MA1S11 (Dotsenko) Tutorial/Exercise Sheet 4

Week 5, Michaelmas 2013

Please hand in your work in the end of the tutorial. Make sure you put your name and student ID number on what you hand in.
A complete solution to every question is worth 2 marks.

Reminder:

1. For limits of rational functions at infinity, use the formula

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}=a_{n} x^{n}\left(\frac{a_{0}}{a_{n} x^{n}}+\frac{a_{1}}{a_{n} x^{n-1}}+\cdots+\frac{a_{n-1}}{a_{n} x}+1\right)
$$

in both the numerator and the denominator to compute limits.
2. For limits of differences $\sqrt{f(x)}-\sqrt{g(x)}$ (or simply $\sqrt{f(x)}-h(x)$), it is often useful to apply the formula $a-b=\frac{a^{2}-b^{2}}{a+b}$.
3. (The Squeezing Theorem) Suppose that we have three functions $f(x), g(x)$, and $h(x)$, and that we can prove the inequalities

$$
g(x) \leq f(x) \leq h(x)
$$

for all x in some open interval containing the number c, possibly with the exception of c itself. Then if g and h have the same limit L at c, then f also has the limit L at c.
4. We have $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ and $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{1}{2}$.

Questions

1. Which of the following limits exist (as finite or infinite limits)? Explain your answer and compute them.

- $\lim _{x \rightarrow+\infty} \frac{3-5 x^{3}}{1+4 x+x^{3}}$.
- $\lim _{x \rightarrow-\infty} \frac{3-5 x^{3}}{1+4 x+x^{3}}$.

2. Which of the following limits exist (as finite or infinite limits)? Explain your answer and compute them.

- $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+x}}{3 x-1}$.
- $\lim _{x \rightarrow+\infty}(\sqrt{x+1}-\sqrt{x})$.

3. Which of the following limits exist (as finite or infinite limits)? Explain your answer and compute them.

- $\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}$.
- $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}$.

4. Show that

$$
-|x| \leq x \sin \frac{1}{x} \leq|x|
$$

for all $x \neq 0$, and explain why $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$.
5. Let us consider function $f(x)=\left\{\begin{array}{l}\sin \frac{1}{x}, x \neq 0, \\ a, x=0 .\end{array}\right.$ Does there exist a choice of a for which this function is continuous at $x=0$? Explain your answer.

