1S11: Calculus for students in Science

Dr. Vladimir Dotsenko

TCD
Lecture 3

New functions from old ones: Composition (REMINDER SLIDE)

Definition. The composition of two functions f and g, denoted by $f \circ g$, is the function whose value at x is $f(g(x))$:

$$
(f \circ g)(x)=f(g(x))
$$

Its domain is defined as the set of all x in the domain of g for which the value $g(x)$ is in the domain of f.

Example 1. Completing the square for solving quadratic equations:
$x^{2}+p x+q=x^{2}+2 \frac{p}{2} x+q=x^{2}+2 \frac{p}{2} x+\frac{p^{2}}{4}-\frac{p^{2}}{4}+q=\left(x+\frac{p}{2}\right)^{2}-\frac{p^{2}}{4}+q$,
represents $x^{2}+p x+q$ as the composition $f(g(x))$, where
$f(x)=x^{2}-\left(\frac{p^{2}}{4}-q\right)$ and $g(x)=x+\frac{p}{2}$.

NEW FUNCTIONS FROM OLD ONES: COMPOSITION

Example 2. Let $f(x)=x^{2}+3$ and $g(x)=\sqrt{x}$. Then

$$
(f \circ g)(x)=(\sqrt{x})^{2}+3=x+3
$$

Note that the domain of f is $(-\infty,+\infty)$, and the domain of g is $[0,+\infty)$, so the only restriction we impose on x to get the domain of $f \circ g$ is that g is defined, and we conclude that $(f \circ g)(x)=x+3, x \geq 0$.
On the other hand,

$$
(g \circ f)(x)=\sqrt{x^{2}+3}
$$

Since f is defined everywhere, the only restriction we impose on x to get the domain of $g \circ f$ is that $f(x)$ is in the domain of g, so since $x^{2}+3$ is positive for all x, we conclude that $(g \circ f)(x)=\sqrt{x^{2}+3}$. (With its natural domain $(-\infty,+\infty)$).

New functions from old ones: EXAmples

Let us plot some graphs to get a better feeling on how operations on functions work. To begin with, we obtain the graph of $f(x)=\sqrt{x}+\frac{1}{x}$ from the graphs of of \sqrt{x} and $1 / x$.

New functions from old ones: EXAmples

New functions from old ones: EXAmples

Let t denote the translation function, $t(x)=x+a$. Replacing $f(x)$ by $f(x)+a=(t \circ f)(x)$ shifts the graph vertically: up if $a>0$, down if $a<0$.

New functions from old ones: EXAMPLES

New functions from old ones: Examples

Let t denote the translation function, $t(x)=x+a$. Replacing $f(x)$ by $f(x+a)=(f \circ t)(x)$ shifts the graph horizontally: left if $a>0$, right if $a<0$.

New functions from old ones: Examples

Let us plot the graph of the function $y=x^{2}-4 x+5$. By completing the square, we obtain $y=x^{2}-4 x+4+1=(x-2)^{2}+1$.

New functions from old ones: Examples

NEW FUNCTIONS FROM OLD ONES: EXAMPLES

Let r denote the reflection function, $r(x)=-x$. Replacing a function $f(x)$ by $f(-x)=(f \circ r)(x)$ reflects the graph about the y-axis, and replacing $f(x)$ by $-f(x)=(r \circ f)(x)$ reflects the graph about the x-axis.

New functions from old ones: EXAmples

Let us plot the graph of the function $y=4-|x-2|$.

New functions from old ones: EXAmples

New functions from old ones: EXAmples

Let s denote the scaling function, $s(x)=c x$. Replacing a function $f(x)$ by $c f(x)=(s \circ f)(x)$ stretches the graph vertically if $c>1$, and compresses the graph vertically if $0<c<1$.

New functions from old ones: EXAmples

New functions from old ones: EXAmples

Let s denote the scaling function, $s(x)=c x$. Replacing a function $f(x)$ by $f(c x)=(f \circ s)(x)$ compresses the graph horisontally if $c>1$, and stretches the graph horisontally if $0<c<1$.

