1S11: Calculus for students in Science

Dr. Vladimir Dotsenko
TCD

Lecture 4

Functions with extra symmetries

Definition. A function f is said to be even if $f(-x)=f(x)$ for all x in the domain of f.

Definition. A function f is said to be odd if $f(-x)=-f(x)$ for all x in the domain of f.

Definition. A function f is said to be periodic with period T if $f(x+T)=f(x)$ for all x in the domain of f.

More precisely, one should request that for all x in the domain of f, the value $f(-x)$ (respectively, $f(x+T)$) is defined, and is related to the value $f(x)$ as above.

Functions with extra symmetries

In terms of graphs:

- the graph of an even function is symmetric about the y-axis;
- the graph of an odd function is symmetric about the origin (0,0);
- the graph of a periodic function does not change under the horisontal shift through T units.

Being aware of extra symmetries allows us to study a function just on a part of its domain, and derive information elsewhere by using symmetry.

Functions with extra symmetries

Let us take the function $f(x)=x \sin (2 x)$. Since

$$
f(-x)=(-x) \sin (-2 x)=(-x)(-\sin (2 x))=x \sin (2 x)
$$

this function is even. The corresponding graph looks as follows:

Functions with extra symmetries

Let us take the function $f(x)=\sin \left(\frac{1}{5} x^{3}\right)$. Since

$$
f(-x)=\sin \left(\frac{1}{5}(-x)^{3}\right)=\sin \left(-\frac{1}{5} x^{3}\right)=-\sin \left(\frac{1}{5} x^{3}\right),
$$

this function is odd. The corresponding graph looks as follows:

$$
y \uparrow \quad y=\sin \left(\frac{1}{5} x^{3}\right)
$$

Functions with extra symmetries

Let us take the function $f(x)=\sin (2 x)+2 \cos (4 x)$. Since

$$
\begin{aligned}
& f(x+\pi)=\sin (2(x+\pi))+2 \cos (4(x+\pi))= \\
& \quad=\sin (2 x+2 \pi)+2 \cos (4 x+4 \pi)=\sin (2 x)+2 \cos (4 x)=f(x)
\end{aligned}
$$

this function is periodic with period π.

Functions with extra symmetries

What about the symmetry about the x-axis? We discussed that type of symmetry the last time:

Functions with extra symmetries

A graph of a function cannot be symmetric about the x-axis, since that would break the vertical line test:

The only exception is the graph of the zero function $f(x)=0$, since in this case each vertical line meets the graph at the x-axis, so there is just one intersection point.

Functions with extra symmetries

It can however be useful to apply the symmetry about the x-axis to plot curves defined by equations:

Functions with extra symmetries

For curves defined by equations we have the following symmetry tests:

- A plane curve is symmetric about the y-axis if and only if its equation does not change under replacing x by $-x$;
- A plane curve is symmetric about the x-axis if and only if its equation does not change under replacing y by $-y$;
- A plane curve is symmetric about the origin if and only if its equation does not change under replacing x by $-x$ and y by $-y$ simultaneously.
The curve $y^{2}=4 x^{2}\left(1-x^{2}\right)$ satisfies all these conditions, so it has many different symmetries:

CLASSICAL PARAMETRIC FAMILIES OF FUNCTIONS

Let us, alongside with building a "vocabulary" for talking about functions, start building a "library" of functions.

Geometrically, the simplest possible shape is the straight line.

- horisontal straight lines are defined by equations $y=c$ for various c;
- vertical lines are defined by equations $x=c$ for various c;
- general non-vertical lines are defined by equations $y=m x+b$ for various m and b;
- general lines are defined by linear equations $a x+b y=c$ for various a, b, c.

Classical parametric families of functions

Classical parametric families of functions

Classical parametric families of functions

These "whiskers" are lines $y=m x-1$ for various m. Note that for $x=0$ the formula produces -1 regardless of what m is, which agrees with the picture well.

Classical parametric families of functions

These lines are $y=x / 3+b$ for various b. Note that they all are indeed obtained from $y=x / 3$ by vertical shifts.

Classical parametric families of functions

Algebraically, one of the simplest functions is the power function, $y=x^{n}$. We shall consider several different options for n, assuming that it is an integer.

This illustrates the behaviour of $y=x^{n}$ for even $n=2,4,6,8$.

Classical parametric families of functions

This illustrates the behaviour of $y=x^{n}$ for odd $n=3,5,7,9$.

Classical parametric families of functions

The inverse proportionality $y=k / x$ is a function that appears in many situations, e.g. Boyle's Law $P V=k$ (for a fixed amount of an ideal gas at constant temperature)

This illustrates the behaviour of $y=k / x$ for $k=1 / 2,1,2$, the larger k, the further the graph would be from the origin.

Classical parametric families of functions

This illustrates the behaviour of $y=x^{n}$ for odd $n=-1,-3,-5$.

Classical parametric families of functions

This illustrates the behaviour of $y=x^{n}$ for even $n=-2,-4,-6$.

Classical parametric families of functions

Summary for power functions:

- for even $n \geq 2$ we get something that looks like the parabola (but is flatter close to the origin, and steeper far from the origin);
- for odd $n \geq 3$ we get something that looks like the parabola for $x>0$ (but is flatter close to the origin, and steeper far from the origin), and is obtained by a reflection about the x-axis for $x<0$;
- for odd $n \leq-1$, we get something that looks like the graph of inverse proportionality $y=k / x$ (but steeper close to the origin, and flatter far from the origin)
- for even $n \leq-2$, we get something that looks like the graph of inverse proportionality $y=k / x$ for $x>0$ (but steeper close to the origin, and flatter far from the origin), and is obtained by a reflection about the x-axis for $x<0$;
- for non-integer exponents, graphs are similar to those for integer ones; we shall discuss that in more detail a bit later.

