1S11: Calculus for students in Science

Dr. Vladimir Dotsenko
TCD

Lecture 10

Limits at infinity

A function f is said to have the limit L as x tends to $+\infty$ if the values $f(x)$ get as close as we like to L as x increases without bound. In this case, one writes

$$
\lim _{x \rightarrow+\infty} f(x)=L
$$

Similarly, a function f is said to have the limit L as x tends to $-\infty$ if the values $f(x)$ get as close as we like to L as x decreases without bound. In this case, one writes

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

Limits at infinity

For example, let us consider the function $f(x)=1 / x$:

In this case, we have

$$
\lim _{x \rightarrow+\infty} f(x)=0 \text { and } \lim _{x \rightarrow-\infty} f(x)=0
$$

Limits at infinity

Now, let us consider the function $f(x)=1 / x^{2}$:

In this case, we also have

$$
\lim _{x \rightarrow+\infty} f(x)=0 \text { and } \lim _{x \rightarrow-\infty} f(x)=0
$$

Limits at infinity

In terms of limits at infinity we can make the notion of a horisontal asymptote more precise:
The graph of a function f has the line $y=L$ as a horisontal asymptote if at least one of the two following situations occur:

$$
\lim _{x \rightarrow+\infty} f(x)=L, \lim _{x \rightarrow-\infty} f(x)=L
$$

E.g., both for $f(x)=1 / x$ and $f(x)=1 / x^{2}$, both of the formulas apply when $L=0$.

Exercise. Sketch examples of graphs for which exactly one of those situations occurs.

Infinite Limits at infinity

A function f is said to have the limit $+\infty$ as x tends to $+\infty$ (or $-\infty$) if the values $f(x)$ all increase without bound as x increases without bound (decreases without bound). In this case, one writes

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty \quad\left(\lim _{x \rightarrow-\infty} f(x)=+\infty\right)
$$

A function f is said to have the limit $-\infty$ as x tends to $+\infty$ (or $-\infty$) if the values $f(x)$ all decrease without bound as x increases without bound (decreases without bound). In this case, one writes

$$
\lim _{x \rightarrow+\infty} f(x)=-\infty \quad\left(\lim _{x \rightarrow-\infty} f(x)=-\infty\right)
$$

Infinite Limits at infinity

For example, let us consider the function $f(x)=x^{2}$:

In this case, we have

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty \text { and } \lim _{x \rightarrow-\infty} f(x)=+\infty
$$

Infinite Limits at infinity

Now, let us consider the function $f(x)=x^{3}$:

In this case, we have

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty \text { and } \lim _{x \rightarrow-\infty} f(x)=-\infty
$$

Limits of polynomials at infinity

Theorem. Suppose that $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, where $a_{n} \neq 0$. Then

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(a_{n} x^{n}\right), \\
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}\left(a_{n} x^{n}\right) .
\end{aligned}
$$

Proof. We have
$f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}=a_{n} x^{n}\left(\frac{a_{0}}{a_{n} x^{n}}+\frac{a_{1}}{a_{n} x^{n-1}}+\cdots+\frac{a_{n-1}}{a_{n} x}+1\right)$,
and the expression in the brackets clearly has the limit 1 as $x \rightarrow+\infty$ or $x \rightarrow-\infty$, since all terms except for 1 have the limit 0 .

Informally, this theorem says that the limiting behaviour at infinity of a polynomial exactly matches the behaviour of its highest degree term.

Limits of Rational functions at infinity

Theorem. Suppose that $f(x)=\frac{a_{0}+a_{1} x+\cdots+a_{n} x^{n}}{b_{0}+b_{1} x+\cdots+b_{m} x^{m}}$, where $a_{n}, b_{m} \neq 0$. Then

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} f(x) & =\lim _{x \rightarrow+\infty} \frac{a_{n} x^{n}}{b_{m} x^{m}}, \\
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} \frac{a_{n} x^{n}}{b_{m} x^{m}}
\end{aligned}
$$

Proof. We have
$f(x)=\frac{a_{0}+a_{1} x+\cdots+a_{n} x^{n}}{b_{0}+b_{1} x+\cdots+b_{m} x^{m}}=\frac{a_{n} x^{n}}{b_{m} x^{m}} \cdot \frac{\frac{a_{0}}{a_{n} x^{n}}+\frac{a_{1}}{a_{n} x^{n-1}}+\cdots+\frac{a_{n-1}}{a_{n} x}+1}{\frac{b_{0}}{b_{m} x^{m}}+\frac{b_{1}}{b_{m} x^{m-1}}+\cdots+\frac{b_{m-1}}{b_{m} x}+1}$,
and both the numerator and the denominator of the second fraction clearly have the limit 1 as $x \rightarrow+\infty$ or $x \rightarrow-\infty$, since all terms except for 1 have the limit 0 .

Informally, this theorem says that the limiting behaviour at infinity of a rational function exactly matches the behaviour of the ratio of highest degree terms in the numerator and the denominator.

