
1S11: Calculus for students in Science

Dr. Vladimir Dotsenko

TCD

Lecture 28

Dr. Vladimir Dotsenko (TCD) 1S11: Calculus for students in Science Lecture 28 1 / 14



Integration

This week, we shall develop recipes for computing areas under curves. It
turns out that derivatives and antiderivatives play the most important part
of that story. We shall see that later on, but first let us develop a logical
sequence towards computing areas.
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The main idea is very simple: try to approximate curved shapes by unions
of rectangular shapes that get more and more refined, and look at the
limit of the areas thus obtained.
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Integration: example

As an example, let us compute the area under y = x2 when x varies from
0 to 1.
To approximate curved shapes by unions of rectangular shapes, we split
the segment [0, 1] into N segments of length 1/N:

[0, 1/N], [1/N, 2/N], . . . , [(N − 1)/N, 1].

On each segment [k/N, (k + 1)/N], let us approximate the function
f (x) = x2 by the value at the left end of that segment, that is (k/N)2.
The total approximate area is

1

N

(

0 +
1

N2
+

4

N2
+ · · ·+

(N − 1)2

N2

)

,

since we look at rectangles of width 1
N

and heights equal to the respective
values of f (x).
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Integration: example

Theorem. We have

12 + 22 + 32 + · · ·+ (N − 1)2 =
(N − 1)N(2N − 1)

6
.

Because of this theorem, the total approximate area is equal to

(N − 1)N(2N − 1)

6N3
=

1

6

(

1−
1

N

)(

2−
1

N

)

,

which tends to 2
6
= 1

3
as N increases without bound.

We conclude that it is sensible to define the area under y = x2 on [0, 1] to
be equal to 1/3.
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Sigma notation

As it should have become apparent by now, to deal with areas, we shall be
using long sums with many terms. It is beneficial to get used to the
relevant mathematical notation. Suppose that we have a function f (x),
and compute the sum

f (m) + f (m + 1) + · · ·+ f (n),

In such a case, the symbol
∑

(coming from the capital greek letter Σ
(sigma) that usually denotes various kinds of sums) is used, in the
following way:

n
∑

k=m

f (k) = f (m) + f (m + 1) + · · ·+ f (n).

In these formulas, k is a “summation index”, or “summation variable”,
the “k = m” below the sigma sign indicates the starting value of k , and n
above the sigma sign indicates the ending value of k .
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Sigma notation
Example. For instance, the formula for the sum of squares we used earlier
can be written as

N−1
∑

k=1

k2 =
(N − 1)N(2N − 1)

6
.

The following theorem holds for basic sums of values of polynomials.
Theorem. The following summation formulas are true:

n
∑

k=1

k =
n(n + 1)

2
,

n
∑

k=1

k2 =
n(n+ 1)(2n + 1)

6
,

n
∑

k=1

k3 =
n2(n + 1)2

4
.

Note that the second claim does not contradict our previous result: if we
set n = N − 1, we get

(N − 1)(N − 1 + 1)(2(N − 1) + 1)

6
=

(N − 1)N(2N − 1)

6
.
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Sigma notation
Scalar factors, sums, and differences behave well with the sigma notation:

n
∑

k=m

cf (k) = c

n
∑

k=m

f (k),

n
∑

k=m

(f (k) + g(k)) =

n
∑

k=m

f (k) +

n
∑

k=m

g(k),

n
∑

k=m

(f (k)− g(k)) =

n
∑

k=m

f (k)−

n
∑

k=m

g(k).

Using the basic summation formulas, and properties of sums, we can
compute more sums, e.g.

n
∑

k=1

(k2 − 2k) =
n

∑

k=1

k2 − 2
n

∑

k=1

k =
n(n+ 1)(2n + 1)

6
− 2

n(n + 1)

2
=

=
2n3 + 3n2 + n − 6n2 − 6n

6
=

2n3 − 3n2 − 5n

6
.
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Integration
Let us describe the general recipe for computing areas. Suppose that f (x)
is nonnegative on [a, b], so that we can talk about the area between the
graph of f and the x-axis.
We let ∆x = b−a

N
, and consider the points x1 = a+∆x , x2 = x1 +∆x ,

. . . xN−1 = xN−2 +∆x that divide the interval [a, b] into N subintervals of
equal length ∆x . Let us select arbitrary points x∗1 , . . . , x

∗

N
in each of the

respective intervals; each such point x∗
k
defines a rectangle of width ∆x

and height f (x∗
k
) which approximates the area under the graph. As an

approximation to the area, we take

f (x∗1 )∆x + · · ·+ f (x∗N)∆x =

N
∑

k=1

f (x∗k )∆x .

