1S11: Calculus for students in Science

Dr. Vladimir Dotsenko

TCD
Lecture 2

Natural domain of a function (REMinder slide)

With the expressions like \sqrt{x} or $1 / x$ we saw how the domain of a function may be restricted by a formula from which we compute values of a function.

Definition. The natural domain of a function f defined by a formula consists of all values of x for which $f(x)$ has a well defined real value.

Example 1. The natural domain of $f(x)=x^{3}$ consists of all real numbers $(-\infty, \infty)$, since for each real x its cube is a well defined real number.

Natural domain of a function

Example 2. The natural domain of $f(x)=\frac{1}{(x-1)(x-3)}$ consists of all real numbers except for $x=1$ and $x=3$ since for those numbers division by zero occurs.
One can write the answer as either $\{x: x \neq 1$ and $x \neq 3\}$ or, using our previous notation, $(-\infty, 1) \cup(1,3) \cup(3,+\infty)$. Here a mathematical symbol \cup for union (joining together two sets) is used.
Example 3. The natural domain of $f(x)=\tan x=\frac{\sin x}{\cos x}$ consists of all numbers except for those where $\cos x=0$. The cosine vanishes precisely at odd multiples of $\pi / 2$, so the natural domain of f is

$$
\{x: x \neq \pm \pi / 2, \pm 3 \pi / 2, \pm 5 \pi / 2, \ldots\}
$$

Natural domain of a function

Example 4. The natural domain of $f(x)=\sqrt{x^{2}-5 x+6}$ consists of all numbers x for which $x^{2}-5 x+6 \geq 0$ (in order for the square root to assume a real value). Since $x^{2}-5 x+6=(x-2)(x-3)$ (we use the formula for roots of a quadratic equation, $\left.x=\frac{5 \pm \sqrt{5^{2}-4 \cdot 6}}{2}\right)$, we would like to find x for which $(x-2)(x-3) \geq 0$.

Thus, the natural domain of f is $(-\infty, 2] \cup[3,+\infty)$.

Natural domain of a function

Example 5. The natural domain of $f(x)=\frac{x^{2}-5 x+6}{x-2}$ consists of all $x \neq 2$ since the only reason for the value of f to be undefined in this case is where division by zero occurs.
However, since $x^{2}-5 x+6=(x-2)(x-3)$, algebraically this expression can be simplified to $x-3$. The latter expression is defined for $x=2$ as well. Therefore, when performing algebraic operations, it is important to keep track of original domains, and in this particular case we may write $f(x)=x-3, x \neq 2$, thus not losing information on the original domain.

Range of a function

Let us look at the two functions we already examined when talking about domains: $f(x)=1 / x$ and $f(x)=\sqrt{x}$. What values do those functions assume for the values of x ranging over their natural domains?

The first function $f(x)=1 / x$ assumes all nonzero values. Indeed, to attain the value $v \neq 0$, we should just observe that $1 /(1 / v)=v$.
The second function $f(x)=\sqrt{x}$ assumes all nonnegative values. Indeed, to attain the value $v \geq 0$, we should just observe that for such values we have $\sqrt{v^{2}}=v$.

Definition. The range of a function f consists of all values $f(x)$ it assumes when x ranges over its domain.
For a function defined by a table, its range consists of numbers in the second row:

x	1	1.5	2	2.5	3	3.5	4
y	0	1.25	3	5.25	8	11.25	15

Range of a function

For a function defined by a graph, its range is the projection of its graph on the y-axis

Range of a function

Example 1. The range of $f(x)=2+\sqrt{x-1}$ is $[2,+\infty)$. To see that, we observe that the natural domain of this function is $[1,+\infty)$ since we request that the expression from which we extract the square root is nonnegative. As x varies in $[1,+\infty), x-1$ varies in $[0,+\infty)$, and $\sqrt{x-1}$ varies in $[0,+\infty)$, so $2+\sqrt{x-1}$ varies in $[2,+\infty)$.
Example 2. The range of $f(x)=\frac{x+1}{x-1}$ is harder to guess, so we shall approach it directly from the definition. We would like to find the values of a for which the equation $\frac{x+1}{x-1}=a$ has solutions. Solving it, we get

$$
\begin{gathered}
x+1=a x-a, \\
a+1=a x-x=x(a-1), \\
x=\frac{a+1}{a-1},
\end{gathered}
$$

so $a=1$ is not in the natural range. We should be careful when going from $\frac{x+1}{x-1}=a$ to $x+1=a(x-1)$ because we changed the natural domain. However, $x=1$ is not a solution to $x+1=a(x-1)$ anyway.

New functions from old ones: Arithmetic operations

Given two functions f and g, they can be added, subtracted, multiplied and divided in a natural way. For $f+g, f-g$, and $f g$ to be defined, both f and g should be defined, and for f / g to be defined, both f and g should be defined, and also the value of g should be non-zero.
Example 1. Let $f(x)=1+\sqrt{x-2}$, and $g(x)=x-3$. Then

- $(f+g)(x)=1+\sqrt{x-2}+x-3=x-2+\sqrt{x-2}$, the domain is $[2,+\infty)$,
- $(f-g)(x)=1+\sqrt{x-2}-(x-3)=4-x+\sqrt{x-2}$, the domain is $[2,+\infty)$,
- $(f g)(x)=(1+\sqrt{x-2})(x-3)$, the domain is $[2,+\infty)$,
- $(f / g)(x)=\frac{1+\sqrt{x-2}}{x-3}$, the domain is $[2,3) \cup(3,+\infty)$.

In these examples, the domains of $f+g, f-g, f g, f / g$ are their natural domains. That is not always the case.

New functions from old ones: ARITHMETIC OPERATIONS

Example 2. Let $f(x)=\sqrt{x-2}$, and $g(x)=\sqrt{x-3}$. Then

$$
(f g)(x)=\sqrt{x-2} \sqrt{x-3}=\sqrt{(x-2)(x-3)}=\sqrt{x^{2}-5 x+6}
$$

The domain of $f g$ is $[3,+\infty)$, which does not coincide with the natural domain of $\sqrt{x^{2}-5 x+6}$, that is $(-\infty, 2] \cup[3,+\infty)$.

Example 3. Let $f(x)=x$, and $g(x)=1 / x$. Then

$$
(f / g)(x)=\frac{x}{\frac{1}{x}}=x^{2}
$$

The domain of f / g is $(-\infty, 0) \cup(0,+\infty)$, which does not coincide with the natural domain of x^{2}, that is $(-\infty,+\infty)$.

New functions from old ones: Composition

The arithmetic operations on functions were not "genuinely" new operations, since they just used aritmetics of real numbers at different points x independently. Now we shall define a truly new way to construct new functions, not having numeric analogues.

Definition. The composition of two functions f and g, denoted by $f \circ g$, is the function whose value at x is $f(g(x))$:

$$
(f \circ g)(x)=f(g(x))
$$

Its domain is defined as the set of all x in the domain of g for which the value $g(x)$ is in the domain of f.

Example 1. Recall the usual method for solving quadratic equations:
$x^{2}+p x+q=x^{2}+2 \frac{p}{2} x+q=x^{2}+2 \frac{p}{2} x+\frac{p^{2}}{4}-\frac{p^{2}}{4}+q=\left(x+\frac{p}{2}\right)^{2}-\frac{p^{2}}{4}+q$,
which is the composition of $f(x)=x^{2}-\left(\frac{p^{2}}{4}-q\right)$ and $g(x)=x+\frac{p}{2}$.

