MA1S11 (Dotsenko) Tutorial/Exercise Sheet 3

Week 4, Michaelmas 2013

Please hand in your work in the end of the tutorial. Make sure you put your name and student ID number on what you hand in.
A complete solution to every question is worth 2 marks.

Reminder:

1. If the two limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist as numbers, then

- $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$;
- $\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$;
- $\lim _{x \rightarrow a}(f(x) g(x))=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x)$;
- in particular, $\lim _{x \rightarrow a}(c f(x))=c \lim _{x \rightarrow a} f(x) ;$
- $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$ (provided that for even n the limit $\lim _{x \rightarrow a} f(x)$ is positive);
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ whenever $\lim _{x \rightarrow a} g(x) \neq 0$.

2. Let $f(x)=\frac{p(x)}{q(x)}$ be a rational function, and let a be a real number.

- If $q(a) \neq 0$ then $f(x)$ is defined for $x=a$, and $\lim _{x \rightarrow a} f(x)=f(a)$.
- If $q(a)=0$ and $p(a) \neq 0$, then $\lim _{x \rightarrow a} f(x)$ does not exist as a real number, and may exist or not exist as an infinite limit (depending on the signs of values of $q(x)$ near a : if they are different on the right and on the left, the limit does not exist, if they are the same, there is an infinite limit).
- If $p(a)=q(a)=0$, then both the numerator and the denominator have a factor $x-a$ (one or more), and to compute the limit $\lim _{x \rightarrow a} f(x)$, one brings the fraction to lowest terms and uses the two previous statements.

Questions

1. Complete the sentences and explain your answer.

- "If $\lim _{x \rightarrow a} f(x)=3$, then $\lim _{x \rightarrow a} \sqrt{6+f(x)}$ is. ..".
- "If $\lim _{y \rightarrow a} g(y)=1$, then $\lim _{y \rightarrow a} \frac{g(y)}{3-g(y)}$ is...".

2. Which of the following limits exist (as finite or infinite limits)? Explain your answer and compute them.

- $\lim _{x \rightarrow 2^{+}} \frac{x^{2}-2 x+1}{x^{2}-3 x+2}$.
- $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-2 x+1}{x^{2}-3 x+2}$.
- $\lim _{x \rightarrow 2} \frac{x^{2}-2 x+1}{x^{2}-3 x+2}$.

3. Which of the following limits exist (as finite or infinite limits)? Explain your answer and compute them.

- $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-2 x+1}{x^{2}-3 x+2}$.
- $\lim _{x \rightarrow 1^{-}} \frac{x^{2}-2 x+1}{x^{2}-3 x+2}$.
- $\lim _{x \rightarrow 1} \frac{x^{2}-2 x+1}{x^{2}-3 x+2}$.

4. Which of the following limits exist (as finite or infinite limits)? Explain your answer and compute them.

- $\lim _{x \rightarrow 1} \frac{1}{|x-1|}$.
- $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{(x-1)^{3}}$.

5. Consider the function $f(x)=x^{2}+x$. Find the equation for the line passing through the points $(-1,0)$ and $(x, f(x))$ on the graph of that function, and determine the equation of the tangent line to the graph at $(-1,0)$ by computing the limiting position of that line as $x \rightarrow-1$.
