1S11: Calculus for students in Science

Dr. Vladimir Dotsenko
TCD

Lecture 20

Derivatives and analysis of functions: REMINDER

The following facts will be useful for us. We shall use them without proof. The maximal generality in which we shall use these statements would be for a function f that is continuous on a closed interval $[a, b]$ and differentiable on the corresponding open interval (a, b).

- If f is a constant function on $[a, b]$, then $f^{\prime}(x)=0$ for all x in (a, b).
- If $f^{\prime}(x)=0$ for all x in (a, b), then f is constant on $[a, b]$.
- If f is increasing on $[a, b]$, then $f^{\prime}(x) \geq 0$ for all x in (a, b).
- If $f^{\prime}(x)>0$ for all x in (a, b), then f is increasing on (a, b).
- If f is decreasing on $[a, b]$, then $f^{\prime}(x) \leq 0$ for all x in (a, b).
- If $f^{\prime}(x)<0$ for all x in (a, b), then f is decreasing on (a, b).

Examples

Example 1. Let us consider the function $f(x)=x^{2}-6 x+5$. Its derivative $f^{\prime}(x)=2 x-6=2(x-3)$, so $f^{\prime}(x)<0$ for $x<3$, and $f^{\prime}(x)>0$ for $x>3$. We conclude that f is decreasing on $(-\infty, 3]$ and is increasing on $[3,+\infty)$.

Example 2. Let us consider the function $f(x)=x^{3}$. Its derivative $f^{\prime}(x)=3 x^{2}$, so $f^{\prime}(x)>0$ for $x \neq 0$. We conclude that f is increasing on $(-\infty, 0]$ and on $[0,+\infty)$, so it is in fact increasing everywhere (which confirms what we already know about this function).

Examples

Example 3. Let us consider the function $f(x)=3 x^{4}+4 x^{3}-12 x^{2}+2$. Its derivative is

$$
f^{\prime}(x)=12 x^{3}+12 x^{2}-24 x=12 x\left(x^{2}+x-2\right)=12 x(x-1)(x+2)
$$

We see that $f^{\prime}(c)=0$ for $c=0,1,-2$. Let us determine the sign of f^{\prime} at all the remaining points.

interval	$(-\infty,-2)$	$(-2,0)$	$(0,1)$	$(1,+\infty)$
signs of factors $x,(x-1),(x+2)$	$(-)(-)(-)$	$(-)(-)(+)$	$(+)(-)(+)$	$(+)(+)(+)$
sign of f^{\prime}	-	+	-	+

We conclude that f is decreasing on $(-\infty,-2]$ and $[0,1]$, and is increasing on $[-2,0]$ and $[1,+\infty)$.

Relative minima and maxima

Suppose f is defined on an open interval containing c. It is said to have a relative minimum ("local minimum") at c, if for x sufficiently close to c we have $f(x) \geq f(c)$. Similarly, it is said to have a relative maximum ("local maximum") at c, if for x sufficiently close to c we have $f(x) \leq f(c)$. For short, the expression relative extremum is also used when referring to points where either a relative minimum or a relative maximum is attained.
Example. The function $f(x)=x^{2}$ has a relative minimum at $x=0$ but no relative maxima. In fact, this function attains its minimal value at $x=0$, so it is not just a relative minimum. The function $f(x)=\cos x$ has relative minima at all odd multiples of π (where it attains the value -1), and relative maxima at all even multiples of π (where it attains the value 1).

Critical points

Theorem. Suppose that f is defined on an open interval containing c, and has a local extremum at c. Then either $f^{\prime}(c)=0$ or f is not differentiable at c.
Example. The function $f(x)=|x|$ has a relative minimum at $x=0$, but is not differentiable at that point.

Points c where f is either not differentiable or has the zero derivative are called critical points of f. Among the critical points, the points where $f^{\prime}(c)=0$ are called stationary points.

Example. Let us determine the critical points of the function $f(x)=x-\sqrt[3]{x}$. We have $f^{\prime}(x)=1-\frac{1}{3 \sqrt[3]{x^{2}}}$, so f^{\prime} is not defined at $x=0$, and is zero at $x= \pm \frac{1}{\sqrt{27}}$. The latter two are the stationary points of f.

