1S11: Calculus for students in Science

Dr. Vladimir Dotsenko
TCD
Michaelmas Term 2013

Substitutions in definite integrals

Substitutions in definite integrals

Recall the u-substitution method for computing antiderivatives: given an integral of the form

$$
\int f(g(x)) g^{\prime}(x) d x
$$

we denote $u=g(x)$ so that $d u=g^{\prime}(x) d x$, so that the integral becomes

$$
\int f(u) d u .
$$

Substitutions in definite integrals

Recall the u-substitution method for computing antiderivatives: given an integral of the form

$$
\int f(g(x)) g^{\prime}(x) d x
$$

we denote $u=g(x)$ so that $d u=g^{\prime}(x) d x$, so that the integral becomes

$$
\int f(u) d u .
$$

In order to use this method to evaluate definite integrals of the same form

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x,
$$

we need to take appropriate care of the effect of that on the limits of integration.

Substitutions in definite integrals

Recall the u-substitution method for computing antiderivatives: given an integral of the form

$$
\int f(g(x)) g^{\prime}(x) d x
$$

we denote $u=g(x)$ so that $d u=g^{\prime}(x) d x$, so that the integral becomes

$$
\int f(u) d u .
$$

In order to use this method to evaluate definite integrals of the same form

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x,
$$

we need to take appropriate care of the effect of that on the limits of integration. There are two ways to deal with it, which we shall now outline.

Substitutions in definite integrals

Substitutions in definite integrals

Method 1. Use u-substitutions only on the level of indefinite integrals: evaluate

$$
\int f(g(x)) g^{\prime}(x) d x
$$

and then use the formula

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\left[\int f(g(x)) g^{\prime}(x) d x\right]_{a}^{b}
$$

Substitutions in definite integrals

Method 1. Use u-substitutions only on the level of indefinite integrals: evaluate

$$
\int f(g(x)) g^{\prime}(x) d x
$$

and then use the formula

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\left[\int f(g(x)) g^{\prime}(x) d x\right]_{a}^{b}
$$

Method 2. Use the relationship $u=g(x)$ to modify the limits:

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Substitutions in definite integrals

Substitutions in definite integrals

Example 1. Let us use the first method to evaluate

$$
\int_{0}^{2} x\left(x^{2}+1\right)^{3} d x
$$

Substitutions in definite integrals

Example 1. Let us use the first method to evaluate

$$
\int_{0}^{2} x\left(x^{2}+1\right)^{3} d x
$$

We denote $u=x^{2}+1$, so that $d u=2 x d x$, and

$$
\int x\left(x^{2}+1\right)^{3} d x=\frac{1}{2} \int u^{3} d u=\frac{u^{4}}{8}+C=\frac{\left(x^{2}+1\right)^{4}}{8}+C .
$$

Substitutions in definite integrals

Example 1. Let us use the first method to evaluate

$$
\int_{0}^{2} x\left(x^{2}+1\right)^{3} d x
$$

We denote $u=x^{2}+1$, so that $d u=2 x d x$, and

$$
\int x\left(x^{2}+1\right)^{3} d x=\frac{1}{2} \int u^{3} d u=\frac{u^{4}}{8}+C=\frac{\left(x^{2}+1\right)^{4}}{8}+C .
$$

Therefore,
$\int_{0}^{2} x\left(x^{2}+1\right)^{3} d x=\left[\int x\left(x^{2}+1\right)^{3} d x\right]_{0}^{2}=\left[\frac{\left(x^{2}+1\right)^{4}}{8}\right]_{0}^{2}=\frac{625}{8}-\frac{1}{8}=78$.

Substitutions in definite integrals

Substitutions in definite integrals

Example 2. Let us use the second method to evaluate the same integral

$$
\int_{0}^{2} x\left(x^{2}+1\right)^{3} d x
$$

Substitutions in definite integrals

Example 2. Let us use the second method to evaluate the same integral

$$
\int_{0}^{2} x\left(x^{2}+1\right)^{3} d x
$$

We denote $u=x^{2}+1$, so that $d u=2 x d x$, and

$$
\begin{aligned}
& \text { for } x=0, u=1, \\
& \text { for } x=2, u=5 .
\end{aligned}
$$

Substitutions in definite integrals

Example 2. Let us use the second method to evaluate the same integral

$$
\int_{0}^{2} x\left(x^{2}+1\right)^{3} d x
$$

We denote $u=x^{2}+1$, so that $d u=2 x d x$, and

$$
\begin{aligned}
& \text { for } x=0, u=1, \\
& \text { for } x=2, u=5 .
\end{aligned}
$$

