MA1S11 (Dotsenko) Tutorial/Exercise Sheet 3

Week 4, Michaelmas 2013

Please hand in your work in the end of the tutorial. Make sure you put your name and student ID number on what you hand in.

A complete solution to every question is worth 2 marks.

Reminder:

- 1. If the two limits $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist as numbers, then
- $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x);$
- $\lim_{x \to a} (f(x) g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x);$
- $\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x);$
- in particular, $\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x);$
- $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ (provided that for even *n* the limit $\lim_{x \to a} f(x)$ is *positive*);
- $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ whenever $\lim_{x \to a} g(x) \neq 0$.
- 2. Let $f(x) = \frac{p(x)}{q(x)}$ be a rational function, and let a be a real number.
- If $q(a) \neq 0$ then f(x) is defined for x = a, and $\lim_{x \to a} f(x) = f(a)$.
- If q(a) = 0 and $p(a) \neq 0$, then $\lim_{x \to a} f(x)$ does not exist as a real number, and may exist or not exist as an infinite limit (depending on the signs of values of q(x) near a: if they are different on the right and on the left, the limit does not exist, if they are the same, there is an infinite limit).
- If p(a) = q(a) = 0, then both the numerator and the denominator have a factor x − a (one or more), and to compute the limit lim_{x→a} f(x), one brings the fraction to lowest terms and uses the two previous statements.

Questions

- 1. Complete the sentences and explain your answer.
 - "If $\lim_{x \to a} f(x) = 3$, then $\lim_{x \to a} \sqrt{6 + f(x)}$ is...".

- "If $\lim_{y \to a} g(y) = 1$, then $\lim_{y \to a} \frac{g(y)}{3 g(y)}$ is...".
- 2. Which of the following limits exist (as finite or infinite limits)? Explain your answer and compute them.
 - $\lim_{x \to 2^+} \frac{x^2 2x + 1}{x^2 3x + 2}$
 - $\lim_{x \to 2^{-}} \frac{x^2 2x + 1}{x^2 3x + 2}$.
 - $\lim_{x \to 2} \frac{x^2 2x + 1}{x^2 3x + 2}$.
- 3. Which of the following limits exist (as finite or infinite limits)? Explain your answer and compute them.
 - $\lim_{x \to 1^+} \frac{x^2 2x + 1}{x^2 3x + 2}$.
 - $\lim_{x \to 1^{-}} \frac{x^2 2x + 1}{x^2 3x + 2}$ • $\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^2 - 3x + 2}.$
- 4. Which of the following limits exist (as finite or infinite limits)? Explain your answer and compute them.
 - $\lim_{x \to 1} \frac{1}{|x-1|}$.
 - $\lim_{x \to 1} \frac{x^2 3x + 2}{(x 1)^3}$.
- 5. Consider the function $f(x) = x^2 + x$. Find the equation for the line passing through the points (-1, 0) and (x, f(x)) on the graph of that function, and determine the equation of the tangent line to the graph at (-1, 0) by computing the limiting position of that line as $x \to -1$.