Local extrema: example

Example. Let us consider the function $f(x)=x^{4}-x^{3}+1$ on $[-1,1]$. Suppose we would like to find all its relative extrema. This function is differentiable everywhere, so "suspicious" points are just the stationary points. To determine them, we compute the derivative:

$$
f^{\prime}(x)=4 x^{3}-3 x^{2}
$$

Points c for which $f^{\prime}(c)=0$ are $c=0$ and $c=3 / 4$. How to proceed from here? Let us note that $f^{\prime}(x)<0$ for $-1 \leq x<0$ and $0<x<3 / 4$, and $f^{\prime}(x)>0$ for $x>3 / 4$. This means that $f(x)$ is decreasing on $[-1,0]$ and $[0,3 / 4]$, and is increasing on $[3 / 4,1]$. This in turn means that at $x=3 / 4$ a relative minimum is attained, that at points $x=-1$ and $x=1$ relative maxima are attained, and at the point $x=0$ we do not have a local extremum at all.

First Derivative test

First derivative test for relative extrema. Suppose that f is continuous at its critical point c.

- If $f^{\prime}(x)>0$ on some open interval extending left from c, and $f^{\prime}(x)<0$ on some open interval extending right from c, then f has a relative maximum at c.
- If $f^{\prime}(x)<0$ on some open interval extending left from c, and $f^{\prime}(x)>0$ on some open interval extending right from c, then f has a relative minimum at c.
- If $f^{\prime}(x)$ has the same sign on some open interval extending left from c as it does on some open interval extending right from c, then f does not have a local extremum at c.
Proof of validity. In the first case, $f^{\prime}(x)>0$ on some interval (a, c), and $f^{\prime}(x)<0$ on some interval (c, b). This means that f is increasing on $[a, c]$ and decreasing on $[c, b]$, from which we easily infer that f has a relative maximum at c. The other cases are similar.

First derivative test: example

Example. Let us analyse the stationary points of the function $f(x)=x-\sqrt[3]{x}$ we considered earlier. We recall that $f^{\prime}(x)=1-\frac{1}{3 \sqrt[3]{x^{2}}}$, so for the stationary point $x=-\frac{1}{\sqrt{27}}$, we have $f^{\prime}(x)>0$ on an open interval extending left from that point, and $f^{\prime}(x)<0$ on an open interval extending right from that point, and for the stationary point $x=\frac{1}{\sqrt{27}}$, we have $f^{\prime}(x)<0$ on an open interval extending left from that point, and $f^{\prime}(x)>0$ on an open interval extending right from that point.

We conclude that f has a relative maximum at $x=-\frac{1}{\sqrt{27}}$, and a relative minimum at $x=\frac{1}{\sqrt{27}}$.

Second derivative test

The first derivative test is useful, but involves finding the corresponding open intervals where we can analyse the behaviour of the sign of f^{\prime}. Sometimes a simpler test is available, which just amounts to computing the sign of an individual number.
Second derivative test for relative extrema. Suppose that f is twice differentiable at the point c.

- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a relative maximum at c.
- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a relative minimum at c.
- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)=0$, then the test is inconclusive: the function f may have a relative maximum, relative minimum, or no relative extrema at all at the point c.
Proof of validity. In the first case, $f^{\prime \prime}(c)=\lim _{x \rightarrow c} \frac{f^{\prime}(x)-f^{\prime}(c)}{x-c}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{x-c}$ is negative, so $f^{\prime}(x)>0$ on some open interval extending left from c, and $f^{\prime}(x)<0$ on some open interval extending right from c, and the first derivative test applies. The second case is similar. In the third case, the examples $f(x)=x^{4}, f(x)=-x^{4}$, and $f(x)=x^{3}$ (at the point $c=0$ show that "anything can happen".

SECOND DERIVATIVE TEST: EXAMPLE

Example. Let us analyse the stationary points of the function $f(x)=\frac{x}{2}-\sin x$ on $[0,2 \pi]$. We have

$$
f^{\prime}(x)=\frac{1}{2}-\cos x
$$

and

$$
f^{\prime \prime}(x)=\sin x
$$

The points c in $[0,2 \pi]$ where the first derivative vanishes are $\frac{\pi}{3}$ and $\frac{5 \pi}{3}$. Substituting into the second derivative, we get

$$
f^{\prime \prime}\left(\frac{\pi}{3}\right)=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}, \quad f^{\prime \prime}\left(\frac{5 \pi}{3}\right)=\sin \left(\frac{5 \pi}{3}\right)=-\frac{\sqrt{3}}{2} .
$$

We conclude that f has a relative maximum at $\frac{5 \pi}{3}$, and a relative minimum at $\frac{\pi}{3}$.