Therefore,

$$
\int_{0}^{2} x\left(x^{2}+1\right)^{3} d x=\frac{1}{2} \int_{1}^{5} u^{3} d u=\frac{1}{2}\left(\frac{5^{4}}{4}-\frac{1^{4}}{4}\right)=78 .
$$

Substitutions in definite integrals

Substitutions in definite integrals

Example 3. Let us evaluate the integral

$$
\int_{1}^{3} \frac{\cos (\pi / x)}{x^{2}} d x
$$

Substitutions in definite integrals

Example 3. Let us evaluate the integral

$$
\int_{1}^{3} \frac{\cos (\pi / x)}{x^{2}} d x
$$

We put $u=\frac{\pi}{x}$, so that $d u=-\frac{\pi}{x^{2}} d x$, in other words, $\frac{1}{x^{2}} d x=-\frac{1}{\pi} d u$.

Substitutions in definite integrals

Example 3. Let us evaluate the integral

$$
\int_{1}^{3} \frac{\cos (\pi / x)}{x^{2}} d x
$$

We put $u=\frac{\pi}{x}$, so that $d u=-\frac{\pi}{x^{2}} d x$, in other words, $\frac{1}{x^{2}} d x=-\frac{1}{\pi} d u$. We note that

$$
\begin{gathered}
\text { for } x=1, u=\pi \\
\text { for } x=3, u=\pi / 3
\end{gathered}
$$

Substitutions in definite integrals

Example 3. Let us evaluate the integral

$$
\int_{1}^{3} \frac{\cos (\pi / x)}{x^{2}} d x
$$

We put $u=\frac{\pi}{x}$, so that $d u=-\frac{\pi}{x^{2}} d x$, in other words, $\frac{1}{x^{2}} d x=-\frac{1}{\pi} d u$. We note that

$$
\begin{gathered}
\text { for } x=1, u=\pi \\
\text { for } x=3, u=\pi / 3
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& \int_{1}^{3} \frac{\cos (\pi / x)}{x^{2}} d x=-\frac{1}{\pi} \int_{\pi}^{\pi / 3} \cos u d u= \\
& \left.\quad=-\frac{1}{\pi} \sin u\right]_{\pi}^{\pi / 3}=-\frac{1}{\pi}(\sin (\pi / 3)-\sin \pi)=-\frac{\sqrt{3}}{2 \pi} \approx-0.276
\end{aligned}
$$

Substitutions in definite integrals

Substitutions in definite integrals

Example 4. Let us evaluate the integral

$$
\int_{0}^{\pi / 4} \sqrt{\tan x} \frac{1}{\cos ^{2} x} d x
$$

Substitutions in definite integrals

Example 4. Let us evaluate the integral

$$
\int_{0}^{\pi / 4} \sqrt{\tan x} \frac{1}{\cos ^{2} x} d x
$$

We put $u=\tan x$, so that $d u=\frac{1}{\cos ^{2} x} d x$.

Substitutions in definite integrals

Example 4. Let us evaluate the integral

$$
\int_{0}^{\pi / 4} \sqrt{\tan x} \frac{1}{\cos ^{2} x} d x
$$

We put $u=\tan x$, so that $d u=\frac{1}{\cos ^{2} x} d x$. We note that

$$
\begin{gathered}
\text { for } x=0, u=0 \\
\text { for } x=\pi / 4, u=1
\end{gathered}
$$

Substitutions in definite integrals

Example 4. Let us evaluate the integral

$$
\int_{0}^{\pi / 4} \sqrt{\tan x} \frac{1}{\cos ^{2} x} d x
$$

We put $u=\tan x$, so that $d u=\frac{1}{\cos ^{2} x} d x$. We note that

$$
\begin{gathered}
\text { for } x=0, u=0 \\
\text { for } x=\pi / 4, u=1
\end{gathered}
$$

Therefore,

$$
\left.\int_{0}^{\pi / 4} \sqrt{\tan x} \frac{1}{\cos ^{2} x} d x=\int_{0}^{1} \sqrt{u} d u=\frac{u^{3 / 2}}{3 / 2}\right]_{0}^{1}=\frac{2}{3}
$$

Substitutions in definite integrals

Substitutions in definite integrals

Example 5. Let us prove, without evaluating integrals, that

$$
\int_{0}^{\pi / 2} \sin ^{n} x d x=\int_{0}^{\pi / 2} \cos ^{n} x d x
$$

Substitutions in definite integrals

Example 5. Let us prove, without evaluating integrals, that

$$
\int_{0}^{\pi / 2} \sin ^{n} x d x=\int_{0}^{\pi / 2} \cos ^{n} x d x
$$

In the second integral, we put $u=\frac{\pi}{2}-x$, so that $d u=-d x$.

