MA1S11 (Dotsenko) Sample questions for the calculus part of 1S11

Michaelmas 2013

1. Compute the limit $\lim _{x \rightarrow 0} \frac{\tan (7 x)}{e^{3 x}-1}$.
2. From the first principles, prove that the derivative of the function $f(x)=\frac{1}{\sqrt{x}}$ is given by the formula $\frac{-1}{2 x \sqrt{x}}$.
3. Is the function

$$
f(x)=\left\{\begin{array}{l}
x^{3} \sin \frac{1}{x}, x \neq 0, \\
0, x=0
\end{array}\right.
$$

continuous at $x=0$? differentiable at $x=0$? twice differentiable at $x=0$? Explain your answer.
4. Compute the derivatives:
(a) $(\tan (7+5 \ln x))^{3}$;
(b) $\cos ^{-1} x$; (c) $x^{1 / x}$;
(d) $\ln \left(\frac{e^{x}}{1+e^{x}}\right)$.
5. Compute $f^{\prime}(\pi / 6)$, if $f(x)=\tan ^{-1}(\cos x)$.
6. Compute $f^{\prime}(e)$ for $f(x)=\frac{x^{3}}{\ln x}$.
7. "The slope of the tangent to the curve $y=a x^{3}+b x+4$ at the point $(2,14)$ on that curve is 21. ." Find the values of a and b for which it is true.
8. For $f(x)=\sin (\ln x)$, show that $x^{2} f^{\prime \prime}+x f^{\prime}+f=0$.
9. Determine relative extrema and inflection points of the graph $y=x^{3}-8 x^{2}+16 x$, and draw a rough sketch of that graph.
10. Show that among all the rectangles of area A, the square has the minimum perimeter.
11. The concentration C of an antibiotic in the bloodstream after time t is given by

$$
C=\frac{5 t}{1+\frac{t^{2}}{k^{2}}}
$$

for a certain constant k. If it is known that the maximal concentration is reached at $t=6$ hours, find the value of k.
12. Evaluate the integrals
(a) $\int \frac{\sin 2 \theta}{1+\cos 2 \theta} d \theta$; (b) $\int \frac{x d x}{1+x^{2}}$; (c) $\int x^{3} \sqrt[3]{1-4 x} d x$.
13. Evaluate the integrals

$$
\text { (a) } \int_{1 / 2}^{1} \frac{3}{2 x} d x \text {; (b) } \int_{0}^{\pi} \frac{\cos ^{2} x}{1+\sin x} d x \text {; (c) } \int_{e^{-1}}^{e} \frac{\sqrt{1-(\ln x)^{2}}}{x} d x \text {. }
$$

14. Find a positive value of k for which the area under the graph of $y=e^{3 x}$ over the interval $[0, k]$ is 11 square units.
15. Compute the area of the region between the graphs $y=x e^{x}$ and $y=x^{2} e^{x}$.
