1S11: Calculus for students in Science

Dr. Vladimir Dotsenko

TCD
Lecture 17

Derivatives of polynomials: REMINDER

Theorem. Every polynomial

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

is differentiable everywhere, and

$$
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1}
$$

Proof. It is enough to prove that the derivative of $f(x)=x^{n}$ is $f^{\prime}(x)=n x^{n-1}$, since then we can use rules for scalar factors and addition. We note that similar to the fact that $a^{2}-b^{2}=(a-b)(a+b)$, we have

$$
\begin{gathered}
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right), \\
\cdots \\
a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}\right),
\end{gathered}
$$

so

$$
\lim _{x \rightarrow x_{0}} \frac{x^{n}-x_{0}^{n}}{x-x_{0}}=\lim _{x \rightarrow x_{0}}\left(x^{n-1}+x^{n-2} x_{0}+\cdots+x x_{0}^{n-2}+x_{0}^{n-1}\right)=n x_{0}^{n-1}
$$

Derivatives of polynomials: another approach

 There is another way to prove the same theorem; it relies on the binomial formula$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{n-1} a b^{n-1}+b^{n}
$$

Here $\binom{n}{k}=\frac{n!}{k!(n-k)!}$, where in turn n ! is the "factorial" number, $n!=1 \cdot 2 \cdot 3 \cdots n$. In particular, $\binom{n}{1}=\frac{n!}{1!(n-1)!}=n$.
To compute the derivative of x^{n}, we need to examine the limit

$$
\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h}
$$

Expanding $(x+h)^{n}$ by the binomial formula, we get $(x+h)^{n}=x^{n}+n x^{n-1} h+\binom{n}{2} x^{n-2} h^{2}+\cdots+\binom{n}{n-1} x h^{n-1}+h^{n}$, which allows us to conclude that

$$
\frac{(x+h)^{n}-x^{n}}{h}=n x^{n-1}+\binom{n}{2} x^{n-2} h+\cdots+\binom{n}{n-1} x h^{n-2}+h^{n-1}
$$

which manifestly has the limit $n x^{n-1}$ as $h \rightarrow 0$.

Computing Derivatives: REMINDER

Theorem. Suppose that two functions f and g are both differentiable at $x=x_{0}$. Then $f+g$ and $f-g$ are differentiable at $x=x_{0}$, and

$$
(f+g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right), \quad(f-g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)-g^{\prime}\left(x_{0}\right)
$$

Since the derivative function of x^{2} is $2 x$, and the derivative function of x is 1 , the derivative of the product $x \cdot x$ is not equal to the product of derivatives. Instead, the following more complex product rule for derivatives holds.

Product rule

Theorem. Suppose that two functions f and g are both differentiable at $x=x_{0}$. Then $f g$ is differentiable at $x=x_{0}$, and

$$
(f g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)+f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)
$$

Informally, if f and g describe how two sides of a rectangle change with time, $f g$ describes the change of the area, and the change of area can be read from the following figure:

Proof of the product rule

Proof. We have

$$
\begin{gathered}
(f g)^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{(f g)(x)-(f g)\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{f(x) g(x)-f\left(x_{0}\right) g\left(x_{0}\right)}{x-x_{0}}= \\
=\lim _{x \rightarrow x_{0}} \frac{f(x) g(x)-f\left(x_{0}\right) g(x)+f\left(x_{0}\right) g(x)-f\left(x_{0}\right) g\left(x_{0}\right)}{x-x_{0}}= \\
=\lim _{x \rightarrow x_{0}}\left(\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} g(x)+f\left(x_{0}\right) \frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}\right)= \\
=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \lim _{x \rightarrow x_{0}} g(x)+f\left(x_{0}\right) \lim _{x \rightarrow x_{0}} \frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}= \\
=f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)+f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)
\end{gathered}
$$

where we used the fact that a function that is differentiable at x_{0} is also continuous at x_{0}.

