 0,$$

$$f''(2) = -12 + 4 + 2 = -6 < 0.$$

Therefore, -1 and 2 are relative maxima and 0 is a relative minimum. The values of f at the relative extrema are

$$f(0) = 1, \qquad f(2) = \frac{11}{3}, \qquad f(-1) = \frac{17}{12}$$
 (1)

This is to be compared with the values of f at the endpoints -2, 3:

$$f(-2) = -\frac{5}{3}, \qquad f(3) = -\frac{5}{4}.$$
 (2)

We conclude that f has an absolute maximum at x = 2. and an absolute minimum at the left endpoint x = -2.