Limits of RATIONAL FUNCTIONS AT INFINITY: EXAMPLES

Example 1. We have

$$
\lim _{x \rightarrow+\infty} \frac{3 x+5}{6 x-8}=\lim _{x \rightarrow+\infty} \frac{3 x}{6 x} \cdot \frac{1+\frac{5}{3 x}}{1-\frac{8}{6 x}}=\lim _{x \rightarrow+\infty} \frac{3 x}{6 x}=\frac{1}{2}
$$

Example 2. We have

$$
\lim _{x \rightarrow-\infty} \frac{4 x^{2}-x}{2 x^{3}-5}=\lim _{x \rightarrow-\infty} \frac{4 x^{2}}{2 x^{3}} \cdot \frac{1-\frac{1}{4 x}}{1-\frac{5}{2 x^{3}}}=\lim _{x \rightarrow-\infty} \frac{4 x^{2}}{2 x^{3}}=\lim _{x \rightarrow-\infty} \frac{2}{x}=0
$$

Example 3. We have

$$
\lim _{x \rightarrow+\infty} \frac{5 x^{3}-2 x^{2}+1}{1-3 x}=\lim _{x \rightarrow+\infty} \frac{5 x^{3}}{-3 x} \cdot \frac{1-\frac{2}{5 x}+\frac{1}{5 x^{3}}}{1-\frac{1}{3 x}}=\lim _{x \rightarrow+\infty} \frac{5 x^{2}}{-3}=-\infty .
$$

One example from Lecture 5

The graph of $f(x)=\frac{x^{2}+2 x}{x^{2}-1}=\frac{x^{2}+2 x}{(x-1)(x+1)}$ has vertical asymptotes $x=1$ and $x=-1$, and a horisontal asymptote $y=1$. Now we know which limits control those asymptotes:
$\lim _{x \rightarrow 1^{+}} f(x)=+\infty, \lim _{x \rightarrow 1^{-}} f(x)=-\infty, \lim _{x \rightarrow-1^{+}} f(x)=+\infty, \lim _{x \rightarrow-1^{-}} f(x)=-\infty$ for the vertical asymptotes, and $\lim _{x \rightarrow+\infty} f(x)=1, \lim _{x \rightarrow-\infty} f(x)=1$ for the horisontal asymptote.

Another example from Lecture 5

The graph of $f(x)=\frac{2 x^{2}-2}{x^{2}-2 x-3}=\frac{2(x-1)(x+1)}{(x+1)(x-3)}$ has a vertical asymptote $x=3$, a horisontal asymptote $y=2$, and also the point $(-1,1)$ which it approaches both on the left and on the right but does not touch. This corresponds to the existence of the limits

$$
\begin{gathered}
\lim _{x \rightarrow 3^{+}} f(x)=+\infty, \lim _{x \rightarrow 3^{-}} f(x)=-\infty, \\
\lim _{x \rightarrow+\infty} f(x)=2, \lim _{x \rightarrow-\infty} f(x)=2, \\
\lim _{x \rightarrow-1} f(x)=1 .
\end{gathered}
$$

More difficult limits at infinity

For ratios involving square roots, the same method we used before is useful:

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} \frac{\sqrt{x^{2}+2}}{3 x-6}=\lim _{x \rightarrow+\infty} \frac{\sqrt{x^{2}\left(1+\frac{2}{x^{2}}\right)}}{3 x\left(1-\frac{2}{x}\right)}=\lim _{x \rightarrow+\infty} \frac{|x|}{3 x}=\frac{1}{3} \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+2}}{3 x-6}=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}\left(1+\frac{2}{x^{2}}\right)}}{3 x\left(1-\frac{2}{x}\right)}=\lim _{x \rightarrow-\infty} \frac{|x|}{3 x}=-\frac{1}{3} .
\end{aligned}
$$

More difficult limits at infinity

For differences $\sqrt{f(x)}-\sqrt{g(x)}$, or simply $\sqrt{f(x)}-h(x)$, it is useful to apply the formula $a-b=\frac{a^{2}-b^{2}}{a+b}$:

$$
\begin{aligned}
& \begin{array}{r}
\lim _{x \rightarrow+\infty}\left(\sqrt{x^{6}+5}-x^{3}\right)=\lim _{x \rightarrow+\infty} \frac{\left(\sqrt{x^{6}+5}\right)^{2}-\left(x^{3}\right)^{2}}{\sqrt{x^{6}+5}+x^{3}}= \\
=\lim _{x \rightarrow+\infty} \frac{5}{\sqrt{x^{6}+5}+x^{3}}=0 \\
\lim _{x \rightarrow+\infty}\left(\sqrt{x^{6}+5 x^{3}}-x^{3}\right)=\lim _{x \rightarrow+\infty} \frac{\left(\sqrt{x^{6}+5 x^{3}}\right)^{2}-\left(x^{3}\right)^{2}}{\sqrt{x^{6}+5 x^{3}}+x^{3}}= \\
=\lim _{x \rightarrow+\infty} \frac{5 x^{3}}{\sqrt{x^{6}+5 x^{3}}+x^{3}}
\end{array}
\end{aligned}
$$

and noticing that for large positive x we can use our previous method and write $\sqrt{x^{6}+5 x^{3}}+x^{3}=x^{3}\left(\sqrt{1+\frac{5}{x^{3}}}+1\right)$, we finally conclude that $\lim _{x \rightarrow+\infty}\left(\sqrt{x^{6}+5 x^{3}}-x^{3}\right)=\frac{5}{2}$.

