1S11: Calculus for students in Science

Dr. Vladimir Dotsenko
TCD

Lecture 19

Derivatives of implicitly defined functions

 Implicit differentiation refers to the situation when the dependent variable y is not given explicitly, but rather implicitly, that is a relationship between x and y is expressed by an equation (which may be possible to solve directly or not); in this case the derivative $y^{\prime}(x)$ can be found by differentiating the equation using the chain rule. Using implicit differentiation, we can compute many different derivatives.Example 1. To compute the derivative of $1 / x$ in an alternative way, one can apply implicit differentiation to $x y=1$:

$$
\begin{gathered}
\frac{d}{d x}[x y]=\frac{d}{d x}[1], \\
y+x y^{\prime}=0, \\
x y^{\prime}=-y, \\
y^{\prime}=-\frac{y}{x}=-\frac{\frac{1}{x}}{x}=-\frac{1}{x^{2}} .
\end{gathered}
$$

Derivatives of implicitly defined functions

Example 2. To compute the derivative of $y=\sqrt{1-x^{2}}$, we can of course use the chain rule:

$$
\left(\sqrt{1-x^{2}}\right)^{\prime}=\frac{1}{2 \sqrt{1-x^{2}}} \cdot(-2 x)=-\frac{x}{\sqrt{1-x^{2}}} .
$$

However, we can approach it differently, applying implicit differentiation to $x^{2}+y^{2}=1$:

$$
\begin{gathered}
\frac{d}{d x}\left[x^{2}+y^{2}\right]=\frac{d}{d x}[1], \\
2 x+2 y y^{\prime}=0, \\
y y^{\prime}=-x, \\
y^{\prime}=-\frac{x}{y}=-\frac{x}{\sqrt{1-x^{2}}} .
\end{gathered}
$$

Derivatives of implicitly defined functions

Let us consider the curve $x^{3}+y^{3}=3 x y$:

What is the equation of the tangent line at the point $(2 / 3,4 / 3)$? Note that this point is on the curve since

$$
(2 / 3)^{3}+(4 / 3)^{3}=8 / 27+64 / 27=72 / 27=8 / 3=3 \cdot 2 / 3 \cdot 4 / 3
$$

DERIVATIVES OF IMPLICITLY DEFINED FUNCTIONS

This curve is not a graph of a function, but we still can use derivatives! Differentiating implicitly amounts to the following steps:

$$
\begin{gathered}
\frac{d}{d x}\left[x^{3}+y^{3}\right]=\frac{d}{d x}[3 x y], \\
3 x^{2}+3 y^{2} y^{\prime}(x)=3 y+3 x y^{\prime}(x), \\
x^{2}+y^{2} y^{\prime}(x)=y+x y^{\prime}(x), \\
\left(y^{2}-x\right) y^{\prime}(x)=y-x^{2}, \\
y^{\prime}(x)=\frac{y-x^{2}}{y^{2}-x} .
\end{gathered}
$$

Now to compute the slope of the tangent line at a point, we just substitute the x - and y-coordinates, e.g. for $(2 / 3,4 / 3)$ we obtain

$$
y^{\prime}(x)=\frac{4 / 3-4 / 9}{16 / 9-2 / 3}=\frac{8 / 9}{10 / 9}=0.8
$$

and using the point-slope formula, we get $y-4 / 3=0.8(x-2 / 3)$, that is

$$
y=0.8 x+0.8
$$

Higher derivatives

Given a differentiable function f, its derivative f^{\prime} is another function, which is often again differentiable. This new function $\left(f^{\prime}\right)^{\prime}$, if exists, is denoted by $f^{\prime \prime}$, and is called the second derivative of the function f. Similarly, the derivative of the second derivative is denoted by $f^{\prime \prime \prime}$ and is called the third derivative of the function f, etc. Starting from the order 4, a more compact notation is used: the fourth derivative is denoted by $f^{(4)}$, the fifth derivative by $f^{(5)}$, etc.
Other common notations for higher derivatives are

$$
\begin{gathered}
y^{\prime \prime}=f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[\frac{d}{d x}[f(x)]\right]=\frac{d^{2}}{d x^{2}}[f(x)] \\
y^{\prime \prime \prime}=f^{\prime \prime \prime}(x)=\frac{d^{3} y}{d x^{3}}=\frac{d}{d x}\left[\frac{d^{2}}{d x^{2}}[f(x)]\right]=\frac{d^{3}}{d x^{3}}[f(x)], \\
\cdots \\
y^{(n)}=f^{(n)}(x)=\frac{d^{n} y}{d x^{n}}=\frac{d^{n}}{d x^{n}}[f(x)] .
\end{gathered}
$$

Higher Derivatives: MEANing

By definition, the second derivative of a function is "rate of change of the rate of change". If the function f describes the linear motion of a particle, then, as we discussed before, f^{\prime} describes the instantaneous velocity at each point of the trajectory, and $f^{\prime \prime}$ describes the instantaneous acceleration.

On a less serious note,
In the fall of 1972 President Nixon announced that the rate of increase of inflation was decreasing. This was the first time a sitting president used the third derivative to advance his case for reelection.
(Hugo Rossi, in Notices of American Mathematical Society, vol. 43, no. 10, 1996.)

Higher derivatives: product rule

If we denote $f(x)=f^{(0)}(x), f^{\prime}(x)=f^{(1)}(x), f^{\prime \prime}(x)=f^{(2)}(x)$, there is a very nice and compact product rule for higher derivatives:

$$
\begin{aligned}
&(f g)^{(n)}(x)=f^{(0)}(x) g^{(n)}(x)+\binom{n}{1} f^{(1)}(x) g^{(n-1)}(x)+ \\
& \quad+\binom{n}{2} f^{(2)}(x) g^{(n-2)}(x)+\cdots+\binom{n}{n-1} f^{(n-1)}(x) g^{(1)}(x)+ \\
&+f^{(n)}(x) g^{(0)}(x)
\end{aligned}
$$

where the coefficients $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ are the same coefficients that are featured in the binomial formula for $(a+b)^{n}$.

Derivatives and analysis of functions

The following facts will be useful for us. We shall use them without proof.

- If f is a constant function, then its derivative is zero.
- If f is differentiable on (a, b), and is an increasing function ($f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$), then the derivative of a function f is non-negative on $(a, b): f^{\prime}(x) \geq 0$.
- If f is differentiable on (a, b), and is a decreasing function ($f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$), then the derivative of a function f is non-positive on $(a, b): f^{\prime}(x) \leq 0$.

Note that since we pass to limits, inequalities may become non-strict, e.g. $f(x)=x^{3}$ is increasing, but $f^{\prime}(0)=0$.

Derivatives and analysis of functions

- If the derivative of a function f is zero on (a, b), then f is a constant function.
- If the derivative of a function f is positive on (a, b), then f is an increasing function: $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
- If the derivative of a function f is negative on (a, b), then f is a decreasing function: $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
- If f is differentiable on (a, b), and attains a (locally) extremal value at the point c inside (a, b) (this means that either for all points x sufficiently close to c we have $f(x) \leq f(c)$ or for all points x sufficiently close to c we have $f(x) \geq f(c))$, then $f^{\prime}(c)=0$.

Note that the converse of the last statement is false: not every point where the first derivative is equal to zero gives a locally extremal value, e.g. for the same function $f(x)=x^{3}$ that we just discussed, we have $f^{\prime}(0)=0$, but $f(x)>f(0)$ for positive x, and $f(x)<f(0)$ for negative x.

