
MA1S11 (Dotsenko) Sample questions and answers for the calculus part of 1S11

Michaelmas 2013

1. Compute the limit lim
x→0

tan(7x)
e3x−1

.

Solution. We have

lim
x→0

tan(7x)

e3x − 1
=

7

3
lim
x→0

(

sin(7x)

7x

1

cos(7x)

3x

e3x − 1

)

=

=
7

3
lim
x→0

sin(7x)

7x
lim
x→0

1

cos(7x)
lim
x→0

3x

e3x − 1
=

7

3
lim

t=7x→0

sin t

t
· lim
u=7x→0

1

cos u
· lim
v=3x→0

v

ev − 1
=

=
7

3
lim
t→0

sin t

t
· 1

lim
u→0

cos u
· 1

lim
v→0

ev−1
v

=
7

3
· 1 · 1 · 1 =

7

3
.

2. From the first principles, prove that the derivative of the function f(x) = 1√
x
is given by

the formula −1
2x

√
x
.

Solution. We have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1√
x+h

− 1√
x

h
= lim

h→0

√
x−

√
x+ h

h
√
x+ h

√
x

=

= lim
h→0

(
√
x−

√
x+ h)(

√
x+

√
x+ h)

h
√
x+ h

√
x(
√
x+

√
x+ h)

= lim
h→0

−h

h
√
x+ h

√
x(
√
x+

√
x+ h)

=

= lim
h→0

−1√
x+ h

√
x(
√
x+

√
x+ h)

=
−1√

x
√
x · 2√x

=
−1

2x
√
x
.

3. Is the function

f(x) =

{

x3 sin 1
x , x 6= 0,

0, x = 0

continuous at x = 0? differentiable at x = 0? twice differentiable at x = 0? Explain your
answer.

Solution. Since −1 ≤ sin 1
x ≤ 1, we have −|x3| ≤ x3 sin 1

x ≤ |x3|, and therefore by
Squeezing Theorem

lim
x→0

f(x) = lim
x→0

x3 sin
1

x
= 0 = f(0),

so f is continuous. Moreover, since we have

f ′(0) = lim
x→0

f(x)− f(0)

x
= lim

x→0

x3 sin 1
x

x
= lim

x→0
x2 sin

1

x
,

we may apply Squeezing Theorem again to conclude that f ′(0) exists and is equal to 0.
For x 6= 0, the product rule and the chain rule give us

f ′(x) = 3x2 sin
1

x
− x cos

1

x
.

This latter formula we use to compute the second derivative of f at x = 0:

f ′′(0) = lim
x→0

f ′(x)− f ′(0)

x
= lim

x→0

3x2 sin 1
x − x cos 1

x

x
= lim

x→0

(

3x sin
1

x
− cos

1

x

)

.



From this formula, and the fact that by Squeezing Theorem the limit lim
x→0

3x sin 1
x exists

and is equal to 0, we conclude that f ′′(0) is not defined, since cos 1
x has no limit as

x approaches 0. (For instance, it takes both the value 1 and the value −1 at points
arbitrarily close to 0.)

4. Compute the derivatives:

(a) (tan(7 + 5 ln x))3; (b) cos−1 x; (c) x1/x; (d) ln
(

ex

1+ex

)

.

Solution.

(a) Applying the chain rule a few times, we get

(

(tan(7 + 5 ln x))3
)′
= 3(tan(7 + 5 ln x))2

1

cos2(7 + 5 lnx)

5

x
= 15

sin2(7 + 5 ln x)

x cos4(7 + 5 lnx)
.

(b) Let us apply the chain rule to cos(cos−1 x) = x:

− sin(cos−1 x) · (cos−1 x)′ = 1,

so

(cos−1 x)′ = − 1

sin(cos−1 x)
= − 1

√

1− (cos(cos−1 x))2
= − 1√

1− x2
.

(c) Rewriting x1/x = elnx1/x
= e

lnx
x , and applying the chain rule, we get

(x1/x)′ = e
lnx
x ·

1
x · x− lnx · 1

x2
= x1/x

1− lnx

x2
.

