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Analysis of rational functions

Unlike polynomials, rational functions in principle need more effort in
handling, since one has variations in what the domain is, what the
asymptotes are etc. The recipe on the following slide gives a way to
identify most important features of the graph of a given rational function,
and to sketch its graph correctly.

We shall assume that we are dealing with
a rational function f (x) = p(x)

q(x) written in
lowest terms, so that p and q have no
common factors. If they do, we can
cancel all common factors, make a note
that f actually is not defined where those
factors vanish, and remove the respective
points from the graph, as we did before.
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Analysis of rational functions
Graphing f (x) = p(x)/q(x) (for p and q without common factors).

Determine if the graph has any symmetries (about the y -axis or
about the origin).

Find the points where the graph meets the x-axis ((r , 0) for each root
r of p(x)) and the point where the graph meets the y -axis ((0, f (0))).

Find vertical asymptotes of the graph (x = s for each root s of q(x)).

Points where f can potentially change sign are at the x-intercepts or
vertical asymptotes. For each interval between those points,
determine the sign of f on that interval.

Determine the limit of f (x) at −∞ and at +∞. This would
determine the horizontal asymptote of the graph, if any.

Compute f ′(x) and f ′′(x). Analyse the signs of these.

Using the sign analysis of the derivatives, determine where f is
increasing, decreasing, concave up, and concave down. Determine all
stationary points, relative extrema, and inflection points. Use the sign
analysis of f (x) to determine how the graph behaves near the vertical
asymptotes. Based on these conclusions, sketch the graph.
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Analysis of rational functions: example

Let us analyse the rational function f (x) = x2−1
x3

.
Symmetries: replacing x by −x and y by −y gives an equation that
simplifies to the original equation, so the graphs is symmetric about the
origin.
Intercepts: setting y = 0 yields the x-intercepts x = −1 and x = 1. The
point x = 0 is not in the domain of f , so there are no y -intercepts.
Vertical asymptotes: x = 0 is the only one.
Sign analysis: the points −1, 0, 1 (corresponding to the only vertical
asymptote and the two x-intercepts) divide the x-axis into the intervals
(−∞,−1), (−1, 0), (0, 1), (1,+∞). Signs of the corresponding factors
result in the following signs for f :

interval (−∞,−1) (−1, 0) (0, 1) (1,+∞)

signs of factors
x3, (x − 1), (−)(−)(−) (−)(−)(+) (+)(−)(+) (+)(+)(+)
and (x + 1)

sign of f − + − +
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Analysis of rational functions: example
Let us analyse the rational function f (x) = x2−1

x3
.

Limits at infinity: We have

lim
x→+∞

x2 − 1

x3
= lim

x→+∞

(

1

x
−

1

x2

)

= 0,

lim
x→−∞

x2 − 1

x3
= lim

x→−∞

(

1

x
−

1

x2

)

= 0,

so y = 0 is a horisontal asymptote.
Derivatives: We have

f ′(x) =
2x · x3 − (x2 − 1) · 3x2

(x3)2
=

3− x2

x4
=

(
√
3− x)(x +

√
3)

x4
,

f ′′(x) =
(−2x) · x4 − (3− x2) · 4x3

(x4)2
=

2(x2 − 6)

x5
=

(x −
√
6)(x +

√
6)

x5
.

The first derivative vanishes for x = ±
√
3, the second one vanishes for

x = ±
√
6.
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Analysis of rational functions: example

Let us analyse the rational function f (x) = x2−1
x3

.

Sign analysis of the first derivative: Signs of the corresponding factors
result in the following signs for f ′:

interval (−∞,−
√
3) (−

√
3, 0) (0,

√
3) (

√
3,+∞)

signs of factors

x4, (
√
3− x), (+)(+)(−) (+)(+)(+) (+)(+)(+) (+)(−)(+)

and (x +
√
3)

sign of f ′ − + + −

This suggests that f is decreasing on (−∞,−
√
3] and on [

√
3,+∞) and is

increasing on [−
√
3, 0) as well as on (0,

√
3]. Therefore, there is a relative

minimum at x = −
√
3 and a relative maximum at x =

√
3.
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Analysis of rational functions: example

Let us analyse the rational function f (x) = x2−1
x3

.

