MA1S11 (Dotsenko) Tutorial/Exercise Sheet 2

Week 3, Michaelmas 2013

Please hand in your work in the end of the tutorial. Make sure you put your name and student ID number on what you hand in.
A complete solution to every question is worth 2 marks.

Reminder:

- A curve in the $x y$ plane is symmetric

1. about the x-axis if for any point (x, y) on the curve the point $(x,-y)$ is also on the curve.
2. about the y-axis if for any point (x, y) on the curve the point $(-x, y)$ is also on the curve.
3. about the origin if for any point (x, y) on the curve the point $(-x,-y)$ is also on the curve.

- Suppose that for a function f there exists a function g such that

$$
\begin{aligned}
& f(g(x))=x \text { for all } x \text { in the domain of } g \\
& g(f(x))=x \text { for all } x \text { in the domain of } f
\end{aligned}
$$

Then g is said to be the inverse of f, and is denoted by f^{-1}.

Questions

1. Determine the symmetry properties (symmetry about x-axis, about y-axis, about the origin or none at all) of the following curves in the $x y$ plane (you do not need to plot the graphs!):

$$
y=x^{4}+\frac{3}{x^{2}}-2, \quad y^{5}=x^{5}+x \cos (x), \quad 2 x^{2}+\frac{y^{2}}{5}=1, \quad y^{5}=\frac{1}{x}+x^{3}+1
$$

2. Show that the function $f(x)=2 \sqrt[3]{x-7}+1$ has an inverse, and compute its inverse.
3. State the geometric property common to all lines in the family $y=-x+b$. State the geometric property common to all lines in the family $y=m x+3$.
4. The following three graphs A, B, and C correspond (in some order) to the equations (1) $y=\frac{x^{2}}{x^{2}-x-2}$, (2) $y=\frac{2 x^{2}}{x^{2}+1}$, (3) $y=\frac{4}{(x+2)^{2}}$. Match the graphs with the equations, and explain your reasoning.

5. In the previous question, give equations for horisontal and vertical asymptotes of the given graphs.
