1S11: Calculus for students in Science

Dr. Vladimir Dotsenko

TCD

Lecture 19

DERIVATIVES OF IMPLICITLY DEFINED FUNCTIONS

Implicit differentiation refers to the situation when the dependent variable y is not given explicitly, but rather implicitly, that is a relationship between x and y is expressed by an equation (which may be possible to solve directly or not); in this case the derivative y'(x) can be found by differentiating the equation using the chain rule. Using implicit differentiation, we can compute many different derivatives.

Example 1. To compute the derivative of 1/x in an alternative way, one can apply implicit differentiation to xy = 1:

$$\frac{d}{dx}[xy] = \frac{d}{dx}[1],$$
$$y + xy' = 0,$$
$$xy' = -y,$$
$$y' = -\frac{y}{x} = -\frac{\frac{1}{x}}{x} = -\frac{1}{x^2}.$$

DERIVATIVES OF IMPLICITLY DEFINED FUNCTIONS

Example 2. To compute the derivative of $y = \sqrt{1 - x^2}$, we can of course use the chain rule:

$$\left(\sqrt{1-x^2}\right)' = \frac{1}{2\sqrt{1-x^2}} \cdot (-2x) = -\frac{x}{\sqrt{1-x^2}}.$$

However, we can approach it differently, applying implicit differentiation to $x^2 + y^2 = 1$:

$$\frac{d}{dx}[x^2 + y^2] = \frac{d}{dx}[1],$$
$$2x + 2yy' = 0,$$
$$yy' = -x,$$
$$y' = -\frac{x}{y} = -\frac{x}{\sqrt{1 - x^2}}.$$

DERIVATIVES OF IMPLICITLY DEFINED FUNCTIONS Let us consider the curve $x^3 + y^3 = 3xy$:

What is the equation of the tangent line at the point (2/3, 4/3)? Note that this point is on the curve since

$$(2/3)^3 + (4/3)^3 = 8/27 + 64/27 = 72/27 = 8/3 = 3 \cdot 2/3 \cdot 4/3.$$

DERIVATIVES OF IMPLICITLY DEFINED FUNCTIONS

This curve is not a graph of a function, but we still can use derivatives! Differentiating implicitly amounts to the following steps:

$$\frac{d}{dx}[x^3 + y^3] = \frac{d}{dx}[3xy],$$

$$3x^2 + 3y^2y'(x) = 3y + 3xy'(x),$$

$$x^2 + y^2y'(x) = y + xy'(x),$$

$$(y^2 - x)y'(x) = y - x^2,$$

$$y'(x) = \frac{y - x^2}{y^2 - x}.$$

Now to compute the slope of the tangent line at a point, we just substitute the x- and y-coordinates, e.g. for (2/3, 4/3) we obtain

$$y'(x) = \frac{4/3 - 4/9}{16/9 - 2/3} = \frac{8/9}{10/9} = 0.8,$$

and using the point-slope formula, we get y - 4/3 = 0.8(x - 2/3), that is

$$y=0.8x+0.8.$$

HIGHER DERIVATIVES

Given a differentiable function f, its derivative f' is another function, which is often again differentiable. This new function (f')', if exists, is denoted by f'', and is called the *second derivative* of the function f. Similarly, the derivative of the second derivative is denoted by f''' and is called the *third derivative* of the function f, etc. Starting from the order 4, a more compact notation is used: the fourth derivative is denoted by $f^{(4)}$, the fifth derivative by $f^{(5)}$, etc.

Other common notations for higher derivatives are

$$y'' = f''(x) = \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[\frac{d}{dx} [f(x)] \right] = \frac{d^2}{dx^2} [f(x)],$$

$$y''' = f'''(x) = \frac{d^3 y}{dx^3} = \frac{d}{dx} \left[\frac{d^2}{dx^2} [f(x)] \right] = \frac{d^3}{dx^3} [f(x)],$$

$$y^{(n)} = f^{(n)}(x) = \frac{d^n y}{dx^n} = \frac{d^n}{dx^n} [f(x)].$$

HIGHER DERIVATIVES: MEANING

By definition, the second derivative of a function is "rate of change of the rate of change". If the function f describes the linear motion of a particle, then, as we discussed before, f' describes the instantaneous velocity at each point of the trajectory, and f'' describes the instantaneous acceleration.

On a less serious note,

In the fall of 1972 President Nixon announced that the rate of increase of inflation was decreasing. This was the first time a sitting president used the third derivative to advance his case for reelection.

(Hugo Rossi, in Notices of American Mathematical Society, vol. 43, no. 10, 1996.)

HIGHER DERIVATIVES: PRODUCT RULE

If we denote $f(x) = f^{(0)}(x)$, $f'(x) = f^{(1)}(x)$, $f''(x) = f^{(2)}(x)$, there is a very nice and compact product rule for higher derivatives:

$$(fg)^{(n)}(x) = f^{(0)}(x)g^{(n)}(x) + \binom{n}{1}f^{(1)}(x)g^{(n-1)}(x) + \\ + \binom{n}{2}f^{(2)}(x)g^{(n-2)}(x) + \dots + \binom{n}{n-1}f^{(n-1)}(x)g^{(1)}(x) + \\ + f^{(n)}(x)g^{(0)}(x),$$

where the coefficients $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ are the same coefficients that are featured in the binomial formula for $(a + b)^n$.

DERIVATIVES AND ANALYSIS OF FUNCTIONS

The following facts will be useful for us. We shall use them without proof.

- If f is a constant function, then its derivative is zero.
- If f is differentiable on (a, b), and is an increasing function $(f(x_1) < f(x_2)$ whenever $x_1 < x_2)$, then the derivative of a function f is non-negative on (a, b): $f'(x) \ge 0$.
- If f is differentiable on (a, b), and is a decreasing function $(f(x_1) > f(x_2)$ whenever $x_1 < x_2)$, then the derivative of a function f is non-positive on (a, b): $f'(x) \le 0$.

Note that since we pass to limits, inequalities may become non-strict, e.g. $f(x) = x^3$ is increasing, but f'(0) = 0.

DERIVATIVES AND ANALYSIS OF FUNCTIONS

- If the derivative of a function f is zero on (a, b), then f is a constant function.
- If the derivative of a function f is positive on (a, b), then f is an increasing function: f(x₁) < f(x₂) whenever x₁ < x₂.
- If the derivative of a function f is negative on (a, b), then f is a decreasing function: f(x₁) > f(x₂) whenever x₁ < x₂.
- If f is differentiable on (a, b), and attains a (locally) extremal value at the point c inside (a, b) (this means that either for all points x sufficiently close to c we have f(x) ≤ f(c) or for all points x sufficiently close to c we have f(x) ≥ f(c)), then f'(c) = 0.

Note that the converse of the last statement is false: not every point where the first derivative is equal to zero gives a locally extremal value, e.g. for the same function $f(x) = x^3$ that we just discussed, we have f'(0) = 0, but f(x) > f(0) for positive x, and f(x) < f(0) for negative x.