Substitutions in definite integrals

Example 5. Let us prove, without evaluating integrals, that

$$
\int_{0}^{\pi / 2} \sin ^{n} x d x=\int_{0}^{\pi / 2} \cos ^{n} x d x
$$

In the second integral, we put $u=\frac{\pi}{2}-x$, so that $d u=-d x$. We note that

$$
\begin{aligned}
& \text { for } x=0, u=\pi / 2, \\
& \text { for } x=\pi / 2, u=0,
\end{aligned}
$$

and that $\cos x=\cos (\pi / 2-u)=\sin u$.

Substitutions in definite integrals

Example 5. Let us prove, without evaluating integrals, that

$$
\int_{0}^{\pi / 2} \sin ^{n} x d x=\int_{0}^{\pi / 2} \cos ^{n} x d x
$$

In the second integral, we put $u=\frac{\pi}{2}-x$, so that $d u=-d x$. We note that

$$
\begin{aligned}
& \text { for } x=0, u=\pi / 2, \\
& \text { for } x=\pi / 2, u=0,
\end{aligned}
$$

and that $\cos x=\cos (\pi / 2-u)=\sin u$. Therefore,

$$
\int_{0}^{\pi / 2} \cos ^{n} x d x=-\int_{\pi / 2}^{0} \sin ^{n} u d u=\int_{0}^{\pi / 2} \sin ^{n} x d x
$$

as required.

Substitutions in definite integrals

Substitutions in definite integrals

Example 6. Let us examine the integral

$$
\int_{-1}^{1} \frac{1}{1+x^{2}} d x
$$

Substitutions in definite integrals

Example 6. Let us examine the integral

$$
\int_{-1}^{1} \frac{1}{1+x^{2}} d x
$$

Let us perform the substitution $u=\frac{1}{x}$, so that $d u=-\frac{1}{x^{2}} d x$, in other words, $d u=-u^{2} d x$ and $d x=-\frac{1}{u^{2}} d u$.

Substitutions in definite integrals

Example 6. Let us examine the integral

$$
\int_{-1}^{1} \frac{1}{1+x^{2}} d x
$$

Let us perform the substitution $u=\frac{1}{x}$, so that $d u=-\frac{1}{x^{2}} d x$, in other words, $d u=-u^{2} d x$ and $d x=-\frac{1}{u^{2}} d u$. We note that

$$
\text { for } x=-1, u=-1, \quad \text { and for } x=1, u=1
$$

and that $\frac{1}{1+x^{2}}=\frac{1}{1+(1 / u)^{2}}=\frac{u^{2}}{1+u^{2}}$.

Substitutions in definite integrals

Example 6. Let us examine the integral

$$
\int_{-1}^{1} \frac{1}{1+x^{2}} d x
$$

Let us perform the substitution $u=\frac{1}{x}$, so that $d u=-\frac{1}{x^{2}} d x$, in other words, $d u=-u^{2} d x$ and $d x=-\frac{1}{u^{2}} d u$. We note that

$$
\text { for } x=-1, u=-1, \quad \text { and for } x=1, u=1,
$$

and that $\frac{1}{1+x^{2}}=\frac{1}{1+(1 / u)^{2}}=\frac{u^{2}}{1+u^{2}}$. Therefore,

$$
\int_{-1}^{1} \frac{1}{1+x^{2}} d x=-\int_{-1}^{1} \frac{u^{2}}{1+u^{2}} \frac{1}{u^{2}} d u=-\int_{-1}^{1} \frac{1}{1+u^{2}} d u
$$

so the integral is equal to its negative and hence equal to zero.

Substitutions in definite integrals

Example 6. Let us examine the integral

$$
\int_{-1}^{1} \frac{1}{1+x^{2}} d x
$$

Let us perform the substitution $u=\frac{1}{x}$, so that $d u=-\frac{1}{x^{2}} d x$, in other words, $d u=-u^{2} d x$ and $d x=-\frac{1}{u^{2}} d u$. We note that

$$
\text { for } x=-1, u=-1, \quad \text { and for } x=1, u=1,
$$

and that $\frac{1}{1+x^{2}}=\frac{1}{1+(1 / u)^{2}}=\frac{u^{2}}{1+u^{2}}$. Therefore,

$$
\int_{-1}^{1} \frac{1}{1+x^{2}} d x=-\int_{-1}^{1} \frac{u^{2}}{1+u^{2}} \frac{1}{u^{2}} d u=-\int_{-1}^{1} \frac{1}{1+u^{2}} d u
$$

so the integral is equal to its negative and hence equal to zero. How is it possible?