Product Rule: examples

Example 1. Let $f(x)=g(x)=x$, so that $f(x) g(x)=x^{2}$. We have $f^{\prime}(x)=g^{\prime}(x)=1$, so

$$
(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)=1 \cdot x+x \cdot 1=2 x,
$$

as expected. Moreover, one can use product rule to prove $\left(x^{n}\right)^{\prime}=n x^{n-1}$ in a yet another way.
Example 2. Let $f(x)=(1+x) \sqrt{x}$. Then

$$
\begin{aligned}
\frac{d}{d x}[f(x)]=\frac{d}{d x}[1+x] \sqrt{x}+(1+x) \frac{d}{d x} & {[\sqrt{x}] } \\
& = \\
& =\sqrt{x}+(1+x) \frac{1}{2 \sqrt{x}}=\frac{1+3 x}{2 \sqrt{x}} .
\end{aligned}
$$

Derivative of the quotient

Theorem. Suppose that the function g is differentiable at $x=x_{0}$, and that $g\left(x_{0}\right) \neq 0$. Then $\frac{1}{g}$ is differentiable at $x=x_{0}$, and

$$
\left(\frac{1}{g}\right)^{\prime}\left(x_{0}\right)=-\frac{g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}}
$$

Proof. We have

$$
\begin{aligned}
\left(\frac{1}{g}\right)^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} & \frac{\frac{1}{g(x)}-\frac{1}{g\left(x_{0}\right)}}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{\frac{g\left(x_{0}\right)-g(x)}{g\left(x_{0}\right) g(x)}}{x-x_{0}}= \\
& =-\frac{1}{g\left(x_{0}\right)} \lim _{x \rightarrow x_{0}} \frac{1}{g(x)} \lim _{x \rightarrow x_{0}} \frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}=-\frac{g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}}
\end{aligned}
$$

as required.

Derivative of the quotient

Theorem. Suppose that two functions f and g are both differentiable at $x=x_{0}$, and that $g\left(x_{0}\right) \neq 0$. Then $\frac{f}{g}$ is differentiable at $x=x_{0}$, and

$$
\left(\frac{f}{g}\right)^{\prime}\left(x_{0}\right)=\frac{f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)-f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}}
$$

Proof. Let us apply the previous result and the product rule to the product $f \cdot \frac{1}{g}=\frac{f}{g}$:

$$
\left(\frac{f}{g}\right)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \frac{1}{g\left(x_{0}\right)}+f\left(x_{0}\right)\left(\frac{1}{g}\right)^{\prime}\left(x_{0}\right)=\frac{f^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)}-\frac{f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}}
$$

which is equal to $\frac{f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)-f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}}$, as required.

Derivatives of Trigonometric functions

Theorem. We have $(\sin x)^{\prime}=\cos x$ and $(\cos x)^{\prime}=-\sin x$.
Proof. We shall use the addition formulas for sines and cosines:
$\sin (a+b)=\sin a \cos b+\sin b \cos a, \quad \cos (a+b)=\cos a \cos b-\sin a \sin b$.
Using these formulas, we can evaluate the respective limits:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} & =\lim _{h \rightarrow 0} \frac{\sin x \cos h+\sin h \cos x-\sin x}{h}= \\
& =\cos x \lim _{h \rightarrow 0} \frac{\sin h}{h}-\sin x \lim _{h \rightarrow 0} \frac{1-\cos h}{h}=\cos x
\end{aligned}
$$

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h} & =\lim _{h \rightarrow 0} \frac{\cos x \cos h-\sin x \sin h-\cos x}{h}= \\
& =\cos x \lim _{h \rightarrow 0} \frac{\cos h-1}{h}-\sin x \lim _{h \rightarrow 0} \frac{\sin h}{h}=-\sin x .
\end{aligned}
$$

Derivatives of trigonometric functions

Theorem. We have

$$
\begin{aligned}
(\tan x)^{\prime}=\sec ^{2} x, & (\cot x)^{\prime}=-\csc ^{2} x, \\
(\sec x)^{\prime}=\sec x \tan x, & (\csc x)^{\prime}=-\csc x \cot x .
\end{aligned}
$$

Proof. This follows from the rule for computing derivatives of quotients. For example,

$$
\begin{aligned}
& (\tan x)^{\prime}=\left(\frac{\sin x}{\cos x}\right)^{\prime}=\frac{(\sin x)^{\prime} \cos x-\sin x(\cos x)^{\prime}}{\cos ^{2} x}= \\
& \quad=\frac{\cos x \cos x-\sin x(-\sin x)^{\prime}}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x .
\end{aligned}
$$

Exercise. Prove the three remaining formulas yourself; this would be an excellent way to start getting used to computing derivatives!