Sign analysis of the second derivative: Signs of the corresponding factors
result in the following signs for f ′′:

interval (−∞,−
√
6) (−

√
6, 0) (0,

√
6) (

√
6,+∞)

signs of factors

x5, (x −
√
6), (−)(−)(−) (−)(−)(+) (+)(−)(+) (+)(+)(+)

and (x +
√
6)

sign of f ′′ − + − +

This suggests that f is concave down on (−∞,−
√
6] and on (0,

√
6] and

is concave up on [−
√
6, 0) as well as on [

√
6,+∞). Therefore, both

x = −
√
6 and x =

√
6 are inflection points.
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Analysis of rational functions: example
Summarising all the available information, we plot the graph of
f (x) = x2−1

x3
as follows:
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Absolute extrema

A function f is said to have an absolute minimum (“global minimum”) at
c , if for all x we have f (x) ≥ f (c). Similarly, it is said to have an absolute

maximum (“global maximum”) at c , if for all x we have f (x) ≤ f (c).

Theorem. (Extreme Value Theorem) If a function f is continuous on the
closed interval [a, b], then it has both an absolute maximum and an
absolute minimum on [a, b].

It is an existence theorem (no formula or anything for the numbers which
this theorem guarantees to exist), and different proofs give different
methods to compute the extremal values. Using derivatives, we can make
this very constructive: on the open interval (a, b), relative extremal values
occur at critical points, hence an absolute extremum must occur at either
a critical point of f or the endpoints of [a, b].
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Absolute extrema: example

Example. Let us determine the absolute extrema of
f (x) = 2x3 − 15x2 + 36x on the interval [1, 5]. We have

f ′(x) = 6x2 − 30x + 36 = 6(x2 − 5x + 6) = 6(x − 2)(x − 3).

Therefore, the stationary points of f (x) are x = 2 and x = 3. There are
no points of non-differentiability, so we should compare the values of our
function at the endpoints and the stationary points. We have

f (1) = 2− 15 + 36 = 23,

f (2) = 16− 60 + 72 = 28,

f (3) = 54− 135 + 108 = 27,

f (5) = 250− 375 + 180 = 55.

We conclude that the absolute maximum of f on [1, 5] is 55, attained at
x = 5, and the absolute minimum is 23, occurring at x = 1.
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Derivatives and roots: Newton’s method

Theorem. (Intermediate Value Theorem, particular case) If a function f is
continuous on the closed interval [a, b], and the values f (a) and f (b) have
the opposite signs, then the equation f (x) = 0 has a solution on [a, b].

Note that now computing roots feels like a more “useful” task, since roots
of the derivative f ′, that is stationary points, are points where a relative
extremum may occur. Once again, the intermediate value theorem is an
existence theorem, and depending on how you prove it, there are more and
less efficient methods to actually find a solution. One way to do so,
applicalble when f is differentiable, is called “Newton’s method”.

The idea behind Newton’s method is very simple: if we already have a
rough estimate x0 of our solution, take the tangent line at (x0, f (x0)), and
find the point where it meets the x-axis. That point is our new estimate of
the solution, and we continue in the same way.
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Derivatives and roots: Newton’s method

To implement this method, we should look at the actual formulas. The
tangent line has the equation y − f (x0) = f ′(x0)(x − x0). It meets the
x-axis at a point of the form (x1, 0) so −f (x0) = f ′(x0)(x1 − x0), and
therefore

x1 = x0 −
f (x0)

f ′(x0)
.

Of course, when f ′(x0) = 0, the method would not work, since in that
case the tangent line is parallel to the x-axis.

Iterating the process we just described, we obtain x2 = x1 − f (x1)
f ′(x1)

, and in
general

xn+1 = xn −
f (xn)

f ′(xn)

for subsequent stages of the method.
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