Substitutions in definite integrals

Example 6. Let us examine the integral

$$
\int_{-1}^{1} \frac{1}{1+x^{2}} d x
$$

Let us perform the substitution $u=\frac{1}{x}$, so that $d u=-\frac{1}{x^{2}} d x$, in other words, $d u=-u^{2} d x$ and $d x=-\frac{1}{u^{2}} d u$. We note that

$$
\text { for } x=-1, u=-1, \quad \text { and for } x=1, u=1
$$

and that $\frac{1}{1+x^{2}}=\frac{1}{1+(1 / u)^{2}}=\frac{u^{2}}{1+u^{2}}$. Therefore,

$$
\int_{-1}^{1} \frac{1}{1+x^{2}} d x=-\int_{-1}^{1} \frac{u^{2}}{1+u^{2}} \frac{1}{u^{2}} d u=-\int_{-1}^{1} \frac{1}{1+u^{2}} d u
$$

so the integral is equal to its negative and hence equal to zero. How is it possible? Of course, it happened because $u=g(x)$ was not defined on all the interval $[-1,1]$, having a singularity at $x=0$.

Substitutions in definite integrals

SUbStitutions in definite integrals

Example 7. (High school maths intervarsity competitions in Russia)
Let us evaluate the integral

$$
\int_{0}^{\pi / 2}\left(\sin ^{2}(\sin x)+\cos ^{2}(\cos x)\right) d x
$$

Substitutions in definite integrals

Example 7. (High school maths intervarsity competitions in Russia)
Let us evaluate the integral

$$
\int_{0}^{\pi / 2}\left(\sin ^{2}(\sin x)+\cos ^{2}(\cos x)\right) d x
$$

We shall split this integral as a sum

$$
\int_{0}^{\pi / 2} \sin ^{2}(\sin x) d x+\int_{0}^{\pi / 2} \cos ^{2}(\cos x) d x
$$

Substitutions in definite integrals

Example 7. (High school maths intervarsity competitions in Russia)
Let us evaluate the integral

$$
\int_{0}^{\pi / 2}\left(\sin ^{2}(\sin x)+\cos ^{2}(\cos x)\right) d x
$$

We shall split this integral as a sum

$$
\int_{0}^{\pi / 2} \sin ^{2}(\sin x) d x+\int_{0}^{\pi / 2} \cos ^{2}(\cos x) d x
$$

and transform the second integral using the substitution $u=\frac{\pi}{2}-x$, so that $d u=-d x$,

$$
\text { for } x=0, u=\pi / 2, \quad \text { for } x=\pi / 2, u=0
$$

$\cos (x)=\cos (\pi / 2-u)=\sin u$

SUBSTITUTIONS IN DEFINITE INTEGRALS

Example 7. (High school maths intervarsity competitions in Russia)
Let us evaluate the integral

$$
\int_{0}^{\pi / 2}\left(\sin ^{2}(\sin x)+\cos ^{2}(\cos x)\right) d x
$$

We shall split this integral as a sum

$$
\int_{0}^{\pi / 2} \sin ^{2}(\sin x) d x+\int_{0}^{\pi / 2} \cos ^{2}(\cos x) d x
$$

and transform the second integral using the substitution $u=\frac{\pi}{2}-x$, so that $d u=-d x$,

$$
\text { for } x=0, u=\pi / 2, \quad \text { for } x=\pi / 2, u=0
$$

$\cos (x)=\cos (\pi / 2-u)=\sin u$, leading to

$$
\int_{0}^{\pi / 2} \cos ^{2}(\cos x) d x=-\int_{\pi / 2}^{0} \cos ^{2}(\sin u) d u=\int_{0}^{\pi / 2} \cos ^{2}(\sin x) d x
$$

Substitutions in definite integrals

Substitutions in definite integrals

Therefore,

$$
\begin{aligned}
& \int_{0}^{\pi / 2}\left(\sin ^{2}(\sin x)+\cos ^{2}(\cos x)\right) d x= \\
& =\int_{0}^{\pi / 2} \sin ^{2}(\sin x) d x+\int_{0}^{\pi / 2} \cos ^{2}(\cos x) d x= \\
& =\int_{0}^{\pi / 2} \sin ^{2}(\sin x) d x+\int_{0}^{\pi / 2} \cos ^{2}(\sin x) d x= \\
& =\int_{0}^{\pi / 2}\left(\sin ^{2}(\sin x)+\cos ^{2}(\sin x)\right) d x= \\
& =\int_{0}^{\pi / 2} 1 d x=\frac{\pi}{2}
\end{aligned}
$$

An application of definite integrals

An application of definite integrals

Sums of the form $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ often appear in mathematical formulas.

