MA1S11 (Dotsenko) Tutorial/Exercise Sheet 1

Week 2, Michaelmas 2013

Please hand in your work in the end of the tutorial. Make sure you put your name and student ID number on what you hand in.
A complete solution to every question is worth 2 marks.

Reminder:

- The domain of a function f consists of all values of x for which $f(x)$ is defined. The range of f consists of all values $f(x)$ when x is varied over the domain of f. If no domain is given explicitly, the natural domain of a function f given by an algebraic expression is the set of all values of x for which $f(x)$ is defined and real.
- Given two functions f and g we define their composition $f \circ g$ by

$$
(f \circ g)(x)=f(g(x)),
$$

so x must be in the domain of g and $g(x)$ in the domain of f for this to make sense. The composition of functions can be iterated, so if there is a third function h we may define

$$
(f \circ g \circ h)(x)=f(g(h(x))),
$$

and so on.

Questions

1. Using the factorisation $x^{2}-x-6=(x+2)(x-3)$, find the natural domain of $\sqrt{x^{2}-x-6}$.
2. Explain why the domain of $\sqrt{x+2} \sqrt{x-3}$ is different from that of $\sqrt{x^{2}-x-6}$.
3. Plot the graph of the function

$$
\operatorname{sign}(x):=\frac{x}{|x|},
$$

and determine the natural domain and the range of this function.
4. Plot the graphs of $\operatorname{sign}(x+1)$ and of $\operatorname{sign}(-x)$.
5. What is the domain of $f \circ g \circ h$, if $f(x)=1-x, g(x)=\frac{1}{x}$, and $h(x)=x^{2}+1$?