(d) Applying the chain rule, we get

(

ln

(

ex

1 + ex

))′

=
1 + ex

ex
· e

x(1 + ex)− ex · ex
(1 + ex)2

=
1

1 + ex
.

5. Compute f ′(π/6), if f(x) = tan−1(cos x).

Solution. Note that by chain rule we have 1
cos2(tan−1 x)

· (tan−1 x)′ = 1, so (tan−1 x)′ =

cos2(tan−1 x). Since sin2(tan−1 x) + cos2(tan−1 x) = 1, we have tan2(tan−1 x) + 1 =
1

cos2(tan−1 x)
, and cos2(tan−1 x) = 1

1+x2 . With that in mind, we compute

f ′(x) =
1

1 + cos2 x
· (− sinx).

Substituting x = π/6, we get f ′(π/6) = 1
1+3/4 · (−1/2) = −2

7 .

6. Compute f ′(e) for f(x) = x3

lnx .

Solution. We have

f ′(x) =
3x2 lnx− x3 1

x

ln2 x
,

so

f ′(e) =
3e2 − e2

1
= 2e2.

7. “The slope of the tangent to the curve y = ax3 + bx+4 at the point (2, 14) on that curve
is 21.” Find the values of a and b for which it is true.

Solution. Since the point (2, 14) is on the curve, we have 14 = 8a+ 2b+ 4, or 4a+ b = 5.
Since the slope is 21, we have y′(x) = 3ax2 + b is 21 when x = 2, so 12a + b = 21.
Subtracting these equations, we get 8a = 16, so a = 2, which implies b = −3.



8. For f(x) = sin(lnx), show that x2f ′′ + xf ′ + f = 0.

Solution. We have f ′(x) = cos(ln x) · 1
x by chain rule. Furthermore, by chain rule and

product rule, we have

f ′′(x) = − sin(lnx) · 1
x
· 1
x
+ cos(lnx) ·

(

− 1

x2

)

.

This means that

x2f ′′ + xf ′ + f = − sin(lnx)− cos(ln x) + cos(lnx) + sin(lnx) = 0.

9. Determine relative extrema and inflection points of the graph y = x3 − 8x2 + 16x, and
draw a rough sketch of that graph.

Solution. First of all, we have y = x3 − 8x2 + 16x = x(x2 − 8x+ 16) = x(x− 4)2, so the
x-intercepts are x = 0 and x = 4. Next, we have y′(x) = 3x2− 16x+16 = (x− 4)(3x− 4),
so the relative extrema are at x = 4 and x = 4/3. Moreover, since y′(x) changes from
positive to negative at 4/3, at that point a relative maximum is attained, and since y′(x)
changes from negative to positive at x = 4, at that point a relative minimum is attained.
Finally, y′′(x) = 6x−16, so the only inflection point is x = 8/3, where the graph is changes
from concave down (y′′(x) < 0) to concave up (y′′(x) > 0)). Using all this information,
we obtain the following graph:

x

y
b

b

b

4

3

8

3

4

10. Show that among all the rectangles of area A, the square has the minimum perimeter.

Solution. Suppose that one of the sides of the rectangle is x, so that the other one is
A
x . Then the perimeter of the rectangle is 2x+ 2A

x . To find the minimum of this function
(with the domain being the open ray (0,+∞) from the context), we should examine the
points where the derivative vanishes. The derivative of this function is

2− 2A

x2
,

and it vanishes precisely for x2 = A, so the only solution in the domain of our function is
x =

√
A (which precisely corresponds to the situation when the rectangle is a square). The

second derivative of this function is 4A
x3 , which is positive everywhere where f is defined, so

x =
√
A is a local minimum. It is also an absolute minimum, since as x → 0 or x → +∞

the limit of the perimeter is +∞.