An application of definite integrals

Sums of the form $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ often appear in mathematical formulas. It is beneficial to have a good estimate of such a sum, avoiding adding up the terms directly.

An application of definite integrals

Sums of the form $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ often appear in mathematical formulas. It is beneficial to have a good estimate of such a sum, avoiding adding up the terms directly.

AN APPLICATION OF DEFINITE INTEGRALS

Sums of the form $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ often appear in mathematical formulas. It is beneficial to have a good estimate of such a sum, avoiding adding up the terms directly.

These two figures prove that

$$
\begin{gathered}
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \geq \int_{1}^{n+1} \frac{1}{x} d x=\ln (n+1)-\ln (1)=\ln (n+1) \\
\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\frac{1}{n+1} \leq \int_{1}^{n+1} \frac{1}{x} d x=\ln (n+1)-\ln (1)=\ln (n+1)
\end{gathered}
$$

An APPLICATION OF DEFINITE INTEGRALS

Sums of the form $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ often appear in mathematical formulas. It is beneficial to have a good estimate of such a sum, avoiding adding up the terms directly.

These two figures prove that

$$
\begin{gathered}
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \geq \int_{1}^{n+1} \frac{1}{x} d x=\ln (n+1)-\ln (1)=\ln (n+1) \\
\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\frac{1}{n+1} \leq \int_{1}^{n+1} \frac{1}{x} d x=\ln (n+1)-\ln (1)=\ln (n+1)
\end{gathered}
$$

so we have

$$
\ln (n+1) \leq 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \leq \ln (n+1)+1-\frac{1}{n+1}
$$

Summary of integral calculus

Summary of integral calculus

- Indefinite integral / antiderivative. Methods: look up in the table of derivatives, simplify by u-substitution, simplify using integration by parts, combine the above methods.

Summary of integral calculus

- Indefinite integral / antiderivative. Methods: look up in the table of derivatives, simplify by u-substitution, simplify using integration by parts, combine the above methods.
- Definite integral: originally motivated by computing areas. Every continuous function, and even every piecewise continuous (bounded) function can be integrated.

Summary of integral calculus

- Indefinite integral / antiderivative. Methods: look up in the table of derivatives, simplify by u-substitution, simplify using integration by parts, combine the above methods.
- Definite integral: originally motivated by computing areas. Every continuous function, and even every piecewise continuous (bounded) function can be integrated.
- Main method for integration: use fundamental theorem of calculus (compute an antiderivative and subtract its values). Sometimes antiderivatives are not available, but a u-substitution applied to a part of the integral would help.

Summary of integral calculus

- Indefinite integral / antiderivative. Methods: look up in the table of derivatives, simplify by u-substitution, simplify using integration by parts, combine the above methods.
- Definite integral: originally motivated by computing areas. Every continuous function, and even every piecewise continuous (bounded) function can be integrated.
- Main method for integration: use fundamental theorem of calculus (compute an antiderivative and subtract its values). Sometimes antiderivatives are not available, but a u-substitution applied to a part of the integral would help.
- Definite integral is defined via Riemann sums. Sometimes, handling a sum is easier if you interpret it as a Riemann sum, and examine the respective integral instead.

Summary of integral calculus

- Indefinite integral / antiderivative. Methods: look up in the table of derivatives, simplify by u-substitution, simplify using integration by parts, combine the above methods.
- Definite integral: originally motivated by computing areas. Every continuous function, and even every piecewise continuous (bounded) function can be integrated.
- Main method for integration: use fundamental theorem of calculus (compute an antiderivative and subtract its values). Sometimes antiderivatives are not available, but a u-substitution applied to a part of the integral would help.
- Definite integral is defined via Riemann sums. Sometimes, handling a sum is easier if you interpret it as a Riemann sum, and examine the respective integral instead.

Next time: applications of the definite integral in geometry, science, and engineering.