Definition. The area under the curve y = f (x) on [a, b] is defined as the
limit

lim
N→+∞

N
∑

k=1

f (x∗k )∆x .
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Integration

Remarks:

We are using the limit lim
N→+∞

, where N is an integer; this is different

from the limits lim
x→+∞

that we considered before. Fortunately, it is

possible to prove that all the properties of limits hold in this case also.

Naturally, this limit may not exist, or may depend on the choices of
points x∗

k
, and so on. However, it turns out that for a continuous

nonnegative function, this limit always exists, and is well defined, that
is does not depend on any choices.

If we do not assume that f is nonnegative, the sums we compute do
not represent areas any longer, but rather the difference between the
area above the curve and the difference below the curve. This
quantity is usually referred to as the net signed area between the
curve y = f (x) and the x-axis.
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Integration: Riemann sums

It turns out that for some purposes having all the integrals of the same
length ∆x is not optimal. To remedy this, we shall consider arbitrary
points x1, x2, . . . xN−1 that divide the interval [a, b] into N subintervals of
lengths

∆x1 = x1 − a,∆x2 = x2 − x1, . . . ,∆xn = b − xn−1.

Of course, if it is not the case, we need to
somehow make sure that the sums we
compute do approximate the area under the
curve. A relatively neat way to do that is to
require that the mesh size of this partition
into subintervals, that is max∆xk , gets as
close to zero as we want.

x

y
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Integration: Riemann sums
The respective definition needs to be altered to use Riemann sums

N
∑

k=1

f (x∗k )∆xk

instead of
∑

N

k=1
f (x∗

k
)∆x .

Definition. A function f is said to be (Riemann) integrable if the limit

lim
max∆xk→0

N
∑

k=1

f (x∗k )∆xk

exists, and does not depend on either the choice of partitions or the choice
of points x∗

k
in the respective subintervals. In that case, that limit is

denoted by
∫

b

a

f (x) dx ,

and is referred to as the definite integral of f (x) on [a, b].
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Integrability

It is not easy to determine precisely which functions are are integrable.
However, the good news is that all “reasonably nice” functions are
integrable:
Theorem. A function f that is continuous on [a, b] is integrable on [a, b].
Moreover, if the function f is piecewise defined, and continuous on each
piece, then it is integrable. In each of these cases, the definite integral

∫

b

a

f (x) dx

is equal to the net signed area between the curve y = f (x) and the x-axis.
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Properties of definite integrals
Integrals behave well with scalar factors, sums, and differences:
Theorem. Suppose that both functions f and g are integrable on [a, b].
Let c be a constant. Then the functions cf , f + g , and f − g are
integrable, and

∫

b

a

cf (x) dx = c

∫

b

a

f (x) dx ,

∫

b

a

(f (x) + g(x)) dx =

∫

b

a

f (x) dx +

∫

b

a

g(x) dx ,

∫

b

a

(f (x)− g(x)) dx =

∫

b

a

f (x) dx −

∫

b

a

g(x) dx .

More generally, we have

∫

b

a

(c1f1(x) + · · ·+ cnfn(x)) dx = c1

∫

b

a

f1(x) dx + · · · + cn

∫

b

a

fn(x) dx .
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Properties of definite integrals

To simplify various formulas, it is beneficial to define the integral symbol
b
∫

a

beyond the case a < b we have been considering now, as follows:

Definition. If a is in the domain of f , we define
a
∫

a

f (x) dx = 0. Also, if f

is integrable on [a, b], we define

∫

a

b

f (x) dx = −

∫

b

a

f (x) dx .

The former formula is consistent with the intuition of areas: on the
interval of zero length, the net signed area must be equal to zero. The
latter formula is mostly conventional, although in some cases it has
physical meaning: if f (x) is the gravity force between the unit mass placed

at the point x and the origin, then
∫

b

a
f (x) dx is the work required to move

the mass from a to b. Of course, moving it in the opposite direction would
require negative work on our side, since it will all be done by the gravity!
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