11. The concentration C of an antibiotic in the bloodstream after time t is given by

C =
5t

1 + t2

k2

for a certain constant k. If it is known that the maximal concentration is reached at t = 6
hours, find the value of k.

Solution. To find the maximum of this function (with the domain being the closed ray
[0,+∞) from the context), we should examine the points where the derivative vanishes.
The derivative of this function is

5(1 + t2

k2
)− 5t · 2t

k2
(

1 + t2

k2

)2 = 5
1− t2

k2
(

1 + t2

k2

)2 ,

so in the domain of our function the only point where it vanishes is t = k. Also, for t < k
the derivative is positive, and for t > k it is negative, so it is indeed a point where the
function reaches its maximal value. We conclude that k = 6.

12. Evaluate the integrals

(a)
∫

sin 2θ
1+cos 2θ dθ; (b)

∫

xdx
1+x2 ; (c)

∫

x3 3
√
1− 4x dx.

Solution.

(a) We use u-substitution with u = 1 + cos 2θ:

∫

sin 2θ

1 + cos 2θ
dθ = −1

2

∫

d(1 + cos 2θ)

1 + cos 2θ
= −1

2
ln(1 + cos 2θ) + C.

(b) We use u-substitution with u = 1 + x2:

∫

x dx

1 + x2
=

1

2

∫

d(1 + x2)

1 + x2
=

1

2
ln(1 + x2) + C.

(c) We use u-substitution with u = 1− 4x

∫

x3 3
√
1− 4x dx = −1

4

∫
(

1− u

4

)3
3
√
u du = − 1

256

∫

(1− 3u+ 3u2 − u3)u1/3] du =

= − 1

256

(

3

4
u4/3 − 9

7
u7/3 +

9

10
u10/3 − 3

13
u13/3

)

+ C =

= − 1

256

(

3

4
(1− 4x)4/3 − 9

7
(1− 4x)7/3 +

9

10
(1− 4x)10/3 − 3

13
(1− 4x)13/3

)

+ C.

13. Evaluate the integrals

(a)
1
∫

1/2

3
2x dx; (b)

π
∫

0

cos2 x
1+sinx dx; (c)

e
∫

e−1

√
1−(lnx)2

x dx.

Solution.

(a) Since F (x) = 3
2 lnx is an antiderivative of 3

2x , we have

1
∫

1/2

3

2x
dx =

3

2
ln 1− 3

2
ln

(

1

2

)

=
3

2
ln 2.



(b) Since cos2 x = 1− sin2 x = (1− sinx)(1 + sinx), we have

π
∫

0

cos2 x

1 + sinx
dx =

π
∫

0

(1− sinx) dx = (x+ cos x)]π0 = (π − 1)− (0 + 1) = π − 2.

(c) Using u-substitution with u = lnx, so that du = dx
x , we have

e
∫

e−1

√

1− (lnx)2

x
dx =

∫ 1

−1

√

1− u2 du =
π

2
,

the last equality coming from the fact that
∫ 1
−1

√
1− u2 du is the area of the half-circle

0 ≤ y ≤
√
1− u2 of radius 1.

14. Find a positive value of k for which the area under the graph of y = e3x over the interval
[0, k] is 11 square units.

Solution. We have
∫ k

0
e3x dx =

1

3

∫ k

0
d(e3x) =

1

3
(e3k − 1),

and this quantity is equal to 11 when e3k = 34, so k = 1
3 ln(34).

15. Compute the area of the region between the graphs y = xex and y = x2ex.

Solution. First let us find the points where these graphs meet:

xex = x2ex

has solutions x = 0 and x = 1. Between these values of x we have xex ≥ x2ex, so the area
in question is

∫ 1

0
(xex − x2ex) dx =

∫ 1

0
(x− x2) d(ex) = (x− x2)ex

]1

0
−

∫ 1

0
ex(1− 2x) dx =

= −
∫ 1

0
(1− 2x) d(ex) = −(1− 2x)ex]10 −

∫ 1

0
2ex dx = e+ 1− 2(e − 1) = 3− e.


